Supplementary information

Genomics-Driven Discovery of a Linear Lipopeptide Promoting Host Colonization by Endofungal Bacteria

Sarah P. Niehs¹, Kirstin Scherlach¹, Christian Hertweck^{1,2}

¹Department of Biomolecular Chemistry, Leibniz-Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany ²Friedrich Schiller University, 07743 Jena, Germany

Table of Contents

Supplemental methods

Media

Identification of the holrhizin biosynthetic gene cluster using bioinformatics tools General analytical methods Physicochemical data of holrhizin A

Supplemental tables

Tab. S1. Composition of used media in this study.

Tab. S2. Prediction of NRPS modules according to NRPSpredictor2.

Tab. S3. Proteins encoded up- and downstream of the holrhizin gene cluster with NRPS gene RBRH01792.

Tab. S4. ¹H- (600 MHz) and ¹³C- (150 MHz) NMR shifts of holrhizin A.

Tab. S5. Retention times of amino acids derivatized with Marfey's reagent.

Tab. S6. Retention times of amino acids derivatized with Sanger's reagent.

Tab. S7. Results of bioactivity testing against several bacterial and fungal strains.

 Tab. S8. Oligonucleotides used for construction of holrhizin-deficient mutant.

Supplemental figures

Fig. S1. Distribution of holrhizin NRPS gene cluster in different endofungal symbionts of *R. microsporus*.

- Fig. S2. MS/MS fragmentation pattern of holrhizin A.
- Fig. S3. IR spectrum of holrhizin A.

Fig. S4. Biofilm determination assay.

NMR spectra

Fig. S5. ¹H-NMR spectrum of holrhizin A.

- Fig. S6. ¹³C-NMR spectrum of holrhizin A.
- Fig. S7. DEPT-135-NMR spectrum of holrhizin A.
- **Fig. S8**. ¹H-¹H COSY spectrum of holrhizin A.
- **Fig. S9**. ¹H-¹H TOCSY spectrum of holrhizin A.
- Fig. S10. ¹H-¹³C HSQC spectrum of holrhizin A.
- **Fig. S11**. ¹H-¹³C HMBC spectrum of holrhizin A.
- **Fig. S12**. ¹H-¹H NOESY spectrum of holrhizin A.
- Fig. S13. MS/MS spectra of holrhizin A and its congeners B-D.

Supplemental references

Supplemental methods

Media

All media were sterilized at 120 °C for 20 minutes (Tab. S1).

Identification of the holrhizin biosynthetic gene cluster using bioinformatics tools

Genome data was analyzed using AntiSMASH 4.0¹ and NRPSpredictor2².

Putative genes belonging to the holrhizin gene cluster are annotated in table S3. The amino acid sequence of each gene was compared to the Swiss-prot database or the protein data base (pdb) of NCBI.

NCBI³ search revealed homologous genes to RBRH01792 and surrounding genes in *Burkholderia* sp. b13, *Burkholderia* sp. b14, and *B. endofungorum*. The disrupted NRPS genes are probably due to incomplete genomic sequences (Figure S1).

General analytical methods

HPLC/MS: Agilent Technologies 1100 Series HPLC with a UV detector (Agilent 1100 G1315 DAD Detector) using a reversed phase phenomenex column (Luna, C18(2), 10 μ , 250x4.6 mm) and a gradient flow of 10–100% MeCN for 20 min in destilled water (+0.1% formic acid), flow rate: 1 mL min⁻¹, mass spectrometer: Bruker HCT ultra with electrospray ion source and ion trap mass analyzer.

MS/MS (tandem mass spectrometry): QExactive Orbitrap High Performance Benchtop LC/MS (ThermoFisher, Germany) with an electron spray ion source and an Accela HPLC System, C18 column (Accucore C18 2.6 μ m, 100 x 2.1 mm, Thermo Fisher Scientic, Germany), solvents: MeCN and destilled water (both supplemented with 0.1% formic acid), flow rate: 0.2 mL min⁻¹; program: 0–10 min 5–98% MeCN, hold 4 min 98% MeCN, 14–14.1 min 98% to 5% MeCN, hold 6 min at 5% MeCN.

