Electronic Supplementary Information

Regioselective Addition of Phosphites to Acyl Cyclopropanes and Following Rearrangements: A Facile Access to Enol Phosphates

Haotian Li,^{†a} Yuequan Zhu,^{†a} Dengfu Lu*^a and Yuefa Gong*^a

School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd.,

Wuhan, Hubei, 430074, China. E-mail: <u>dlu@hust.edu.cn</u>; <u>gongyf@hust.edu.cn</u>

Contents

I.	General Information	2			
II.	Reaction Condition Optimization	3			
III.	Cs ₂ CO ₃ Promoted Cascade Reaction for Enol Phosphate Synthesis	3			
IV.	Mechanistic Related Control Experiments				
V.	References	21			
VI.	NMR Spectra	22			

I. General Information

General procedures. All reactions were performed in oven-dried round-bottom flasks and tubes. Solvents were dried and freshly distilled before use. 4Å molecular sieves were freshly activated before use. Aldehydes and amines are purified either by distillation or recrystallization before use. Reactions were monitored by thin layer chromatography (TLC) using silica gel 60 F-254 plates. TLC plates were normally visualized under UV irradiation (254 nm or 365 nm), stained with basic KMnO₄ or phosphomolybdic acid. Flash chromatography was performed using silica gel 60 (200–300 mesh).

Instrumentation. Proton nuclear magnetic resonance (¹H NMR) spectra and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on Bruker Ascend 400 MHZ or 600 MHZ. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to the NMR solvent residual peak (CHCl₃: δ 7.26). Chemical shifts for carbons are reported in parts per million downfield from tetramethylsilane and are referenced to the NMR solvent (CDCl₃: δ 77.0). Data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constants in Hertz (Hz), and integration. HRMS was measured on a Bruker SolariX 7.0T spectrometer equipped with an ESI or APCI source.

Abbreviations used: TLC-thin layer chromatography; THF-tetrahydrofuran; PE-Petroleum Ethers; DCE-1,2-dichloroethane; NOE-Nuclear Overhauser Effect.

II. Reaction Condition Optimization

General procedure for the reaction condition optimization: To an oven-dried reaction tube charged with a magnetic stir bar were added ethyl 2-benzoyl-1-chlorocyclopropane-1-carboxylate 1a (50.5 mg, 0.2 mmol) and diethyl phosphite 2a (31 μ L, 0.24 mmol). The reactants were dissolved in dried solvent (1 mL) under stirring, followed by the addition of a corresponding base (0.04-0.4 mmol). The reaction was kept stirring for indicated time till the consumption of 1a (monitored by TLC). Water (5 mL) was added to quench the reaction and the mixture was extracted with EtOAc (3 mL × 3). The combined organic layers were dried with anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was then purified through silica gel column chromatography with petroleum ether/ethyl acetate as eluent to produce compound **3aa** as colorless oil. The results are summarized in **table 1**.

Ethyl (Z)-2-chloro-5-((diethoxyphosphoryl)oxy)-5-phenylpent-4-enoate (**3aa**) Compound **3aa** was isolated through silica gel column chromatography as colorless liquid (71.1 mg, 91% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.53 (dd, J = 7.8, 1.7 Hz, 2H), 7.40 – 7.31 (m, 3H), 5.66 (td, J = 7.3, 2.1 Hz, 1H), 4.46 (dd, J = 7.7, 6.3 Hz, 1H), 4.26 (qd, J = 7.1, 0.9 Hz, 2H), 4.17 – 3.99 (m, 4H), 3.16 – 3.06 (m, 1H), 3.01 (ddd, J = 15.2, 7.6, 2.3 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H), 1.24 (qd, J = 7.1, 1.0 Hz, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.2, 148.6 (d, J = 8.9 Hz), 134.9, 128.9, 128.3, 125.8, 111.0 (d, J = 6.6 Hz), 64.5 (d, J = 5.9 Hz), 62.1, 56.1 (d, J = 2.5 Hz), 31.7 (d, J = 1.5 Hz), 16.0 (d, J = 7.0 Hz), 14.0; ³¹P{¹H} NMR (162 MHz, CDCl₃) δ -6.06; IR (KBr) ν 2985, 2935, 2873, 1743, 1664, 1493, 1447, 1372, 1272, 1179, 1110, 1023, 886, 815, 767 cm⁻¹; HRMS (ESI) m/z calcd for C₁₇H₂₄ClO₆PNa [M + Na]⁺ 413.0891, found 413.0905.

III. Cs₂CO₃ Promoted Cascade Reaction for Enol Phosphate Synthesis

a. Preparation of the 2-aroyl-1-chlorocyclopropane-1-carboxylates substrates.

Substrate 1 and 5 are prepared according to a known procedure that was described in our previous publications.¹

b. General procedure for the cascade reaction between 1 and 2 to prepare enol phosphate 3. To an oven-dried reaction tube charged with a magnetic stir bar and Cs_2CO_3 (70.6 mg, 0.2 mmol) under N₂ were added anhydrous CH₃CN (0.3 mL) and a dialkyl phosphite 2 (0.24 mmol) via syringes. The mixture was stirred at room temperature for 5 minutes before a corresponding aroyl cyclopropane derivative 1 or 5 (0.2 mmol, dissolved in 0.7 mL CH₃CN) was added via a syringe. The reaction was kept stirring for indicated time till the consumption of 1 or 5. (monitored by TLC). Water (5 mL) was added to quench the reaction and the mixture was extracted with EtOAc (3 mL × 3). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was then purified through silica gel column chromatography with petroleum ether/ethyl acetate as eluent.

Ethyl (Z)-2-chloro-5-((diethoxyphosphoryl)oxy)-5-(p-tolyl)pent-4-enoate (3ba) was prepared from the reaction of **1b** and diethyl phosphite **2a** according to the general procedure. Compound **3ba** was isolated through silica gel column chromatography as colorless liquid (63.2 mg, 78% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 8.2 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 5.60 (td, J = 7.3, 2.1 Hz, 1H), 4.45 (dd, J = 7.7, 6.4 Hz, 1H), 4.25 (qd, J = 7.1, 0.9 Hz, 2H), 4.17 – 3.98 (m, 4H), 3.14 – 3.04 (m, 1H), 2.98 (dtd, J = 9.8, 7.5, 2.3 Hz, 1H), 2.35 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H), 1.28 – 1.23 (m, 6H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 169.2, 148.7 (d, J = 9.0 Hz), 138.8, 132.1, 129.0, 125.7, 110.0 (d, J = 6.6 Hz), 64.5 (d, J = 5.9 Hz), 62.1, 56.2 (d, J = 2.5 Hz), 31.7 (d, J = 1.4 Hz), 21.2, 16.0 (d, J = 6.9 Hz), 14.0; ³¹P {¹H} NMR (162 MHz, CDCl₃) δ -6.02; IR (KBr) v 2985, 2933, 2873, 1744, 1664, 1611, 1513, 1447, 1393, 1372, 1273, 1180, 1100, 1032, 984, 889, 861, 820, 757 cm⁻¹; HRMS (ESI) m/z calcd for C₁₈H₂₆ClO₆PNa [M + Na]⁺ 427.1048, found 427.1048.

Ethyl (Z)-2-chloro-5-(4-chlorophenyl)-5-((diethoxyphosphoryl)oxy)pent-4-enoate (3da) was

prepared from the reaction of **1d** and diethyl phosphite **2a** according to the general procedure. Compound **3da** was isolated through silica gel column chromatography as colorless liquid (70.6 mg, 83% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.44 (m, 2H), 7.34 – 7.29 (m, 2H), 5.66 (td, J = 7.3, 2.1 Hz, 1H), 4.45 (dd, J = 7.7, 6.2 Hz, 1H), 4.25 (qd, J = 7.1, 1.1 Hz, 2H), 4.18 – 4.01 (m, 4H), 3.09 (dddd, J = 15.5, 7.4, 6.3, 2.2 Hz, 1H), 2.98 (dtd, J = 9.8, 7.5, 2.3 Hz, 1H), 1.30 (t, J = 5.3 Hz, 3H), 1.29 – 1.23 (m, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.1, 147.5 (d, J = 9.0 Hz), 134.7, 133.4, 128.5, 127.0, 111.5 (d, J = 6.5 Hz), 64.7 (d, J = 6.0 Hz), 62.2, 56.0 (d, J = 2.4 Hz), 31.7 (d, J = 1.4 Hz), 16.0 (d, J = 6.9 Hz), 140; ³¹P{¹H} NMR (162 MHz, CDCl₃) δ -5.94; IR (KBr) ν 2986, 2934, 2873, 1744, 1664, 1595, 1491, 1446, 1398, 1372, 1273, 1179, 1096, 1028, 888, 831, 769 cm⁻¹; HRMS (ESI) m/z calcd for C₁₇H₂₃Cl₂O₆PNa [M + Na]⁺ 447.0502, found 447.0501.

