Regioselective Addition of Phosphites to Acyl Cyclopropanes and Following Rearrangements: A Facile Access to Enol Phosphates

Haotian Li, ${ }^{\dagger \text { ª }}$ Yuequan Zhu, ${ }^{\dagger a}$ Dengfu Lu*a and Yuefa Gong*a
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd.,

Wuhan, Hubei, 430074, China. E-mail: dlu@hust.edu.cn; gongyf@hust.edu.cn

Contents

\qquadII. Reaction Condition Optimization3
III. $\mathrm{Cs}_{2} \mathbf{C O}_{3}$ Promoted Cascade Reaction for Enol Phosphate Synthesis 3
IV. Mechanistic Related Control Experiments. 18
V. References 21
VI. NMR Spectra 22

I. General Information

General procedures. All reactions were performed in oven-dried round-bottom flasks and tubes. Solvents were dried and freshly distilled before use. $4 \AA$ A molecular sieves were freshly activated before use. Aldehydes and amines are purified either by distillation or recrystallization before use. Reactions were monitored by thin layer chromatography (TLC) using silica gel 60 F-254 plates. TLC plates were normally visualized under UV irradiation (254 nm or 365 nm), stained with basic KMnO_{4} or phosphomolybdic acid. Flash chromatography was performed using silica gel 60 (200-300 mesh).

Instrumentation. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra and carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded on Bruker Ascend 400 MHZ or 600 MHZ . Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to the NMR solvent residual peak $\left(\mathrm{CHCl}_{3}: \delta 7.26\right)$. Chemical shifts for carbons are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the NMR solvent $\left(\mathrm{CDCl}_{3}: \delta 77.0\right)$. Data are represented as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad), coupling constants in Hertz (Hz), and integration. HRMS was measured on a Bruker SolariX 7.0T spectrometer equipped with an ESI or APCI source.

Abbreviations used: TLC-thin layer chromatography; THF-tetrahydrofuran; PE-Petroleum Ethers; DCE-1,2-dichloroethane; NOE-Nuclear Overhauser Effect.

II. Reaction Condition Optimization

General procedure for the reaction condition optimization: To an oven-dried reaction tube charged with a magnetic stir bar were added ethyl 2-benzoyl-1-chlorocyclopropane-1-carboxylate $\mathbf{1 a}(50.5 \mathrm{mg}, 0.2 \mathrm{mmol})$ and diethyl phosphite $\mathbf{2 a}(31 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The reactants were dissolved in dried solvent $(1 \mathrm{~mL})$ under stirring, followed by the addition of a corresponding base (0.04-0.4 mmol). The reaction was kept stirring for indicated time till the consumption of $\mathbf{1 a}$ (monitored by TLC). Water (5 mL) was added to quench the reaction and the mixture was extracted with EtOAc ($3 \mathrm{~mL} \times 3$). The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was then purified through silica gel column chromatography with petroleum ether/ethyl acetate as eluent to produce compound 3aa as colorless oil. The results are summarized in table 1.

Ethyl (Z)-2-chloro-5-((diethoxyphosphoryl)oxy)-5-phenylpent-4-enoate (3aa) Compound 3aa was isolated through silica gel column chromatography as colorless liquid ($71.1 \mathrm{mg}, 91 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 3 \mathrm{H}), 5.66(\mathrm{td}, J=$ $7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=7.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{qd}, J=7.1,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.17-3.99(\mathrm{~m}$, $4 \mathrm{H}), 3.16-3.06(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{ddd}, J=15.2,7.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{qd}$, $J=7.1,1.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.2,148.6(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 134.9$, $128.9,128.3,125.8,111.0(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 64.5(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 62.1,56.1(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 31.7(\mathrm{~d}$, $J=1.5 \mathrm{~Hz}$), $16.0(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 14.0 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-6.06$; IR (KBr) v $2985,2935,2873,1743,1664,1493,1447,1372,1272,1179,1110,1023,886,815,767 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{ClO}_{6} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+} 413.0891$, found 413.0905.

III. $\mathrm{Cs}_{2} \mathbf{C O}_{3}$ Promoted Cascade Reaction for Enol Phosphate Synthesis

a. Preparation of the 2-aroyl-1-chlorocyclopropane-1-carboxylates substrates.

Substrate $\mathbf{1}$ and 5 are prepared according to a known procedure that was described in our previous publications. ${ }^{1}$

b. General procedure for the cascade reaction between 1 and 2 to prepare enol phosphate 3.