Preparative HPLC: Shimadzu LC-8A HPLC system with a VP250/21 Nucleodur column (C18, HTec, 5 μ m), a flow rate of 15 mL min⁻¹, UV detection at 190 nm, and a gradient of MeCN/destilled H₂O with 0.01% TFA ranging from 40% to 100% MeCN in 25 min.

NMR: Recorded in DMSO-d₆ on Bruker 600 MHz Avance III Ultra Shield (Bruker, Germany); signal reference: respective solvent signals.

IR: Using a JASCO spectrometer FT/IR-4600 (Jasco, Germany).

Physicochemical data of holrhizin A

White amorphous solid: (-)-ESI-MS m/z 815 $[M + H]^-$, (+)-ESI-MS m/z 817 $[M + H]^+$. HRESI/MS: m/z $[M + H]^+$ 817.5057 (calculated for $C_{42}H_{69}N_6O_{10}$ $[M + H]^+$, 817.5070). UV (PDA): λ_{max} = 190 nm.

Supplemental tables

Tab. S1. Composition of used media in this study.

Medium or	Composition (L ⁻¹)		
medium additive			
MGY+M9 medium	10 g glycerol, 1.25 g yeast extract (technical yeast extract, BD, Bacto [®]), 960 mL		
NAG agar	Nutrient agar (Bacto, BD), 1% glycerol		
PDA	Potato dextrose agar (Bacto, BD)		
Double selection agar	24 g agar, 10 g glycerol, 20 mL M9 salt A, 20 mL M9 salt B, 2 g L -amino acid mix, 1 g D,L-4-chlorophenylalanine, sterilization,		
	add 2 mL vitamin solution, 1 mL trace element solution, 16.8 mL of 100 mM L- leucine solution, 5 mL of 60 mM L -histidine solution, 10 mL of 100 mM L-lysine solution, 10 mL of 40 mM L -tryptophan solution, 10 mL of 40 mM L-methionine solution		
King's B medium	20 g proteose peptone Nr.3 (Bacto [®] , BD), 1.5 g K ₂ HPO ₄ , 1.5 g MgSO ₄ x 7 H ₂ O,		
	20 g glycerol, adjust pH to 7.3		
VK medium	5 g glycerol, 10 g yeast extract, 10 g corn starch, 10 g corn step solids, and		
	10 g CaCO ₃ , pH 6.5		
M9 salt solution A	350 g K ₂ HPO ₄ , 100 g KH ₂ PO ₄		
M9 salt solution B	29.4 g sodium citrate, 50 g (NH ₄) ₂ SO ₄ , 5 g MgSO ₄		
Vitamin solution	10 mg folic acid, 6 mg biotin, 200 mg <i>p</i> -aminobenzoic acid, 1 g thiamine-HCl,		
	1.2 g pantothenic acid, 1 g riboflavin, 2.3 g nicotinic acid, 12 g pyridoxine HCl,		
	0.1 mg vitamin B ₁₂		
L-Amino acid mix	2 g of each L-amino acid: alanine, asparagine, cysteine, glutamate, isoleucine,		
	serine, tyrosine, arginine, aspartate, glutamine, glycine, proline, threonine, valine		
Trace element	40 mg ZnCl ₂ , 200 mg FeCl ₃ x 6 H ₂ O, 10 mg CuCl ₂ x 2 H ₂ O, 10 mg MnCl ₂ x 4 H ₂ O,		
solution	10 mg Na ₂ B ₄ O ₇ x 10 H ₂ O, 10 mg (NH ₄) ₆ Mo ₇ O ₂₄ x 4 H ₂ O		

Tab. S2. Prediction of NRPS modules according to NRPSpredictor2²; C – condensation, A – adenylation, T – peptidyl carrier protein, TE – thioesterase.