Ethyl (Z)-5-(4-bromophenyl)-2-chloro-5-((diethoxyphosphoryl)oxy)pent-4-enoate (3ea) was prepared from the reaction of **1e** and diethyl phosphite **2a** according to the general procedure. Compound **3ea** was isolated through silica gel column chromatography as colorless liquid (78.9 mg, 84% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 8.6 Hz, 2H), 7.43 – 7.37 (m, 2H), 5.68 (td, J = 7.3, 2.1 Hz, 1H), 4.45 (dd, J = 7.7, 6.2 Hz, 1H), 4.25 (qd, J = 7.1, 0.9 Hz, 2H), 4.18 – 4.01 (m, 4H), 3.16 – 3.03 (m, 1H), 2.97 (dtd, J = 9.8, 7.5, 2.3 Hz, 1H), 1.30 (t, J = 5.3 Hz, 3H), 1.27 (td, J = 6.5, 1.9 Hz, 6H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 169.1, 147.6 (d, J = 8.9 Hz), 133.9, 131.5, 127.3, 123.0, 111.6 (d, J = 6.5 Hz), 64.7 (d, J = 5.9 Hz), 62.2, 56.0 (d, J = 2.4 Hz), 31.7 (d, J = 1.5 Hz), 16.0 (d, J = 6.8 Hz), 14.0; ³¹P {¹H} NMR (162 MHz, CDCl₃) δ -5.94; IR (KBr) ν 2985, 2935, 2872, 1744, 1663, 1589, 1487, 1446, 1396, 1372, 1273, 1180, 1101, 1071, 1028, 887, 826, 766 cm⁻¹; HRMS (ESI) m/z calcd for C₁₇H₂₃BrClO₆PNa [M + Na]⁺ 490.9996, found 490.9997.

(Z)-4-(ethoxycarbonyl)-1-(2-bromophenyl)-4-chlorobut-1-enyl diethyl phosphate (3fa) was prepared from the reaction of 1f and diethyl phosphite 2a according to the general procedure.

Compound **3fa** was isolated through silica gel column chromatography as colorless liquid (79.8 mg, 85% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.43 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.33 – 7.27 (m, 1H), 7.20 (td, *J* = 7.7, 1.8 Hz, 1H), 5.36 (td, *J* = 7.2, 1.1 Hz, 1H), 4.47 (dd, *J* = 7.7, 6.4 Hz, 1H), 4.29 – 4.21 (m, 2H), 3.98 (dddt, *J* = 14.2, 10.0, 7.9, 7.2 Hz, 4H), 3.07 (dddd, *J* = 15.5, 7.3, 6.5, 1.9 Hz, 1H), 2.96 (dtd, *J* = 9.4, 7.5, 2.0 Hz, 1H), 1.31 (t, *J* = 7.1 Hz, 3H), 1.18 (qd, *J* = 7.1, 1.1 Hz, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.1, 147.1 (d, *J* = 8.8 Hz), 136.6, 132.9, 131.7, 130.4, 127.1, 122.6, 115.2 (d, *J* = 7.6 Hz), 64.3 (d, *J* = 6.1 Hz), 62.2, 55.9 (d, *J* = 2.1 Hz), 31.3 (d, *J* = 1.0 Hz), 15.9 (dd, *J* = 7.1, 1.9 Hz), 14.0; ³¹P{¹H} NMR (162 MHz, CDCl₃) δ -6.74; IR (KBr) *v* 3062, 2985, 2935, 2872, 1744, 1682, 1589, 1562, 1471, 1434, 1394, 1372, 1280, 1179, 1100, 1031, 890, 861, 817, 765 cm⁻¹; HRMS (ESI) m/z calcd for C₁₇H₂₃BrClO₆PNa [M + Na]⁺ 490.9996, found 490.9997.

Ethyl (Z)-5-([1,1'-biphenyl]-4-yl)-2-chloro-5-((diethoxyphosphoryl)oxy)pent-4-enoate (3ga) was prepared from the reaction of **1g** and diethyl phosphite **2a** according to the general procedure. Compound **3ga** was isolated through silica gel column chromatography as colorless liquid (79.4 mg, 85% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.58 (m, 6H), 7.46 (dd, J = 10.3, 4.8 Hz, 2H), 7.40 – 7.35 (m, 1H), 5.75 (td, J = 7.3, 2.1 Hz, 1H), 4.50 (dd, J = 7.7, 6.3 Hz, 1H), 4.34 – 4.24 (m, 2H), 4.22 – 4.05 (m, 4H), 3.20 – 3.11 (m, 1H), 3.05 (ddd, J = 15.2, 7.6, 2.3 Hz, 1H), 1.33 (t, J = 7.2 Hz, 3H), 1.30 – 1.25 (m, 6H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 169.2, 148.3 (d, J = 9.0 Hz), 141.6, 140.3, 133.8, 128.9, 127.6, 127.00, 126.98, 126.2, 111.0 (d, J = 6.5 Hz), 64.6 (d, J = 5.9 Hz), 62.2, 56.2 (d, J = 2.4 Hz), 31.8 (d, J = 1.3 Hz), 16.1 (d, J = 6.9 Hz), 14.1; ³¹P {¹H} NMR (162 MHz, CDCl₃) δ -5.92; IR (KBr) ν 3033, 2985, 2934, 1743, 1662, 1604, 1486, 1447, 1398, 1372, 1274, 1170, 1100, 1032, 889, 843, 818, 768 cm⁻¹; HRMS (ESI) m/z calcd for C₂₃H₂₈ClO₆PNa [M + Na]⁺ 489.1204, found 489.1201.

Ethyl (Z)-2-chloro-5-((diethoxyphosphoryl)oxy)-5-(thiophen-2-yl)pent-4-enoate (3ha) was

prepared from the reaction of **1h** and diethyl phosphite **2a** according to the general procedure. Compound **3ha** was isolated through silica gel column chromatography as yellow liquid (60.3 mg, 76% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.21 (m, 2H), 6.98 (dd, *J* = 5.1, 3.7 Hz, 1H), 5.61 (td, *J* = 7.4, 2.4 Hz, 1H), 4.44 (dd, *J* = 7.6, 6.4 Hz, 1H), 4.29 – 4.22 (m, 2H), 4.23 – 4.08 (m, 4H), 3.13 – 3.02 (m, 1H), 2.97 (ddd, *J* = 15.2, 7.6, 2.3 Hz, 1H), 1.34 – 1.27 (m, 9H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 169.1, 143.3 (d, *J* = 9.1 Hz), 138.2, 127.3, 125.7, 125.6, 110.1 (d, *J* = 6.2 Hz), 64.8 (d, *J* = 5.9 Hz), 62.2, 55.9 (d, *J* = 2.6 Hz), 31.7 (d, *J* = 1.5 Hz), 16.1 (d, *J* = 6.9 Hz), 14.0; ³¹P {¹H} NMR (162 MHz, CDCl₃) δ -6.01; IR (KBr) *v* 3106, 2986, 2936, 2912, 1742, 1663, 1519, 1475, 1439, 1415, 1371, 1262, 1181, 1099, 1032, 863, 821, 713 cm⁻¹; HRMS (ESI) m/z calcd for C₁₅H₂₂ClO₆PSNa [M + Na]⁺ 419.0454, found 419.0452.