To an oven-dried reaction tube charged with a magnetic stir bar and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(70.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ under N_{2} were added anhydrous $\mathrm{CH}_{3} \mathrm{CN}(0.3 \mathrm{~mL})$ and a dialkyl phosphite $2(0.24 \mathrm{mmol})$ via syringes. The mixture was stirred at room temperature for 5 minutes before a corresponding aroyl cyclopropane derivative $\mathbf{1}$ or $\mathbf{5}\left(0.2 \mathrm{mmol}\right.$, dissolved in $\left.0.7 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{CN}\right)$ was added via a syringe. The reaction was kept stirring for indicated time till the consumption of $\mathbf{1}$ or $\mathbf{5}$. (monitored by TLC). Water (5 mL) was added to quench the reaction and the mixture was extracted with EtOAc ($3 \mathrm{~mL} \times 3$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was then purified through silica gel column chromatography with petroleum ether/ethyl acetate as eluent.

Ethyl (Z)-2-chloro-5-((diethoxyphosphoryl)oxy)-5-(p-tolyl)pent-4-enoate (3ba) was prepared from the reaction of $\mathbf{1 b}$ and diethyl phosphite $\mathbf{2 a}$ according to the general procedure. Compound 3ba was isolated through silica gel column chromatography as colorless liquid ($63.2 \mathrm{mg}, 78 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.60(\mathrm{td}$, $J=7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=7.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{qd}, J=7.1,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.17-3.98(\mathrm{~m}$, 4H), $3.14-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{dtd}, J=9.8,7.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 1.28 - $1.23(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.2,148.7(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 138.8$, $132.1,129.0,125.7,110.0(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 64.5(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 62.1,56.2(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 31.7(\mathrm{~d}$, $J=1.4 \mathrm{~Hz}), 21.2,16.0(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 14.0 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-6.02$; IR (KBr) $v 2985,2933,2873,1744,1664,1611,1513,1447,1393,1372,1273,1180,1100,1032,984,889$, 861, 820, $757 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{ClO}_{6} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+} 427.1048$, found 427.1048.

Ethyl (Z)-2-chloro-5-(4-chlorophenyl)-5-((diethoxyphosphoryl)oxy)pent-4-enoate (3da) was
prepared from the reaction of $\mathbf{1 d}$ and diethyl phosphite $\mathbf{2 a}$ according to the general procedure. Compound 3da was isolated through silica gel column chromatography as colorless liquid (70.6 $\mathrm{mg}, 83 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 5.66(\mathrm{td}$, $J=7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=7.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{qd}, J=7.1,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.18-4.01(\mathrm{~m}$, 4H), 3.09 (dddd, $J=15.5,7.4,6.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.98$ (dtd, $J=9.8,7.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=$ $5.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.29-1.23(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.1,147.5(\mathrm{~d}, J=9.0$ $\mathrm{Hz}), 134.7,133.4,128.5,127.0,111.5(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 64.7(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 62.2,56.0(\mathrm{~d}, J=2.4$ $\mathrm{Hz}), 31.7(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 16.0(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 14.0 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.94$; IR (KBr) v 2986, 2934, 2873, 1744, 1664, 1595, 1491, 1446, 1398, 1372, 1273, 1179, 1096, 1028, 888, 831, $769 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{O}_{6} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+} 447.0502$, found 447.0501 .

Ethyl (Z)-5-(4-bromophenyl)-2-chloro-5-((diethoxyphosphoryl)oxy)pent-4-enoate (3ea) was prepared from the reaction of $\mathbf{1 e}$ and diethyl phosphite $\mathbf{2 a}$ according to the general procedure. Compound 3ea was isolated through silica gel column chromatography as colorless liquid (78.9 $\mathrm{mg}, 84 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.43-7.37(\mathrm{~m}, 2 \mathrm{H}), 5.68$ (td, $J=7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=7.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{qd}, J=7.1,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.18-4.01$ $(\mathrm{m}, 4 \mathrm{H}), 3.16-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{dtd}, J=9.8,7.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=5.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.27$ $(\operatorname{td}, J=6.5,1.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.1,147.6(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 133.9$, $131.5,127.3,123.0,111.6(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 64.7(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 62.2,56.0(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 31.7(\mathrm{~d}$, $J=1.5 \mathrm{~Hz}), 16.0(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 14.0 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.94$; IR (KBr) v2985, 2935, 2872, 1744, 1663, 1589, 1487, 1446, 1396, 1372, 1273, 1180, 1101, 1071, 1028, 887, 826, $766 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{BrClO}_{6} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+} 490.9996$, found 490.9997.