Modules of RBRH01792	Specificity code (NRPSpredictor2 ²)	Predicted amino acid sequence	Amino acid sequence of holrhizin A
M1 (C-A-P)	LNNAFDASTFEAWLIVGGDINGYGPTESTTFTTT DAFWIGGTFK	Val (100%)	Val
M2 (C-A-P)	LAQAFDASVFEMTLILAGEFNAYGPTETTVCVSA DAFTIAAVCK	Phe (90%)	Phe
M3 (C-A-P)	YFLTFDPCVRDGSILTSGEVNQYGPSECTMASTW DPRSLSQMAK	Leu (40%), for large clusters: Asp, Asn, Glu, Gln	Glu
M4 (C-A-P)	LNTSFDATTFETFLLFGGELHVYGPTETVTYASW DAFFLGVTYK	lle (90%)	lle
M5 (C-A-P)	FWATFDLSIYEVNTNMAGECNLYGPSESTTYSTW DLYNNALTYK	Ala (100%)	Ala
M6 (C-A-P)	LNTSFDATTFETFLLFGGELHVYGPTETVTYASW DAFFLGVTYK	lle (90%)	lle

Gene	Length	Putative	Closed characterized	Accession	Id/
RBRH	[bp]	protein	orthologous protein (organism)	number	Si
01801	1,497	Transporter, MFS	Multidrug resistance protein	E3GC98.1	29%/
		superfamily	MdtG (Enterobacter lignolyticus)		27%
01800	1,452	6-Phospho-	Apoform of dimeric 6-	2ZYG_A	70%/
		gluconate	phosphogluconate		81%
		dehydrogenase	dehydrogenase		
			(Klebsiella pneumoniae)		
01799	804	Sensory box/GGDEF	Pamora dimeric	4RNI_A	29%/
		family protein	phosphodiesterase apo-form		45%
			MorA (Pseudomonas aeruginosa)	DOSP_ECOLI	24%/
			Oxygen sensor protein DosP		44%
			(Escherichia coli)		
01798	2,187	Enoyl-CoA	Fatty acid beta-oxidation	1WDK_A	29%/
		hydratase	multienzyme complex		49%
			(Pseudomonas fragi)		
01796	1,101	DNA	Bacterial topoisomerase Ib	3M4A_A	44%/
		topoisomerase I	(Deinococcus radiodurans)		59%
01793	447	Transposase	Putative transposase; no fully	-	-
			characterizied protein structure		
			for comparison		
01792	19,776	Non-ribosomal	Tyrocidine synthase 3	O30409	38%/
		peptide synthetase	(Brevibacillus parabrevis)		55%
00214	1,536	Glycerol kinase	Glycerol kinase (Escherichia coli)	1BU6_O	59%/
					75%
00215	711	Glycerol uptake	Glycerol facilitator Glpf	1FX8_A	33%/
		facilitator protein	(Escherichia coli)		48%
00218	1,233	Phosphoesterase	Uncharacterized	Y846_CAMJE	31%/
			metallophosphoesterase Cj0846		49%
			(Campylobacter jejuni		
			subsp. <i>jejuni</i>)		
00219	339	Acetyltransferase,	Putative acetyltransferase	2Z10_A	39%/
		GNAT family	(Thermus thermophilus)		54%
00221	1,062	Lipopolysaccharide	Heptosyltransferase Waac	2GT1_A	31%/
		heptosyltransferase	(Escherichia coli)		51%

Tab. S3. Proteins encoded up- and downstream of the holrhizin gene cluster with NRPS gene RBRH01792; Id - Identity; Si - Similarity.