Methyl (*Z*)-2-chloro-5-((diethoxyphosphoryl)oxy)-5-phenylpent-4-enoate (3ja) was prepared from the reaction of 1j and diethyl phosphite 2a according to the general procedure. Compound 3ja was isolated through silica gel column chromatography as colorless liquid (62.5 mg, 83% yield): ¹H NMR (400 MHz, CDCl₃) δ 7.53 (dd, J = 7.7, 1.8 Hz, 2H), 7.34 (q, J = 5.1 Hz, 3H), 5.66 (td, J = 7.3, 2.1 Hz, 1H), 4.49 (dd, J = 7.8, 6.3 Hz, 1H), 4.19 – 3.97 (m, 4H), 3.81 (s, 3H), 3.12 (ddd, J = 13.7, 7.8, 2.1 Hz, 1H), 2.99 (dtd, J = 9.8, 7.5, 2.3 Hz, 1H), 1.28 – 1.21 (m, 6H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 169.7, 148.6 (d, J = 9.0 Hz), 134.9, 128.9, 128.3, 125.8, 110.9 (d, J =6.6 Hz), 64.6 (d, J = 5.9 Hz), 55.9 (d, J = 2.5 Hz), 53.0, 31.7 (d, J = 1.5 Hz), 16.0 (d, J = 6.9 Hz); ³¹P {¹H} NMR (162 MHz, CDCl₃) δ -6.04; IR (KBr) ν 2986, 2959, 2873, 1748, 1664, 1601, 1580, 1493, 1443, 1393, 1367, 1273, 1198, 1170, 1101, 1021, 984, 893, 805, 768 cm⁻¹; HRMS (ESI) m/z calcd for C₁₆H₂₂ClO₆PNa [M + Na]⁺ 399.0735, found 399.0736.

tert-butyl (**Z**)-2-chloro-5-((diethoxyphosphoryl)oxy)-5-phenylpent-4-enoate (3ka) was prepared from the reaction of 1k and diethyl phosphite 2a according to the general procedure. Compound 3ka was isolated through silica gel column chromatography as colorless liquid (66.2

mg, 79% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, *J* = 7.8, 1.7 Hz, 2H), 7.38 – 7.30 (m, 3H), 5.65 (td, *J* = 7.3, 2.1 Hz, 1H), 4.35 (dd, *J* = 7.4, 6.5 Hz, 1H), 4.18 – 3.98 (m, 4H), 3.11 – 2.92 (m, 2H), 1.49 (s, 9H), 1.28 – 1.20 (m, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.1, 148.4 (d, *J* = 9.1 Hz), 135.0, 128.8, 128.3, 125.7, 111.2 (d, *J* = 6.5 Hz), 82.7, 64.5 (d, *J* = 6.0 Hz), 57.2 (d, *J* = 2.3 Hz), 31.8 (d, *J* = 1.5 Hz), 27.8, 16.0 (d, *J* = 6.9 Hz); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ -6.02; IR (KBr) *v* 2983, 2934, 1739, 1664, 1602, 1579, 1478, 1394, 1369, 1274, 1154, 1101, 1035, 984, 888, 845, 817, 768 cm⁻¹; HRMS (ESI) m/z calcd for C₁₉H₂₈ClO₆PNa [M + Na]⁺ 441.1204, found 441.1210.

2-Chloroethyl (Z)-2-chloro-5-((diethoxyphosphoryl)oxy)-5-phenylpent-4-enoate (3la) was prepared from the reaction of **1l** and diethyl phosphite **2a** according to the general procedure. Compound **3la** was isolated through silica gel column chromatography as yellow liquid (54.4 mg, 64% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.52 (m, 2H), 7.39 – 7.32 (m, 3H), 5.68 (td, J = 7.3, 2.1 Hz, 1H), 4.54 (dd, J = 7.5, 6.5 Hz, 1H), 4.50 – 4.42 (m, 2H), 4.18 – 4.00 (m, 4H), 3.78 – 3.70 (m, 2H), 3.21 – 3.09 (m, 1H), 3.04 (ddd, J = 15.2, 7.5, 2.3 Hz, 1H), 1.25 (qd, J = 7.0, 1.0 Hz, 6H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 168.9, 148.7 (d, J = 9.0 Hz), 134.9, 128.9, 128.3, 125.8, 110.7 (d, J = 6.6 Hz), 65.4, 64.6 (d, J = 5.9 Hz), 55.8 (d, J = 2.5 Hz), 41.1, 31.7 (d, J = 1.5 Hz), 16.0 (d, J = 6.9 Hz); ³¹P {¹H} NMR (162 MHz, CDCl₃) δ -6.03; IR (KBr) v 2985, 2935, 1803, 1750, 1665, 1628, 1601, 1493, 1447, 1391, 1273, 1169, 1101, 1033, 984, 893, 818, 768 cm⁻¹; HRMS (ESI) m/z calcd for C₁₇H₂₃Cl₂O₆PNa [M + Na]⁺ 447.0502, found 447.0500.

Benzyl (Z)-2-chloro-5-((diethoxyphosphoryl)oxy)-5-phenylpent-4-enoate (3ma) was prepared from the reaction of 1m and diethyl phosphite 2a according to the general procedure. Compound 3ma was isolated through silica gel column chromatography as colorless liquid (65.2 mg, 72% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.47 (m, 2H), 7.41 – 7.32 (m, 8H), 5.63 (td, *J* = 7.3, 2.2 Hz, 1H), 5.25 (s, 2H), 4.54 (dd, *J* = 7.5, 6.6 Hz, 1H), 4.18 – 3.96 (m, 4H), 3.18 – 3.09 (m, 1H), 3.04 (dtd, J = 9.8, 7.5, 2.3 Hz, 1H), 1.22 (tdd, J = 7.1, 2.7, 1.1 Hz, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.0, 148.6 (d, J = 9.0 Hz), 135.1, 134.9, 128.9, 128.6, 128.5, 128.3 (d, J = 1.8 Hz), 110.8 (d, J = 6.5 Hz), 67.7, 64.6 (d, J = 5.9 Hz), 56.1 (d, J = 2.6 Hz), 31.8 (d, J = 1.5 Hz), 16.0 (d, J = 7.0 Hz); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ -6.02; IR (KBr) v 3063, 3034, 2986, 2934, 1746, 1664, 1603, 1496, 1449, 1389, 1273, 1167, 1101, 1022, 984, 890, 818, 765 cm⁻¹; HRMS (ESI) m/z calcd for C₂₂H₂₆ClO₆PNa [M + Na]⁺ 475.1048, found 475.1046.

Ethyl (Z)-2-chloro-5-((dimethoxyphosphoryl)oxy)-5-phenylpent-4-enoate (3ab) was prepared from the reaction of **1a** and dimethyl phosphite **2b** according to the general procedure. Compound **3ab** was isolated through silica gel column chromatography as colorless liquid (67.5 mg, 93% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.50 (m, 2H), 7.40 – 7.32 (m, 3H), 5.67 (td, *J* = 7.3, 2.1 Hz, 1H), 4.45 (dd, *J* = 7.6, 6.2 Hz, 1H), 4.26 (qd, *J* = 7.1, 0.6 Hz, 2H), 3.73 (dd, *J* = 11.4, 4.1 Hz, 6H), 3.10 (dddd, *J* = 15.6, 7.5, 6.3, 2.2 Hz, 1H), 2.98 (dtd, *J* = 9.8, 7.5, 2.3 Hz, 1H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.1, 148.4 (d, *J* = 8.9 Hz), 134.8, 129.0, 128.4, 125.7, 111.1 (d, *J* = 6.5 Hz), 62.2, 56.1 (d, *J* = 2.5 Hz), 54.9 (d, *J* = 6.0 Hz), 31.7 (d, *J* = 1.5 Hz), 14.0; ³¹P{¹H} NMR (162 MHz, CDCl₃) δ -3.64; IR (KBr) *v* 3061, 2985, 2960, 2857, 1744, 1665, 1602, 1579, 1494, 1449, 1373, 1278, 1184, 1100, 1041, 955, 897, 853, 771 cm⁻¹; HRMS (ESI) m/z calcd for C₁₅H₂₀ClO₆PNa [M + Na]⁺ 385.0578, found 385.0579.

Ethyl (Z)-2-chloro-5-((dimethoxyphosphoryl)oxy)-5-phenylpent-4-enoate (3ac) was prepared from the reaction of **1a** and diisopropyl phosphite **2c** according to the general procedure. Compound **3ac** was isolated through silica gel column chromatography as yellow liquid (42.7 mg, 51% yield): ¹H NMR (400 MHz, CDCl₃) δ 7.54 (dd, *J* = 7.9, 1.7 Hz, 2H), 7.33 (dd, *J* = 7.3, 5.4 Hz, 3H), 5.66 (td, *J* = 7.3, 2.2 Hz, 1H), 4.64 (dt, *J* = 12.3, 6.2 Hz, 2H), 4.48 (dd, *J* = 7.8, 6.3 Hz, 1H), 4.26 (qd, *J* = 7.1, 0.9 Hz, 2H), 3.21 – 3.07 (m, 1H), 3.02 (ddd, *J* = 15.2, 7.6, 2.3 Hz, 1H), 1.38 – 1.28 (m, 9H), 1.18 (dd, *J* = 11.5, 6.2 Hz, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.2, 148.7

(d, J = 9.1 Hz), 135.1, 128.7, 128.2, 125.9, 110.8 (d, J = 6.6 Hz), 73.4 (d, J = 6.0 Hz), 62.1, 56.2 (d, J = 2.5 Hz), 31.8 (d, J = 1.5 Hz), 23.6 (d, J = 4.5 Hz), 23.4 (dd, J = 5.6, 4.0 Hz), 14.0; ³¹P{¹H} NMR (162 MHz, CDCl₃) δ -7.67; IR (KBr) v 3062, 2983, 2934, 1744, 1663, 1494, 1466, 1450, 1380, 1271, 1180, 1145, 1104, 1002, 900, 860, 767 cm⁻¹; HRMS (ESI) m/z calcd for C₁₉H₂₈ClO₆PNa [M + Na]⁺ 441.1204, found 441.1207.