(Z)-4-(ethoxycarbonyl)-1-(2-bromophenyl)-4-chlorobut-1-enyl diethyl phosphate (3fa) was prepared from the reaction of $\mathbf{1 f}$ and diethyl phosphite $\mathbf{2 a}$ according to the general procedure.

Compound 3fa was isolated through silica gel column chromatography as colorless liquid (79.8 $\mathrm{mg}, 85 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57$ (dd, $J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43 (dd, $J=7.6$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{td}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.47$ (dd, $J=7.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.21(\mathrm{~m}, 2 \mathrm{H}), 3.98$ (dddt, $J=14.2,10.0,7.9,7.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.07$ (dddd, $J=15.5,7.3,6.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dtd}, J=9.4,7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.18(\mathrm{qd}, J=7.1,1.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.1,147.1(\mathrm{~d}, J=8.8 \mathrm{~Hz})$, 136.6, 132.9, 131.7, 130.4, 127.1, 122.6, 115.2 (d, $J=7.6 \mathrm{~Hz}$), 64.3 (d, $J=6.1 \mathrm{~Hz}$), $62.2,55.9$ (d, $J=2.1 \mathrm{~Hz}), 31.3(\mathrm{~d}, J=1.0 \mathrm{~Hz}), 15.9(\mathrm{dd}, J=7.1,1.9 \mathrm{~Hz}), 14.0 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-6.74$; IR (KBr) v 3062, 2985, 2935, 2872, 1744, 1682, 1589, 1562, 1471, 1434, 1394, 1372, 1280, 1179, 1100, 1031, 890, 861, 817, $765 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{BrClO}_{6} \mathrm{PNa}$ $[\mathrm{M}+\mathrm{Na}]^{+} 490.9996$, found 490.9997 .

Ethyl (Z)-5-([1,1'-biphenyl]-4-yl)-2-chloro-5-((diethoxyphosphoryl)oxy)pent-4-enoate (3ga) was prepared from the reaction of $\mathbf{1 g}$ and diethyl phosphite $\mathbf{2 a}$ according to the general procedure. Compound 3ga was isolated through silica gel column chromatography as colorless liquid (79.4 $\mathrm{mg}, 85 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65-7.58$ (m, 6H), 7.46 (dd, $J=10.3,4.8 \mathrm{~Hz}$, 2H), $7.40-7.35(\mathrm{~m}, 1 \mathrm{H}), 5.75(\mathrm{td}, J=7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=7.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.24$ $(\mathrm{m}, 2 \mathrm{H}), 4.22-4.05(\mathrm{~m}, 4 \mathrm{H}), 3.20-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{ddd}, J=15.2,7.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-1.25(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.2,148.3(\mathrm{~d}, J=9.0$ Hz), 141.6, 140.3, 133.8, 128.9, 127.6, 127.00, 126.98, 126.2, 111.0 (d, $J=6.5 \mathrm{~Hz}$), 64.6 (d, $J=$ $5.9 \mathrm{~Hz}), 62.2,56.2(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 31.8(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 16.1(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 14.1 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.92$; $\mathrm{IR}(\mathrm{KBr}) v 3033,2985,2934,1743,1662,1604,1486,1447,1398$, 1372, 1274, 1170, 1100, 1032, 889, 843, 818, $768 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{ClO}_{6} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+} 489.1204$, found 489.1201.

Ethyl (Z)-2-chloro-5-((diethoxyphosphoryl)oxy)-5-(thiophen-2-yl)pent-4-enoate (3ha) was
prepared from the reaction of $\mathbf{1 h}$ and diethyl phosphite $\mathbf{2 a}$ according to the general procedure. Compound 3ha was isolated through silica gel column chromatography as yellow liquid (60.3 mg , 76% yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{dd}, J=5.1,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.61(\mathrm{td}, J=7.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{dd}, J=7.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.23-4.08(\mathrm{~m}$, 4H), $3.13-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.97$ (ddd, $J=15.2,7.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.27(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{\{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.1,143.3(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 138.2,127.3,125.7,125.6,110.1(\mathrm{~d}, J=6.2$ $\mathrm{Hz}), 64.8(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 62.2,55.9(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 31.7(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 16.1(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 14.0$; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (162 MHz, CDCl_{3}) δ-6.01; IR (KBr) v 3106, 2986, 2936, 2912, 1742, 1663, 1519, 1475, 1439, 1415, 1371, 1262, 1181, 1099, 1032, 863, 821, $713 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{ClO}_{6} \mathrm{PSNa}[\mathrm{M}+\mathrm{Na}]^{+} 419.0454$, found 419.0452.