	Position	δ _c [ppm]	δ _H [ppm]; Mult. (<i>J</i> [Hz])
Fatty	C=0	172.2	-
acid	2	35.2	2.07; 2 H m
chain	3	25.3	1.44; 2 H m
	4/5	28.6/28.4	1.22; 4 H m
	6	31.3	1.22; 2 H m
	7	22.0	1.25; 2 H m
	8	13.9	0.84; 3 H m
L-Val	C=0	170.9	-
	2	57.6	4.09; 1 H dd (8.7, 7.1)
	3	30.3	1.87; 1 H sixt (<i>6.8</i>)
	4	19.3	0.74; 3 H dd (<i>9.7, 6.8</i>)
	5	17.9	0.74; 3 H dd (<i>9.7, 6.8</i>)
	NH	-	7.69; 1 H d (<i>8.9</i>)
L-Phe	C=O	171.0	-
	2	53.4	4.55; 1 H m
	3	37.4	3.01; 1 H dd (<i>14.1, 4.2</i>)
			2.77; 1 H dd (<i>14.0, 9.9</i>)
	4	137.7	-
	5	127.9	7.21; 1 H m
	6	129.2	7.23; 1 H m
	7	126.1	7.15; 1 H m
	NH	-	7.92; 1 H d (<i>8.1</i>)
L-Glu	C=0	171.2	-
	2	51.6	4.17; 1 H m
	3	27.3	1.77; 1 H m
			1.95; 1 H m
	4	31.6	2.18; 2 H m
	5	173.0	-
	NH	-	8.15; 1 H d (<i>7.7</i>)
L-lle (A)	C=O	170.8	-
	2	56.6	4.19; 1 H m
	3	36.6	1.67; 1 H m
	4	15.2	0.80; 3 H m
	5	24.3	1.39; 2 H m
	6	11.0	0.78; 3 H m
	NH	-	7.84; 1 H d (<i>8.8</i>)

Tab. S4. 1 H- (600 MHz) and 13 C- (150 MHz) NMR shifts of holrhizin A.

	Position	δ _c [ppm]	δ _H [ppm]; Mult. (<i>J</i> [Hz])
L-Ala	C=O	172.1	-
	2	48.0	4.35; 1 H quin (7.1)
	3	18.1	1.18; 3 H m
	NH	-	8.07; 1 H d (<i>7.4</i>)
L-Ile (B)	C=0	172.8	-
	2	56.1	4.16; 1 H m
	3	36.4	1.76; 1 H m
	4	15.4	0.83; 3 H m
	5	24.5	1.39; 2 H m
	6	11.3	0.82; 3 H m
	NH	-	7.81; 1 H d (<i>8.4</i>)

Tab. S4 continued. ¹H- (600 MHz) and ¹³C- (150 MHz) NMR shifts of holrhizin A

Tab. S5. Retention times of amino acids derivatized with Marfey's reagent.

Derivatization with Marfey's reagent	Configuration	Retention time of amino acid standard [min.]	Retention time of hydrolyzed holrhizin A [min.]
Valine	D	21.4	
	L	14.7	15.0
Phenylalanine	D	25.8	
	L	21.4	21.8
Glutamate	D	7.1	
	L	6.4	6.5
Isoleucine	D	25.0	
	L	18.8	19.1
allo-Isoleucine	D	25.0	
	L	18.8	19.1
Alanine	D	12.6	
	L	9.8	10.1

Tab. S6. Retention times of amino acids derivatized with Sanger's reagent.

Derivatization with Sanger's reagent	Configuration	Retention time of standard [min.]	Retention time of hydrolyzed holrhizin A [min.]
Isoleucine	L	29.3	29.2
allo-Isoleucine	D, L	28.2	-

Tab. S7. Results of bioactivity testing against several bacterial and fungal strains; diameter of hole: 9 mm.

-
-
-
-
10
-
-
-
10
-
10

Tab. S8. Oligonucleotides used for construction of holrhizin-deficient mutant.

Oligonucleotides	Base sequence $5' \rightarrow 3'$	PCR-amplified regions
1792_UP_fw	CTATAGGGCGAATTGGGTACAGCTGCGCCATTAAGTAAC	1,454 bp
1792_UP_rv	ACATTCATCCAGCTGTTAGAAAGCGATG	(flanking region I)
KAN_1792_fw	TCTAACAGCTGGATGAATGTCAGCTACTG	1,058 bp
KAN_1792_rv	CCTATGTTGGTCAGAAGAACTCGTCAAG	(kanamycin resistance
		cassette)
1792_DWN_fw	GTTCTTCTGACCAACATAGGCGAACTTC	425 bp
1792_DWN_rv	CGGTGGCGGCCGCTCTAGAAGCAACAATGAGCCGATTTG	(flanking region II)
1792_Aint_fw	ATCTTGGGCTCTGGTCATCC	Verification primers
1792_Aint_rv	ACGCAATGCAATATCGGCTT	

Supplemental figures

Fig. S1. Distribution of holrhizin NRPS gene cluster in different endofungal symbionts of *R. microsporus*; NRPS, non-ribosomal peptide synthetase; B1 - *B. rhizoxinica* HKI 454; B4 - *Burkholderia* spp. HKI402; B7 -*Burkholderia* spp. HKI403; B5 - *B. endofungorum* HKI 456.