Ethyl (**Z**)-5-((bis(benzyloxy)phosphoryl)oxy)-2-chloro-5-phenylpent-4-enoate (3ad) was prepared from the reaction of 1a and dibenzyl phosphite 2d according to the general procedure. Compound 3ad was isolated through silica gel column chromatography as colorless liquid (96.8 mg, 94% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.37 (m, 2H), 7.26 – 7.16 (m, 9H), 7.14 – 7.07 (m, 4H), 5.56 (td, *J* = 7.3, 2.0 Hz, 1H), 5.01 – 4.75 (m, 4H), 4.31 (dd, *J* = 7.6, 6.3 Hz, 1H), 4.11 (qd, *J* = 7.1, 2.5 Hz, 2H), 2.97 (ddd, *J* = 8.3, 7.7, 1.5 Hz, 1H), 2.88 (ddd, *J* = 15.3, 7.6, 2.3 Hz, 1H), 1.16 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.1, 148.5 (d, *J* = 9.1 Hz), 135.5 (d, *J* = 7.2 Hz), 134.8, 129.0, 128.6, 128.4, 127.9, 125.8, 111.2 (d, *J* = 6.6 Hz), 70.0 (d, *J* = 5.6 Hz), 62.2, 56.1 (d, *J* = 2.4 Hz), 31.8 (d, *J* = 1.4 Hz), 14.0; ³¹P{¹H} NMR (162 MHz, CDCl₃) δ -5.78; IR (KBr) *v* 3064, 3035, 2981, 1743, 1664, 1602, 1496, 1454, 1375, 1276, 1213, 1180, 1100, 1015, 889, 806, 768 cm⁻¹; HRMS (ESI) m/z calcd for C₂₇H₂₈ClO₆PNa [M + Na]⁺ 537.1204, found 537.1204.

Ethyl (Z)-2-chloro-5-((dimethoxyphosphoryl)oxy)-5-(p-tolyl)pent-4-enoate (3bb) was prepared from the reaction of 1b and dimethyl phosphite 2b according to the general procedure. Compound 3bb was isolated through silica gel column chromatography as colorless liquid (68.6 mg, 91% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.2 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 5.62 (td, *J* = 7.3, 2.0 Hz, 1H), 4.45 (dd, *J* = 7.6, 6.3 Hz, 1H), 4.33 – 4.19 (m, 2H), 3.74 (dd, *J* = 11.4, 3.7 Hz, 6H), 3.16 – 3.04 (m, 1H), 2.98 (ddd, *J* = 15.2, 7.5, 2.3 Hz, 1H), 2.36 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.2, 148.5 (d, *J* = 8.9 Hz), 139.0, 131.9,

129.1, 125.6, 110.1 (d, J = 6.5 Hz), 62.2, 56.2 (d, J = 2.5 Hz), 54.9 (d, J = 6.0 Hz), 31.7 (d, J = 1.5 Hz), 21.2, 14.0; ³¹P{¹H} NMR (162 MHz, CDCl₃) δ -3.63; IR (KBr) v 2960, 2858, 1744, 1666, 1610, 1513, 1452, 1373, 1277, 1184, 1034, 900, 854, 822, 769 cm⁻¹; HRMS (ESI) m/z calcd for C₁₆H₂₂ClO₆PNa [M + Na]⁺ 399.0735, found 399.0731.

Ethyl (Z)-2-chloro-5-((dimethoxyphosphoryl)oxy)-5-(4-methoxyphenyl)pent-4-enoate (3cb) was prepared from the reaction of **1c** and dimethyl phosphite **2b** according to the general procedure. Compound **3cb** was isolated through silica gel column chromatography as colorless liquid (28.3 mg, 36% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.43 (m, 2H), 6.92 – 6.87 (m, 2H), 5.54 (td, *J* = 7.3, 2.0 Hz, 1H), 4.45 (dd, *J* = 7.6, 6.3 Hz, 1H), 4.27 (tt, *J* = 7.2, 3.6 Hz, 2H), 3.83 (s, 3H), 3.75 (dd, *J* = 11.4, 3.6 Hz, 6H), 3.17 – 3.02 (m, 1H), 2.96 (dtd, *J* = 9.7, 7.5, 2.3 Hz, 1H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.2, 160.2 148.3 (d, *J* = 8.8 Hz), 127.4, 127.2, 113.8, 109.2 (d, *J* = 6.6 Hz), 62.2, 56.2 (d, *J* = 2.5 Hz), 55.3, 54.9 (d, *J* = 5.9 Hz), 31.7 (d, *J* = 1.5 Hz), 14.0; ³¹P{¹H} NMR (162 MHz, CDCl₃) δ -3.60; IR (KBr) *v* 2960, 2854, 1743, 1667, 1607, 1577, 1513, 1463, 1372, 1255, 1181, 1099, 1034, 900, 852, 804, 768 cm⁻¹; HRMS (ESI) m/z calcd for C₁₆H₂₂ClO₇PNa [M + Na]⁺ 415.0684, found 415.0679.

Ethyl (Z)-2-chloro-5-(4-chlorophenyl)-5-((dimethoxyphosphoryl)oxy)pent-4-enoate (3db) was prepared from the reaction of 1d and dimethyl phosphite 2b according to the general procedure. Compound 3db was isolated through silica gel column chromatography as colorless liquid (65.1 mg, 82% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.43 (m, 2H), 7.36 – 7.30 (m, 2H), 5.67 (td, *J* = 7.3, 2.1 Hz, 1H), 4.45 (dd, *J* = 7.6, 6.1 Hz, 1H), 4.32 – 4.20 (m, 2H), 3.76 (dd, *J* = 11.4, 4.0 Hz, 6H), 3.16 – 3.03 (m, 1H), 2.97 (dtd, *J* = 9.7, 7.5, 2.3 Hz, 1H), 1.30 (t, *J* = 7.1 Hz, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 169.0, 147.4 (d, *J* = 8.8 Hz), 134.9, 133.2, 128.6, 127.0, 111.6 (d, *J* = 6.5 Hz), 62.2, 56.0 (d, *J* = 2.4 Hz), 55.0 (d, *J* = 6.0 Hz), 31.6 (d, *J* = 1.5 Hz), 14.0; ³¹P {¹H} NMR (162 MHz, CDCl₃) δ -3.57; IR (KBr) *v* 2960, 2857, 1744, 1665, 1595, 1492, 1453,

1401, 1373, 1279, 1184, 1095, 1033, 958, 897, 854, 785 cm⁻¹; HRMS (ESI) m/z calcd for $C_{15}H_{19}Cl_2O_6PNa$ [M + Na]⁺ 419.0189, found 419.0191. The geometry of the double bond was determined to be Z through NOE analysis with 3db as a representative: the aromatic hydrogen Ha shows strong correlation with olefin Hb, wheres the correlation between Ha and Hc is not observed.

Ethyl (Z)-2-chloro-5-((dimethoxyphosphoryl)oxy)-5-(furan-2-yl)pent-4-enoate (3nb) was prepared from the reaction of 1n and dimethyl phosphite 2b according to the general procedure.