Methyl (Z)-2-chloro-5-((diethoxyphosphoryl)oxy)-5-phenylpent-4-enoate (3ja) was prepared from the reaction of $\mathbf{1} \mathbf{j}$ and diethyl phosphite $\mathbf{2 a}$ according to the general procedure. Compound $\mathbf{3 j a}$ was isolated through silica gel column chromatography as colorless liquid ($62.5 \mathrm{mg}, 83 \%$ yield): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{dd}, J=7.7,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{q}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H}), 5.66$ $(\mathrm{td}, J=7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{dd}, J=7.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-3.97(\mathrm{~m}, 4 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.12$ (ddd, $J=13.7,7.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dtd}, J=9.8,7.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.28-1.21(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.7,148.6(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 134.9,128.9,128.3,125.8,110.9(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}), 64.6(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 55.9(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 53.0,31.7(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 16.0(\mathrm{~d}, J=6.9 \mathrm{~Hz})$; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (162 MHz, CDCl_{3}) δ-6.04; IR (KBr) v 2986, 2959, 2873, 1748, 1664, 1601, 1580, 1493, 1443, 1393, 1367, 1273, 1198, 1170, 1101, 1021, 984, 893, 805, $768 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{ClO}_{6} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}$399.0735, found 399.0736.

tert-butyl (Z)-2-chloro-5-((diethoxyphosphoryl)oxy)-5-phenylpent-4-enoate (3ka) was prepared from the reaction of $\mathbf{1 k}$ and diethyl phosphite $\mathbf{2 a}$ according to the general procedure. Compound 3ka was isolated through silica gel column chromatography as colorless liquid (66.2
$\mathrm{mg}, 79 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 3 \mathrm{H})$, $5.65(\mathrm{td}, J=7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}, J=7.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-3.98(\mathrm{~m}, 4 \mathrm{H}), 3.11-2.92(\mathrm{~m}$, $2 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.28-1.20(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.1,148.4(\mathrm{~d}, J=$ $9.1 \mathrm{~Hz}), 135.0,128.8,128.3,125.7,111.2(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 82.7,64.5(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 57.2(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}), 31.8(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 27.8,16.0(\mathrm{~d}, J=6.9 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-6.02 ;$ IR (KBr) v 2983, 2934, 1739, 1664, 1602, 1579, 1478, 1394, 1369, 1274, 1154, 1101, 1035, 984, $888,845,817,768 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{ClO}_{6} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+} 441.1204$, found 441.1210 .

2-Chloroethyl (Z)-2-chloro-5-((diethoxyphosphoryl)oxy)-5-phenylpent-4-enoate (3la) was prepared from the reaction of $\mathbf{1 1}$ and diethyl phosphite 2a according to the general procedure. Compound 3la was isolated through silica gel column chromatography as yellow liquid (54.4 mg , 64% yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 3 \mathrm{H}), 5.68(\mathrm{td}, J=$ $7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=7.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.42(\mathrm{~m}, 2 \mathrm{H}), 4.18-4.00(\mathrm{~m}, 4 \mathrm{H}), 3.78-$ $3.70(\mathrm{~m}, 2 \mathrm{H}), 3.21-3.09(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{ddd}, J=15.2,7.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{qd}, J=7.0,1.0 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.9,148.7(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 134.9,128.9,128.3,125.8$, $110.7(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 65.4,64.6(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 55.8(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 41.1,31.7(\mathrm{~d}, J=1.5 \mathrm{~Hz})$, $16.0(\mathrm{~d}, J=6.9 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-6.03$; IR (KBr) v 2985, 2935, 1803, $1750,1665,1628,1601,1493,1447,1391,1273,1169,1101,1033,984,893,818,768 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{O}_{6} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+} 447.0502$, found 447.0500 .

Benzyl (Z)-2-chloro-5-((diethoxyphosphoryl)oxy)-5-phenylpent-4-enoate (3ma) was prepared from the reaction of $\mathbf{1 m}$ and diethyl phosphite $\mathbf{2 a}$ according to the general procedure. Compound 3ma was isolated through silica gel column chromatography as colorless liquid ($65.2 \mathrm{mg}, 72 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 8 \mathrm{H}), 5.63(\mathrm{td}, J=7.3$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 4.54(\mathrm{dd}, J=7.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-3.96(\mathrm{~m}, 4 \mathrm{H}), 3.18-3.09(\mathrm{~m}, 1 \mathrm{H})$,
3.04 (dtd, $J=9.8,7.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{tdd}, J=7.1,2.7,1.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 169.0,148.6(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 135.1,134.9,128.9,128.6,128.5,128.3(\mathrm{~d}, J=1.8 \mathrm{~Hz})$, $110.8(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 67.7,64.6(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 56.1(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 31.8(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 16.0(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-6.02$; IR (KBr) v 3063, 3034, 2986, 2934, 1746, 1664, 1603, 1496, 1449, 1389, 1273, 1167, 1101, 1022, 984, 890, 818, $765 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{ClO}_{6} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+} 475.1048$, found 475.1046.