Consecutive numbering of Burkholderia strains according to Lackner et. al.⁴

B4 and B7 are publically available as Burkholderia sp. b13 and Burkholderia sp. b14, respectively.

Fig. S2. MS/MS fragmentation pattern of holrhizin A as $[M - H]^-$ 815.5 (collision energy 32%; above) and as $[M + H]^+$ 817.5 (collision energy 12%; below) with masses according to LC/MS measurement (m) and calculation (c).

Fig. S3. IR spectrum of holrhizin A.

Fig. S4. Biofilm determination assay after addition of ethanol; left: wild type (columns 2-6) and right: holrhizin-deficient strain (columns 7-11).

Fig. S5. ¹H-NMR spectrum of holrhizin A, recorded at 600 MHz in DMSO-d₆.

Fig. S6. 13 C-NMR spectrum of holrhizin A, recorded at 150 MHz in DMSO-d₆.

Fig. S7. DEPT-135-NMR spectrum of holrhizin A, recorded at 150 MHz in DMSO-d₆.

Fig. S8. ¹H-¹H COSY spectrum of holrhizin A, recorded at 600 MHz in DMSO-d₆.

Fig. S9. ¹H-¹H TOCSY spectrum of holrhizin A, recorded at 600 MHz in DMSO-d₆.

Fig. S10. ¹H-¹³C HSQC spectrum of holrhizin A, recorded at 600 MHz (¹H) and 150 MHz (¹³C) in DMSO-d₆.

Fig. S11. ¹H-¹³C HMBC spectrum of holrhizin A, recorded at 600 MHz (¹H) and 150 MHz (¹³C) in DMSO-d₆.

Fig. S12. ¹H-¹H NOESY spectrum of holrhizin A, recorded at 600 MHz in DMSO-d₆.

Fig. S13. MS/MS spectra of holrhizin **A** and its congeners **B-D** with masses according to measurement (m) and calculation (c); MS fragmentation as $[M + H]^+$; collision energy 12–15%.

Fig. S13 continued. MS/MS spectra of holrhizin **A** and its congeners **B-D** with masses according to measurement (m) and calculation (c); MS fragmentation as $[M + H]^+$; collision energy 12–15%.

Fig. S13 continued. MS/MS spectra of holrhizin **A** and its congeners **B-D** with masses according to measurement (m) and calculation (c); MS fragmentation as $[M + H]^+$; collision energy 12–15%.

Fig. S13 continued. MS/MS spectra of holrhizin **A** and its congeners **B**-**D** with masses according to measurement (m) and calculation (c); MS fragmentation as $[M + H]^+$; collision energy 12–15%.

Supplemental references

- 1 K. Blin, T. Wolf, M. G. Chevrette, X. Lu, C. J. Schwalen, S. A. Kautsar, H. G. Suarez Duran, E. L. C. de los Santos, H. U. Kim, M. Nave, J. S. Dickschat, D. A. Mitchell, E. Shelest, R. Breitling, E. Takano, S. Y. Lee, T. Weber and M. H. Medema, *Nucleic Acids Res.*, 2017, **45**, W36–W41.
- 2 M. Röttig, M. H. Medema, K. Blin, T. Weber, C. Rausch and O. Kohlbacher, *Nucleic Acids Res.*, 2011, **39**, W362–W367.
- 3 N. Resource Coordinators, Nucleic Acids Res., 2017, 45, D12.
- 4 G. Lackner, N. Möbius, K. Scherlach, L. P. Partida-Martinez, R. Winkler, I. Schmitt and C. Hertweck, *Appl. Environ. Microbiol.*, 2009, **75**, 2982–2986.