Compound **3nb** was isolated through silica gel column chromatography as yellow oil (69.8 mg, 99% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, *J* = 1.0 Hz, 1H), 6.48 (d, *J* = 3.4 Hz, 1H), 6.34 (dd, *J* = 3.4, 1.8 Hz, 1H), 5.69 (td, *J* = 7.6, 2.3 Hz, 1H), 4.35 (dd, *J* = 7.6, 6.4 Hz, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.79 (d, *J* = 11.4 Hz, 6H), 3.05 – 2.95 (m, 1H), 2.88 (ddd, *J* = 15.2, 7.6, 2.3 Hz, 1H), 1.23 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.0, 148.3, 143.0, 139.8 (d, *J* = 8.6 Hz), 111.4, 108.9 (d, *J* = 6.1 Hz), 108.5, 62.2, 55.9 (d, *J* = 2.5 Hz), 55.2 (d, *J* = 6.1 Hz), 31.1 (d, *J* = 1.5 Hz), 14.0; ³¹P{¹H} NMR (162 MHz, CDCl₃) δ -3.39; IR (KBr) *v* 3142, 2961, 2858, 1741, 1675, 1569, 1532, 1490, 1465, 1374, 1261, 1186, 1046, 858, 768 cm⁻¹; HRMS (ESI) m/z calcd for C₁₃H₁₈ClO₇PNa [M + Na]⁺ 375.0371, found 375.0369.

Ethyl (Z)-2-chloro-5-((dimethoxyphosphoryl)oxy)-5-(thiophen-2-yl)pent-4-enoate (3hb) was prepared from the reaction of **1h** and dimethyl phosphite **2b** according to the general procedure. Compound **3hb** was isolated through silica gel column chromatography as yellow oil (56.0 mg, 76% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, *J* = 4.5 Hz, 2H), 6.99 (dd, *J* = 4.7, 4.0 Hz, 1H), 5.63 (td, *J* = 7.4, 2.3 Hz, 1H), 4.44 (dd, *J* = 7.6, 6.3 Hz, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 3.83 (dd, *J* = 11.4, 1.7 Hz, 6H), 3.16 – 3.02 (m, 1H), 2.95 (dtd, *J* = 9.8, 7.5, 2.3 Hz, 1H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 169.1, 143.2 (d, *J* = 9.0 Hz), 138.0, 127.4, 125.9, 125.6, 110.2 (d, *J* = 6.2 Hz), 62.2, 55.9 (d, *J* = 2.5 Hz), 55.1 (d, *J* = 6.0 Hz), 31.6 (d, *J* = 1.5 Hz), 14.0; ³¹P {¹H} NMR (162 MHz, CDCl₃) δ -3.63; IR (KBr) *v* 3106, 2960, 2857, 1743, 1661, 1521, 1453, 1372, 1279, 1185, 1045, 855, 768 cm⁻¹; HRMS (ESI) m/z calcd for C₁₃H₁₈ClO₆PSNa [M + Na]⁺ 391.0142, found 391.0143.

Methyl (Z)-2-chloro-5-((dimethoxyphosphoryl)oxy)-5-phenylpent-4-enoate (3jb) was prepared from the reaction of 1j and dimethyl phosphite 2b according to the general procedure. Compound 3jb was isolated through silica gel column chromatography as colorless oil (65.6 mg, 94% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, J = 7.8, 1.7 Hz, 2H), 7.36 (dd, J = 7.7, 4.5 Hz, 3H), 5.66 (td, J = 7.3, 2.0 Hz, 1H), 4.48 (dd, J = 7.6, 6.2 Hz, 1H), 3.81 (s, 3H), 3.73 (dd, J =

11.4, 5.2 Hz, 6H), 3.11 (ddd, J = 13.6, 7.8, 2.1 Hz, 1H), 2.98 (dtd, J = 9.7, 7.5, 2.3 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.6, 148.5 (d, J = 8.9 Hz), 134.8, 129.0, 128.4, 125.7, 111.0 (d, J = 6.5 Hz), 55.9 (d, J = 2.6 Hz), 54.9 (d, J = 6.0 Hz), 53.1, 31.7 (d, J = 1.5 Hz); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ -3.64; IR (KBr) v 3061, 2985, 2960, 2846, 1743, 1658, 1603, 1579, 1489, 1432, 1373, 1277, 1184, 1101, 1044, 957, 898, 853, 768 cm⁻¹; HRMS (ESI) m/z calcd for C₁₄H₁₈ClO₆PNa [M + Na]⁺ 371.0422, found 371.0422.

2-Chloroethyl (Z)-2-chloro-5-((dimethoxyphosphoryl)oxy)-5-phenylpent-4-enoate (3lb) was prepared from the reaction of **11** and dimethyl phosphite **2b** according to the general procedure. Compound **3lb** was isolated through silica gel column chromatography as yellow liquid (63.6 mg, 81% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.50 (m, 2H), 7.42 – 7.32 (m, 3H), 5.68 (qd, *J* = 7.5, 2.1 Hz, 1H), 4.58 – 4.50 (m, 1H), 4.49 – 4.42 (m, 2H), 3.83 – 3.80 (m, 2H), 3.73 (ddd, *J* = 11.3, 4.2, 2.7 Hz, 6H), 3.19 – 3.07 (m, 1H), 3.01 (tdd, *J* = 7.6, 6.4, 2.3 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.8, 148.6 (d, *J* = 9.5 Hz), 134.7, 129.1, 128.4, 125.7, 110.8 (d, *J* = 6.6 Hz), 65.4, 55.8 (d, *J* = 2.5 Hz), 55.0 (d, *J* = 6.0 Hz), 53.1, 41.1, 31.6; ³¹P{¹H} NMR (162 MHz, CDCl₃) δ -3.67; IR (KBr) *v* 3062, 2960, 2858, 1803, 1749, 1666, 1629, 1494, 1449, 1276, 1177, 1042, 901, 854, 771 cm⁻¹; HRMS (ESI) m/z calcd for C₁₅H₁₉Cl₂O₆PNa [M+Na]⁺ 419.0189, found 419.0190.

Ethyl (Z)-2-chloro-5-((dimethoxyphosphoryl)oxy)-5-(pyren-1-yl)pent-4-enoate (3ob) was prepared from the reaction of 1o and dimethyl phosphite 2b according to the general procedure. Compound 3ob was isolated through silica gel column chromatography as yellow liquid (79.3 mg, 84% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, J = 9.2 Hz, 1H), 8.08 (dd, J = 7.6, 1.6 Hz, 2H), 8.06 – 8.01 (m, 2H), 7.97 (dd, J = 8.4, 3.2 Hz, 2H), 7.94 – 7.87 (m, 2H), 5.47 (dd, J = 7.7, 6.9 Hz, 1H), 4.54 (dd, J = 7.5, 6.4 Hz, 1H), 3.75 (s, 3H), 3.29 (dd, J = 14.7, 11.4 Hz, 6H), 3.18 (ddd, J =

13.6, 7.4, 1.8 Hz, 1H), 3.09 (ddd, J = 14.9, 7.5, 1.9 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.6, 147.1 (d, J = 8.7 Hz), 130.9, 130.1, 129.7, 129.0, 128.0, 127.2, 126.3 (d, J = 9.8 Hz), 125.2, 124.5 (d, J = 11.5 Hz), 123.6, 123.5 (d, J = 6.9 Hz), 123.3, 114.6 (d, J = 7.5 Hz), 55.0 (d, J = 2.2Hz), 53.5 (d, J = 6.1 Hz), 52.1, 30.7; ³¹P{¹H} NMR (162 MHz, CDCl₃) δ -3.86; IR (KBr) v 3044, 2957, 2855, 1927, 1747, 1679, 1600, 1440, 1354, 1281, 1186, 1116, 1045, 914, 851, 772 cm⁻¹; HRMS (ESI) m/z calcd for C₂₄H₂₂ClO₆PNa [M + Na]⁺ 495.0735, found 495.0739.