Ethyl (Z)-2-chloro-5-((dimethoxyphosphoryl)oxy)-5-phenylpent-4-enoate (3ab) was prepared from the reaction of $\mathbf{1 a}$ and dimethyl phosphite $\mathbf{2 b}$ according to the general procedure. Compound 3ab was isolated through silica gel column chromatography as colorless liquid ($67.5 \mathrm{mg}, 93 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 3 \mathrm{H}), 5.67(\mathrm{td}, J=7.3$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=7.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{qd}, J=7.1,0.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{dd}, J=11.4,4.1$ $\mathrm{Hz}, 6 \mathrm{H}), 3.10(\mathrm{dddd}, J=15.6,7.5,6.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dtd}, J=9.8,7.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.1,148.4(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 134.8,129.0$, $128.4,125.7,111.1(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 62.2,56.1(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 54.9(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 31.7(\mathrm{~d}, J=1.5$ Hz), 14.0; ${ }^{31} \mathrm{P}\left\{{ }^{〔} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-3.64; IR (KBr) v 3061, 2985, 2960, 2857, 1744, 1665, 1602, 1579, 1494, 1449, 1373, 1278, 1184, 1100, 1041, 955, 897, 853, $771 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{ClO}_{6} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+} 385.0578$, found 385.0579 .

Ethyl (Z)-2-chloro-5-((dimethoxyphosphoryl)oxy)-5-phenylpent-4-enoate (3ac) was prepared from the reaction of $\mathbf{1 a}$ and diisopropyl phosphite $\mathbf{2 c}$ according to the general procedure. Compound 3ac was isolated through silica gel column chromatography as yellow liquid (42.7 mg , 51% yield): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54$ (dd, $J=7.9,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.33 (dd, $J=7.3,5.4$ $\mathrm{Hz}, 3 \mathrm{H}), 5.66(\mathrm{td}, J=7.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{dt}, J=12.3,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{dd}, J=7.8,6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.26(\mathrm{qd}, J=7.1,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.21-3.07(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{ddd}, J=15.2,7.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.38$ $-1.28(\mathrm{~m}, 9 \mathrm{H}), 1.18(\mathrm{dd}, J=11.5,6.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.2,148.7$
(d, $J=9.1 \mathrm{~Hz}$), 135.1, 128.7, 128.2, 125.9, $110.8(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 73.4(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 62.1,56.2$ (d, $J=2.5 \mathrm{~Hz}$), $31.8(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 23.6(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 23.4(\mathrm{dd}, J=5.6,4.0 \mathrm{~Hz}), 14.0 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-7.67$; IR (KBr) v 3062, 2983, 2934, 1744, 1663, 1494, 1466, 1450, 1380, 1271, 1180, 1145, 1104, 1002, 900, $860,767 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{ClO}_{6} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+} 441.1204$, found 441.1207.

Ethyl (Z)-5-((bis(benzyloxy)phosphoryl)oxy)-2-chloro-5-phenylpent-4-enoate (3ad) was prepared from the reaction of $\mathbf{1 a}$ and dibenzyl phosphite $\mathbf{2 d}$ according to the general procedure. Compound 3ad was isolated through silica gel column chromatography as colorless liquid (96.8 $\mathrm{mg}, 94 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.16(\mathrm{~m}, 9 \mathrm{H}), 7.14-$ 7.07 (m, 4H), 5.56 (td, $J=7.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-4.75(\mathrm{~m}, 4 \mathrm{H}), 4.31(\mathrm{dd}, J=7.6,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, 4.11 (qd, $J=7.1,2.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.97 (ddd, $J=8.3,7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.88$ (ddd, $J=15.3,7.6,2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.1,148.5(\mathrm{~d}, J=9.1 \mathrm{~Hz}$), $135.5(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 134.8,129.0,128.6,128.4,127.9,125.8,111.2(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 70.0(\mathrm{~d}, J=$ $5.6 \mathrm{~Hz}), 62.2,56.1(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 31.8(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 14.0 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -5.78 ; IR (KBr) v 3064, 3035, 2981, 1743, 1664, 1602, 1496, 1454, 1375, 1276, 1213, 1180, 1100, 1015, 889, 806, $768 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{ClO}_{6} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+} 537.1204$, found 537.1204.