Methyl (Z)-2-chloro-5-(2,4-difluorophenyl)-5-((dimethoxyphosphoryl)oxy)pent-4-enoate (3pb) was prepared from the reaction of 1p and dimethyl phosphite 2b according to the general procedure. Compound 3pb was isolated through silica gel column chromatography as colorless liquid (69.9 mg, 91% yield); ¹H NMR (600 MHz, CDCl₃) δ 7.48 – 7.39 (m, 1H), 6.87 (t, *J* = 7.3 Hz, 1H), 6.84 – 6.77 (m, 1H), 5.57 (t, *J* = 7.3 Hz, 1H), 4.44 (t, *J* = 6.9 Hz, 1H), 3.82 – 3.75 (m, 3H), 3.74 – 3.67 (m, 6H), 3.11 – 3.00 (m, 1H), 3.00 – 2.90 (m, 1H); ¹³C {¹H} NMR (151 MHz, CDCl₃) δ 169.5, 163.0 (dd, *J* = 251.7, 12.0 Hz), 159.9 (dd, *J* = 254.0, 12.0 Hz), 142.3 (dd, *J* = 8.8, 3.0 Hz), 130.6 (dd, *J* = 9.8, 3.8 Hz), 119.4 (dd, *J* = 12.7, 4.2 Hz), 115.4 (t, *J* = 6.6 Hz), 111.3 (dd, *J* = 21.3, 3.7 Hz), 104.4 (t, *J* = 25.8 Hz), 55.6, 54.9 (d, *J* = 6.1 Hz), 53.1, 31.5; ³¹P NMR (243 MHz, CDCl₃) δ -3.95 (hept, *J* = 12.1 Hz); ¹⁹F NMR (565 MHz, CDCl₃) δ -107.99 – -108.11 (m, 1F), -108.98 – -109.12 (m, 1F); IR (KBr) v 3482, 3005, 2958, 2923, 2855, 1742, 1673, 1615, 1597, 1430, 1325, 1286, 1147, 1025, 972, 854, 777 cm⁻¹; HRMS (ESI) m/z calcd for C₁₄H₁₇F₂ClO₆P⁺ [M+H]⁺ 385.0414, found 385.0413.

c. General procedure for the cascade reaction between 5 and 2b to prepare enol phosphate 6. To an oven-dried reaction tube charged with a magnetic stir bar were added a corresponding compound 5 (0.2 mmol) and dimethyl phosphite 2b (22 μ L, 0.24 mmol). The reactants were dissolved in dried acetonitrile (1 mL) under stirring, followed by the addition of Cs₂CO₃ (70.6 mg, 0.2 mmol). The reaction was kept stirring for 3 h. Water (5 mL) was added to quench the reaction and the mixture was extracted with EtOAc (3 mL × 3). The combined organic layers were dried with anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was then purified through silica gel column chromatography with petroleum ether/ethyl acetate as eluent to afford compound **6** as colorless oil

Methyl (Z)-5-((dimethoxyphosphoryl)oxy)-5-phenylpent-4-enoate (**6a**) was prepared from the reaction of **5a** and dimethyl phosphite **2b** according to the general procedure. Compound **6a** was isolated through silica gel column chromatography as colorless oil (55.3 mg, 88% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.43 (dd, *J* = 8.1, 1.4 Hz, 2H), 7.33 – 7.21 (m, 3H), 5.55 (td, *J* = 7.4, 2.0 Hz, 1H), 3.67 (s, 3H), 3.64 (s, 3H), 3.61 (s, 3H), 2.71 – 2.52 (m, 2H), 2.44 (t, *J* = 7.4 Hz, 2H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 172.3, 145.7 (d, *J* = 8.9 Hz), 134.2, 127.6, 127.3, 124.5, 114.5 (d, *J* = 6.5 Hz), 53.8 (d, *J* = 6.0 Hz), 50.6, 32.3 (d, *J* = 2.1 Hz), 20.6 (d, *J* = 1.6 Hz); ³¹P {¹H} NMR (162 MHz, CDCl₃) δ -3.51; IR (KBr) *v* 3003, 2959, 2857, 1736, 1664, 1602, 1579, 1494, 1445, 1367, 1266, 1172, 1041, 904, 853, 800, 770 cm⁻¹; HRMS (ESI) m/z calcd for C₁₄H₁₉O₆PNa [M + Na]⁺ 337.0811, found 337.0811.

(Z)-Dimethyl (5-oxo-1,5-diphenylpent-1-en-1-yl) phosphate (6b) was prepared from the reaction of 5b and dimethyl phosphite 2b according to the general procedure. Compound 6b was isolated through silica gel column chromatography as colorless oil (67.7 mg, 94% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.05 – 7.82 (m, 2H), 7.42 (ddd, *J* = 24.6, 14.4, 7.4 Hz, 5H), 7.31 – 7.17 (m, 3H), 5.65 (td, *J* = 7.6, 2.0 Hz, 1H), 3.64 (d, *J* = 11.3 Hz, 6H), 3.13 (t, *J* = 7.2 Hz, 2H), 2.70 (qd, *J* = 7.4, 2.1 Hz, 2H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 198.3, 145.6 (d, *J* = 8.9 Hz), 135.8, 134.2, 132.1, 127.6, 127.5, 127.3, 127.1, 124.5, 115.2 (d, *J* = 6.5 Hz), 53.8 (d, *J* = 5.9 Hz), 36.8 (d, *J* = 2.2 Hz), 19.9; ³¹P {¹H} NMR (162 MHz, CDCl₃) δ -3.40; IR (KBr) *v* 3061, 2960, 2856, 1685, 1598, 1580, 1494, 1449, 1410, 1366, 1266, 1205, 1184, 1042, 901, 851, 798, 770 cm⁻¹; HRMS (ESI) m/z calcd for C₁₉H₂₁O₅PNa [M + Na]⁺ 383.1019, found 383.1020.

(Z)-Dimethyl (1-phenyl-4-(phenylsulfonyl)but-1-en-1-yl) phosphate (6c) was prepared from

the reaction of **5c** and dimethyl phosphite **2b** according to the general procedure. Compound **6c** was isolated through silica gel column chromatography as colorless oil (69.8 mg, 88% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.76 (m, 2H), 7.56 (d, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.5 Hz, 2H), 7.36 (dd, *J* = 7.5, 2.0 Hz, 2H), 7.28 – 7.21 (m, 3H), 5.47 (td, *J* = 7.7, 2.1 Hz, 1H), 3.58 (d, *J* = 11.4 Hz, 6H), 3.23 (dd, *J* = 8.7, 6.8 Hz, 2H), 2.68 (ddd, *J* = 15.5, 7.8, 1.9 Hz, 2H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 146.8 (d, *J* = 8.8 Hz), 138.1, 133.6, 132.7, 128.3, 127.9, 127.4, 127.1, 124.5, 111.4 (d, *J* = 6.5 Hz), 54.0 (d, *J* = 2.6 Hz), 53.8 (d, *J* = 6.0 Hz), 19.0; ³¹P{¹H} NMR (162 MHz, CDCl₃) δ -3.52; IR (KBr) *v* 3063, 2960, 2856, 1714, 1583, 1493, 1448, 1406, 1285, 1185, 1145, 1085, 1043, 900, 853, 796, 768 cm⁻¹; HRMS (ESI) m/z calcd for C₁₈H₂₁O₆PSNa [M + Na]⁺ 419.0689, found 419.0687.

Methyl (Z)-5-((dimethoxyphosphoryl)oxy)-2-phenoxy-5-phenylpent-4-enoate (6d) was prepared from the reaction of 5d and dimethyl phosphite 2b according to the general procedure. Compound 6d was isolated through silica gel column chromatography as colorless oil (69.9 mg, 86% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.51 (dd, J = 8.0, 1.5 Hz, 2H), 7.46 – 7.21 (m, 5H), 7.05 – 6.81 (m, 3H), 5.77 (td, J = 7.4, 2.0 Hz, 1H), 4.82 (dd, J = 7.6, 5.1 Hz, 1H), 3.89 – 3.60 (m, 9H), 3.13 – 3.04 (m, 1H), 2.99 (ddd, J = 15.3, 7.6, 2.5 Hz, 1H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 171.5, 157.7, 148.0 (d, J = 9.0 Hz), 135.0, 129.6, 128.8, 128.4, 125.7, 121.9 (d, J = 7.7 Hz), 115.2, 111.2 (d, J = 6.6 Hz), 75.8, 54.9 (d, J = 6.0 Hz), 52.4, 29.8; ³¹P {¹H} NMR (162 MHz, CDCl₃) δ -3.50; IR (KBr) *v* 3062, 3032, 2957, 2855, 1755, 1665, 1594, 1493, 1446, 1364, 1281, 1236, 1204, 1042, 895, 852, 758 cm⁻¹; HRMS (ESI) m/z calcd for C₂₀H₂₃O₇PNa [M + Na]⁺ 429.1074, found 429.1071.