Ethyl (Z)-2-chloro-5-((dimethoxyphosphoryl)oxy)-5-(p-tolyl)pent-4-enoate (3bb) was prepared from the reaction of $\mathbf{1 b}$ and dimethyl phosphite $\mathbf{2 b}$ according to the general procedure. Compound 3bb was isolated through silica gel column chromatography as colorless liquid (68.6 $\mathrm{mg}, 91 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $5.62(\mathrm{td}, J=7.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=7.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.19(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{dd}, J=$ $11.4,3.7 \mathrm{~Hz}, 6 \mathrm{H}$), $3.16-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.98$ (ddd, $J=15.2,7.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{〔} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.2,148.5(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 139.0,131.9$,
129.1, 125.6, $110.1(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 62.2,56.2(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 54.9(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 31.7(\mathrm{~d}, J=1.5$ Hz), 21.2, 14.0; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-3.63; IR (KBr) v 2960, 2858, 1744, 1666, 1610, 1513, 1452, 1373, 1277, 1184, 1034, 900, 854, 822, $769 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{ClO}_{6} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}$399.0735, found 399.0731.

Ethyl (Z)-2-chloro-5-((dimethoxyphosphoryl)oxy)-5-(4-methoxyphenyl)pent-4-enoate (3cb) was prepared from the reaction of $\mathbf{1 c}$ and dimethyl phosphite $\mathbf{2 b}$ according to the general procedure. Compound $\mathbf{3 c b}$ was isolated through silica gel column chromatography as colorless liquid ($28.3 \mathrm{mg}, 36 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.87(\mathrm{~m}$, $2 \mathrm{H}), 5.54(\mathrm{td}, J=7.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=7.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{tt}, J=7.2,3.6 \mathrm{~Hz}, 2 \mathrm{H})$, 3.83 (s, 3H), 3.75 (dd, $J=11.4,3.6 \mathrm{~Hz}, 6 \mathrm{H}$), $3.17-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.96$ (dtd, $J=9.7,7.5,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.2,160.2148 .3$ (d, $J=8.8$ $\mathrm{Hz}), 127.4,127.2,113.8,109.2(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 62.2,56.2(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 55.3,54.9(\mathrm{~d}, J=5.9$ Hz), $31.7\left(\mathrm{~d}, J=1.5 \mathrm{~Hz}\right.$), 14.0; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-3.60$; $\mathrm{IR}(\mathrm{KBr}) v 2960,2854$, $1743,1667,1607,1577,1513,1463,1372,1255,1181,1099,1034,900,852,804,768 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{ClO}_{7} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+} 415.0684$, found 415.0679.

Ethyl (Z)-2-chloro-5-(4-chlorophenyl)-5-((dimethoxyphosphoryl)oxy)pent-4-enoate (3db) was prepared from the reaction of $\mathbf{1 d}$ and dimethyl phosphite $\mathbf{2 b}$ according to the general procedure. Compound $\mathbf{3 d b}$ was isolated through silica gel column chromatography as colorless liquid ($65.1 \mathrm{mg}, 82 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}$, $2 \mathrm{H}), 5.67(\mathrm{td}, J=7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=7.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.76$ (dd, J $=11.4,4.0 \mathrm{~Hz}, 6 \mathrm{H}), 3.16-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{dtd}, J=9.7,7.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.0,147.4(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 134.9,133.2,128.6,127.0$, $111.6(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 62.2,56.0(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 55.0(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 31.6(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 14.0$; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-3.57$; IR (KBr) v 2960, 2857, 1744, 1665, 1595, 1492, 1453,

1401, 1373, 1279, 1184, 1095, 1033, 958, 897, 854, $785 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{O}_{6} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+} 419.0189$, found 419.0191. The geometry of the double bond was determined to be Z through NOE analysis with 3 db as a representative: the aromatic hydrogen Ha shows strong correlation with olefin Hb , wheres the correlation between Ha and Hc is not observed.

Ethyl (Z)-2-chloro-5-((dimethoxyphosphoryl)oxy)-5-(furan-2-yl)pent-4-enoate (3nb) was prepared from the reaction of $\mathbf{1 n}$ and dimethyl phosphite $\mathbf{2 b}$ according to the general procedure.

Compound 3nb was isolated through silica gel column chromatography as yellow oil (69.8 mg , 99% yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.34$ (dd, $J=3.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{td}, J=7.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}, J=7.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 6 \mathrm{H}), 3.05-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{ddd}, J=15.2,7.6,2.3 \mathrm{~Hz}$, 1H), $1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.0,148.3,143.0,139.8(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}), 111.4,108.9(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 108.5,62.2,55.9(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 55.2(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 31.1$ (d, $J=1.5 \mathrm{~Hz}$), 14.0; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-3.39$; IR (KBr) v 3142, 2961, 2858, 1741, 1675, 1569, 1532, 1490, 1465, 1374, 1261, 1186, 1046, 858, $768 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ClO}_{7} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}$375.0371, found 375.0369.

Ethyl (Z)-2-chloro-5-((dimethoxyphosphoryl)oxy)-5-(thiophen-2-yl)pent-4-enoate (3hb) was prepared from the reaction of $\mathbf{1 h}$ and dimethyl phosphite $\mathbf{2 b}$ according to the general procedure. Compound 3hb was isolated through silica gel column chromatography as yellow oil (56.0 mg , 76% yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{dd}, J=4.7,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.63 (td, $J=7.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{dd}, J=7.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{dd}, J$ $=11.4,1.7 \mathrm{~Hz}, 6 \mathrm{H}), 3.16-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{dtd}, J=9.8,7.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl_{3}) $\delta 169.1,143.2(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 138.0,127.4,125.9,125.6$, 110.2 (d, $J=6.2 \mathrm{~Hz}), 62.2,55.9(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 55.1(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 31.6(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 14.0$; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-3.63$; IR (KBr) $v 3106,2960,2857,1743,1661,1521,1453$, 1372, 1279, 1185, 1045, 855, $768 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ClO}_{6} \mathrm{PSNa}[\mathrm{M}+\mathrm{Na}]^{+}$ 391.0142, found 391.0143.

Methyl (Z)-2-chloro-5-((dimethoxyphosphoryl)oxy)-5-phenylpent-4-enoate (3jb) was prepared from the reaction of $\mathbf{1} \mathbf{j}$ and dimethyl phosphite $\mathbf{2 b}$ according to the general procedure. Compound 3jb was isolated through silica gel column chromatography as colorless oil $(65.6 \mathrm{mg}$, 94% yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52$ (dd, $J=7.8,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.36 (dd, $J=7.7,4.5$ $\mathrm{Hz}, 3 \mathrm{H}), 5.66(\mathrm{td}, J=7.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{dd}, J=7.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{dd}, J=$
$11.4,5.2 \mathrm{~Hz}, 6 \mathrm{H}$), 3.11 (ddd, $J=13.6,7.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.98 (dtd, $J=9.7,7.5,2.3 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.6,148.5(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 134.8,129.0,128.4,125.7,111.0$ (d, $J=6.5 \mathrm{~Hz}), 55.9(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 54.9(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 53.1,31.7(\mathrm{~d}, J=1.5 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-3.64; IR (KBr) v 3061, 2985, 2960, 2846, 1743, 1658, 1603, 1579, 1489, 1432, 1373, 1277, 1184, 1101, 1044, 957, 898, 853, $768 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ClO}_{6} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+} 371.0422$, found 371.0422 .

2-Chloroethyl (Z)-2-chloro-5-((dimethoxyphosphoryl)oxy)-5-phenylpent-4-enoate (31b) was prepared from the reaction of $\mathbf{1 1}$ and dimethyl phosphite $\mathbf{2 b}$ according to the general procedure. Compound 31b was isolated through silica gel column chromatography as yellow liquid (63.6 mg , 81% yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 3 \mathrm{H}), 5.68(\mathrm{qd}, J$ $=7.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.49-4.42(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{ddd}, J=$ 11.3, 4.2, $2.7 \mathrm{~Hz}, 6 \mathrm{H}$), $3.19-3.07(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{tdd}, J=7.6,6.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.8,148.6(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 134.7,129.1,128.4,125.7,110.8(\mathrm{~d}, J=6.6$ $\mathrm{Hz}), 65.4,55.8(\mathrm{~d}, ~ J=2.5 \mathrm{~Hz}), 55.0(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 53.1,41.1,31.6 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (162 MHz , CDCl_{3}) $\delta-3.67$; IR (KBr) v 3062, 2960, 2858, 1803, 1749, 1666, 1629, 1494, 1449, 1276, 1177, 1042, $901,854,771 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{O}_{6} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+} 419.0189$, found 419.0190 .