Ethyl (Z)-2-(allyloxy)-5-((dimethoxyphosphoryl)oxy)-5-phenylpent-4-enoate (6e) was prepared from the reaction of 5e and dimethyl phosphite 2b according to the general procedure. Compound 6e was isolated through silica gel column chromatography as colorless oil (56.1 mg,

73% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.49 (ddd, J = 17.9, 8.0, 1.5 Hz, 2H), 7.42 – 7.32 (m, 3H), 6.00 – 5.85 (m, 1H), 5.78 – 5.67 (m, 1H), 5.36 – 5.17 (m, 2H), 4.29 – 4.13 (m, 2H), 4.03 – 3.90 (m, 2H), 3.80 – 3.68 (m, 6H), 2.97 – 2.73 (m, 1H), 2.69 – 2.55 (m, 1H), 1.34 – 1.19 (m, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.0, 147.5 (d, J = 9.1 Hz), 134.0, 128.6, 128.3, 125.6, 117.8, 111.9 (d, J = 6.7 Hz), 71.4 (d, J = 7.3 Hz), 61.0, 54.8 (d, J = 5.9 Hz), 31.1, 29.8, 14.2; ³¹P{¹H} NMR (162 MHz, CDCl₃) δ -3.53; IR (KBr) v 3061, 2983, 2959, 2858, 1744, 1665, 1579, 1494, 1449, 1374, 1276, 1191, 1110, 1043, 927, 906, 853, 771 cm⁻¹; HRMS (ESI) m/z calcd for C₁₈H₂₅O₇PNa [M + Na]⁺ 407.1230, found 407.1231.

Methyl (Z)-5-(4-chlorophenyl)-5-((dimethoxyphosphoryl)oxy)-2-((4-methylphenyl)sulfonamide)pent-4-enoate (6g) was prepared from the reaction of **5g** and dimethyl phosphite **2b** according to the general procedure. Compound **6g** was isolated through silica gel column chromatography as colorless oil (46.3mg, 89% yield); ¹H NMR (600 MHz, CDCl₃) δ 7.78 (d, J = 8.2 Hz, 2H), 7.40 (td, J = 8.6, 6.3 Hz, 1H), 7.36 (d, J = 8.2 Hz, 2H), 6.86 (td, J = 8.1, 2.2 Hz, 1H), 6.80 (ddd, J = 11.0, 8.6, 2.6 Hz, 1H), 5.43 (td, J = 7.6, 1.6 Hz, 1H), 4.23 (dd, J = 10.5, 4.7 Hz, 1H), 3.72 (d, J = 11.4 Hz, 3H), 3.68 (s, 3H), 3.68 (d, J = 11.4 Hz, 3H), 3.13 (dddd, J = 14.4, 7.0, 4.8, 1.9 Hz, 1H), 2.90 (dddd, J = 14.4, 10.4, 7.3, 2.0 Hz, 1H); ¹³C {¹H} NMR (151 MHz, CDCl₃) δ 166.0, 163.1 (dd, J = 252.0, 11.8 Hz), 159.9 (dd, J = 254.1, 12.0 Hz), 145.5, 142.5 (dd, J = 8.8, 3.0 Hz), 134.2, 130.7 (dd, J = 9.7, 3.9 Hz), 129.7, 129.3, 119.3 (dd, J = 13.0, 3.3 Hz), 114.9 (t, J = 6.8 Hz), 111.4 (dd, J = 21.4, 3.6 Hz), 104.4 (t, J = 25.9 Hz), 69.3, 55.0 – 54.9 (m), 53.0, 23.6, 21.7; ³¹P NMR (243 MHz, CDCl₃) δ -3.99 (hept, J = 12.5, 11.8 Hz); ¹⁹F NMR (565 MHz, CDCl₃) δ -107.82 (p, J = 8.2 Hz), -109.08 (q, J = 9.3 Hz); IR (KBr) v 3488, 3007, 2959, 2857, 1748, 1616, 1596, 1503, 1430, 1281, 1145, 1024, 853, 780 cm⁻¹; HRMS (ESI) m/z calcd for C₂₁H₂₅NO₈PS [M + H]⁺ 520.1001, found 520.1002

IV. Mechanistic Related Control Experiments

a. Cs₂CO₃ promoted reaction of 1d with trimethyl phosphite

To an oven-dried reaction tube charged with a magnetic stir bar were added methyl 2-(2,4difluorobenzoyl)-1-chlorocyclopropane-1-carboxylate **1p** (54.8 mg, 0.2 mmol) and trimethyl phosphite (28.4 μ L, 0.24 mmol). The reactants were dissolved in dried acetonitrile (1 mL) under stirring, followed by the addition of Cs₂CO₃ (141.2 mg, 0.4 mmol). The reaction was kept stirring for 3 h. Water (5 mL) was added to quench the reaction and the mixture was extracted with EtOAc (3 mL × 3). The combined organic layers were dried with anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was then purified through silica gel column chromatography with petroleum ether/ethyl acetate as eluent to afford compound **4** as colorless oil (45.2 mg, 68% yield).

Methyl 2-(2,4-difluorobenzoyl)-1-(dimethoxyphosphoryl)cyclopropane-1-carboxylate (4): ¹H NMR (600 MHz, CDCl₃) δ 7.84 (td, J = 8.6, 6.5 Hz, 1H), 7.00 – 6.94 (m, 1H), 6.91 (ddd, J = 11.0, 8.6, 2.4 Hz, 1H), 3.86 (d, J = 11.0 Hz, 3H), 3.83 (d, J = 11.0 Hz, 3H), 3.70 (s, 3H), 3.33 (dddd, J = 15.3, 8.6, 6.4, 2.3 Hz, 1H), 2.15 (dddd, J = 13.2, 5.9, 4.4, 1.1 Hz, 1H), 1.85 (ddd, J = 16.3, 8.6, 4.4 Hz, 1H); ¹³C {¹H} NMR (151 MHz, CDCl₃) δ 191.8 (t, J = 3.5 Hz), 166.7 (d, J = 5.5 Hz), 166.1 (dd, J = 258.0, 12.3 Hz), 162.7 (dd, J = 258.5, 12.7 Hz), 132.8 (dd, J = 10.7, 3.7 Hz), 122.4 (dd, J = 12.1, 3.5 Hz), 112.4 (dd, J = 21.5, 3.4 Hz), 105.0 (t, J = 26.3 Hz), 53.9 (dd, J = 6.2, 1.7 Hz), 53.1, 53.8 (d, J = 6.1 Hz), 31.3 (d, J = 180.7 Hz), 31.2 (dd, J = 9.0, 2.6 Hz), 18.2 (d, J = 3.8 Hz); ³¹P NMR (243 MHz, CDCl₃) δ 22.79 – 22.32 (m); ¹⁹F NMR (565 MHz, CDCl₃) δ -100.62 (dq, J = 14.6, 7.4 Hz), -105.30 (q, J = 10.9 Hz); IR (KBr) v 3481, 3100, 3015, 2959, 2855, 1737, 1681, 1611, 1489, 1432, 1305, 1252, 1208, 1147, 1102, 1031, 973, 875, 781 cm⁻¹; HRMS (ESI) m/z calcd for C₁₄H₁₅F₂O₆PNa [M + Na]⁺ 371.0467, found 371.0467.

b. Deturated dimethylphosphite

Deuturated dimethyl phosphite was prepared through the proton exchange between dimethyl phosphite and methanol-d4 with catalytic amount of cesium carbonate. After filtration and concentration *in vacuo*, the content was determined to be 80% by ¹H NMR.

To an oven-dried reaction tube charged with a magnetic stir bar and anhydrous Cs_2CO_3 (6.5 mg) were added anhydrous acetonitrile (0.3 mL) and trimethyl phosphite-*d1* (28.5 µL, 0.24 mmol, 80% D-labelled). The mixture was stirred for 5 minutes at room temperature, followed by the addition of an solution of ethyl 2-(2,4-difluorobenzoyl)-1-chlorocyclopropane-1-carboxylate **1p** (53.3 mg, 0.2 mmol, dissolved in 0.7 mL of anhydrous acetonitrile). The reaction was kept stirring for 3 h and diluted with a 1:1 mixture hexanes/EtOAc. The insoluble salt was removed through filtration and the filtrate was concentrated *in vacuo*. The residue was then submitted for ¹H NMR analysis with trimethoxybenzene as an internal standard.

c. ³¹P NMR monitoring of the reaction process.

To an oven-dried reaction tube charged with a magnetic stir bar were added ethyl 2-benzoyl-1chlorocyclopropane-1-carboxylate **1a** (50.5 mg, 0.2 mmol), dimethyl phosphite **2b** (26 μ L, 0.22 mmol) and anhydrous CH₃CN (1 mL). After 10 μ L of reaction mixture was taken and diluted in CDCl₃ (0.5 mL) to make the first sample, Cs₂CO₃ (141.6 mg, 0.4 mmol) was added to start the reaction. Three additional aliquots (10 μ L) were taken at 20, 40 and 60 min, respectively, filtered through a 0.45 μ m nylon membrane and washed with CDCl₃ (0.5 mL). The samples obtained at different time point were immediately submitted for ³¹P{¹H} NMR analysis and the stacked spectra were presented below. As we can see, other than the starting material **2b** (ppm 10.6), the final product **3ab** (ppm -3.84) was observed as the major species in the mixture. Only very limited amount of other phosphor-related species (ppm 33.02, 24.27) were detected during the reaction process, which disappeared again as the reaction reached completion.

V. References

(a) M. Zhang, Y. Gong and W. Wang, *Eur. J. Org. Chem.*, 2013, 2013, 7372-7381; (b) Y. Zhu, P. Xu and Y. Gong, *J. Org. Chem.*, 2016, 81, 4829-4834; (c) Y. Zhu and Y. Gong, *Tetrahedron*, 2016, 72, 3436-3442.

VI. NMR Spectra

3aa ¹H NMR (400 MHz, CDCl₃)

3aa ¹³C{¹H} NMR (100 MHz, CDCl₃)

3aa ³¹P{¹H} NMR (162 MHz, CDCl₃)

3ba ¹H NMR (400 MHz, CDCl₃)

3ba ³¹P{¹H} NMR (162 MHz, CDCl₃)

130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 fl (ppm)

3da ¹H NMR (400 MHz, CDCl₃)

3da ¹³C{¹H} NMR (100 MHz, CDCl₃)

3da ³¹P{¹H} NMR (162 MHz, CDCl₃)

3ea ¹H NMR (400 MHz, CDCl₃)

3ea ¹³C{¹H} NMR (100 MHz, CDCl₃)

3ea ³¹P{¹H} NMR (162 MHz, CDCl₃)

130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 fl (ppm)

3fa ¹H NMR (400 MHz, CDCl₃)

3fa ¹³C{¹H} NMR (100 MHz, CDCl₃)

3fa ³¹P{¹H} NMR (162 MHz, CDCl₃)

3ga ¹H NMR (400 MHz, CDCl₃)

3ga ¹³C{¹H} NMR (100 MHz, CDCl₃)

3ga ³¹P{¹H} NMR (162 MHz, CDCl₃)

130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 fl (ppm)

3ha ¹H NMR (400 MHz, CDCl₃)

3ha ¹³C{¹H} NMR (100 MHz, CDCl₃)

3ha ³¹P{¹H} NMR (162 MHz, CDCl₃)

3ja ¹H NMR (400 MHz, CDCl₃)

3ja 13C{1H} NMR (100 MHz, CDCl₃)

3ja ³¹P{¹H} NMR (162 MHz, CDCl₃)

130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 fl (ppm)

3ka ¹H NMR (400 MHz, CDCl₃)

3ka ¹³C{¹H} NMR (100 MHz, CDCl₃)

3ka ³¹P{¹H} NMR (162 MHz, CDCl₃)

3la ¹H NMR (400 MHz, CDCl₃)

3la ¹³C{¹H} NMR (100 MHz, CDCl₃)

3la ³¹P{¹H} NMR (162 MHz, CDCl₃)

3ma¹H NMR (400 MHz, CDCl₃)

3ma ¹³C{¹H} NMR (100 MHz, CDCl₃)

3ma ³¹P{¹H} NMR (162 MHz, CDCl₃)

3ab ¹H NMR (400 MHz, CDCl₃)

3ab ¹³C{¹H} NMR (100 MHz, CDCl₃)

-30 -50 f1 (ppm)

3ac ¹H NMR (400 MHz, CDCl₃)

3ac ¹³C{¹H} NMR (100 MHz, CDCl₃)

3ac ³¹P{¹H} NMR (162 MHz, CDCl₃)

3ad ¹H NMR (400 MHz, CDCl₃)

3ad ¹³C{¹H} NMR (100 MHz, CDCl₃)

3ad ³¹P{¹H} NMR (162 MHz, CDCl₃)

130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 f1 (ppm)

3bb ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃)

3bb ³¹P{¹H} NMR (162 MHz, CDCl₃)

3cb ¹H NMR (400 MHz, CDCl₃)

3cb ¹³C{¹H} NMR (100 MHz, CDCl₃)

3cb ³¹P{¹H} NMR (162 MHz, CDCl₃)

3db ¹H NMR (400 MHz, CDCl₃)

3db $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃)

3db ³¹P{¹H} NMR (162 MHz, CDCl₃)

3nb ¹H NMR (400 MHz, CDCl₃)

3nb ¹³C{¹H} NMR (100 MHz, CDCl₃)

3hb ¹H NMR (400 MHz, CDCl₃)

3hb ¹³C{¹H} NMR (100 MHz, CDCl₃)

3hb ³¹P{¹H} NMR (162 MHz, CDCl₃)

3jb¹H NMR (400 MHz, CDCl₃)

3jb ¹³C{¹H} NMR (100 MHz, CDCl₃)

3jb ³¹P{¹H} NMR (162 MHz, CDCl₃)

130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 f1 (ppm.)

3lb ¹H NMR (400 MHz, CDCl₃)

3lb ³¹P{¹H} NMR (162 MHz, CDCl₃)

3ob ¹³C{¹H} NMR (100 MHz, CDCl₃)

110 100 f1 (ppm)

---3.86

3ob ³¹P{¹H} NMR (162 MHz, CDCl₃)

3pb ¹H NMR (600 MHz, CDCl₃)

3pb ¹⁹F NMR (565 MHz, CDCl₃)

OP(O)(OMe)₂ COOMe ĊI

000000000000000000000000000000000000000	80
888866666	60
	1

-78 -80 -82 -84 -86 -88 -90 -92 -94 -96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 f1 (ppm)

4 ¹H NMR (600 MHz, CDCl₃)

 1
 1
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2

4 ³¹P NMR (243 MHz, CDCl₃)

22.68 22.62 22.57 22.57 22.57 22.41 22.37

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 11 (ppm)

4 ¹⁹F NMR (565 MHz, CDCl₃)

o	0	\sim	က	4	ч О	œ	σ	-	∞
40	9	9	9	ŵ,	9	2	2	3	3
0	0	0	0	0	0	40	40	40	40
0	0	0	0	0	0	0	0	0	0
-	-	-	-	-	-	-	-	-	-
_	-	_	-	1	2	~	1	_	_
			_	-			\sim		

-35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -14 f1 (ppm)

6a¹H NMR (400 MHz, CDCl₃)

6a ¹³C{¹H} NMR (100 MHz, CDCl₃)

6a 31P{1H} NMR (162 MHz, CDCl3)

6b¹H NMR (400 MHz, CDCl₃)

9.5 4.5 4.0 f1 (ppm) 9.0 8.5 7.0 6.5 6.0 5.0 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0

6b ³¹P{¹H} NMR (162 MHz, CDCl₃)

130

110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 fl (ppm)

6c¹H NMR (400 MHz, CDCl₃)

6c ¹³C{¹H} NMR (100 MHz, CDCl₃)

6c ³¹P{¹H} NMR (162 MHz, CDCl₃)

6d ¹H NMR (400 MHz, CDCl₃)

.0 8.5 8.0 6.5 6.0 5.5 4.5 4.0 f1 (ppm) 3.5 2.5 2.0 0.5 0.0 -0.8 5.0 1.5 1.0 7.5 7.0 3.0

6d ¹³C{¹H} NMR (100 MHz, CDCl₃)

6e¹H NMR (400 MHz, CDCl₃)

6e ³¹P{¹H} NMR (162 MHz, CDCl₃)

6g ¹H NMR (600 MHz, CDCl₃)

6g ¹³C{¹H} NMR (151 MHz, CDCl₃)

190 170 150 130 100 90 f1 (ppm) 60 20 180 160 140 120 110 80 70 50 40 30 10 ò

6g ³¹P NMR (243 MHz, CDCl₃)

-3.85 -3.90 -3.94 -3.99 -3.99 -3.99 -4.08 -4.08

-5 -10 -15 -20 -25 -30 f1(ppm) 35 30 25 20 15 10 5 ò -35 -50 -55 -65 -70 -75 -80 -40 -45 -60

6g ¹⁹F NMR (565 MHz, CDCl₃)

-107.79 -107.82 -107.82 -107.83 -107.85 -109.06 -109.08

O OP(OMe)₂ _CO₂Me | NHTs

-107 -108 f1 (ppm) -118 -98 -99 -100 -101 -102 -103 -104 -105 -106 -109 -110 -111 -112 -113 -114 -115 -116 -117