Ethyl (Z)-2-chloro-5-((dimethoxyphosphoryl)oxy)-5-(pyren-1-yl)pent-4-enoate (30b) was prepared from the reaction of $\mathbf{1 0}$ and dimethyl phosphite $\mathbf{2 b}$ according to the general procedure. Compound 3ob was isolated through silica gel column chromatography as yellow liquid (79.3 mg , 84% yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.31(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 2 \mathrm{H})$, $8.06-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.97(\mathrm{dd}, J=8.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.94-7.87(\mathrm{~m}, 2 \mathrm{H}), 5.47(\mathrm{dd}, J=7.7,6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.54(\mathrm{dd}, J=7.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{dd}, J=14.7,11.4 \mathrm{~Hz}, 6 \mathrm{H}), 3.18(\mathrm{ddd}, J=$
$13.6,7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{ddd}, J=14.9,7.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $168.6,147.1(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 130.9,130.1,129.7,129.0,128.0,127.2,126.3$ (d, $J=9.8 \mathrm{~Hz}), 125.2$, $124.5(\mathrm{~d}, J=11.5 \mathrm{~Hz}), 123.6,123.5(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 123.3,114.6(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 55.0(\mathrm{~d}, J=2.2$ $\mathrm{Hz}), 53.5(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 52.1,30.7 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-3.86$; IR (KBr) v 3044, 2957, 2855, 1927, 1747, 1679, 1600, 1440, 1354, 1281, 1186, 1116, 1045, 914, 851, $772 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{ClO}_{6} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+} 495.0735$, found 495.0739.

Methyl (Z)-2-chloro-5-(2,4-difluorophenyl)-5-((dimethoxyphosphoryl)oxy)pent-4-enoate

 $(\mathbf{3} \mathbf{p b})$ was prepared from the reaction of $\mathbf{1 p}$ and dimethyl phosphite $\mathbf{2 b}$ according to the general procedure. Compound $\mathbf{3 p b}$ was isolated through silica gel column chromatography as colorless liquid ($69.9 \mathrm{mg}, 91 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.39(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.84-6.77(\mathrm{~m}, 1 \mathrm{H}), 5.57(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.75(\mathrm{~m}$, $3 \mathrm{H}), 3.74-3.67(\mathrm{~m}, 6 \mathrm{H}), 3.11-3.00(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.90(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 169.5,163.0(\mathrm{dd}, J=251.7,12.0 \mathrm{~Hz}), 159.9(\mathrm{dd}, J=254.0,12.0 \mathrm{~Hz}), 142.3(\mathrm{dd}, J=8.8$, $3.0 \mathrm{~Hz}), 130.6(\mathrm{dd}, J=9.8,3.8 \mathrm{~Hz}), 119.4(\mathrm{dd}, J=12.7,4.2 \mathrm{~Hz}), 115.4(\mathrm{t}, J=6.6 \mathrm{~Hz}), 111.3(\mathrm{dd}$, $J=21.3,3.7 \mathrm{~Hz}), 104.4(\mathrm{t}, J=25.8 \mathrm{~Hz}), 55.6,54.9(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 53.1,31.5 ;{ }^{31} \mathrm{P}$ NMR (243 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.95\left(\mathrm{hept}, J=12.1 \mathrm{~Hz}\right.$); ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-107.99--108.11$ (m, 1F), -108.98--109.12 (m, 1F); IR (KBr) v 3482, 3005, 2958, 2923, 2855, 1742, 1673, 1615, 1597, 1430, 1325, 1286, 1147, 1025, 972, 854, $777 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{ClO}_{6} \mathrm{P}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+} 385.0414$, found 385.0413 .
c. General procedure for the cascade reaction between 5 and 2b to prepare enol phosphate

6. To an oven-dried reaction tube charged with a magnetic stir bar were added a corresponding compound $5(0.2 \mathrm{mmol})$ and dimethyl phosphite $\mathbf{2 b}(22 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The reactants were dissolved in dried acetonitrile (1 mL) under stirring, followed by the addition of $\mathrm{Cs}_{2} \mathrm{CO}_{3}(70.6 \mathrm{mg}$, $0.2 \mathrm{mmol})$. The reaction was kept stirring for 3 h . Water (5 mL) was added to quench the reaction and the mixture was extracted with EtOAc ($3 \mathrm{~mL} \times 3$). The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was then purified through silica
gel column chromatography with petroleum ether/ethyl acetate as eluent to afford compound $\mathbf{6}$ as colorless oil

Methyl (Z)-5-((dimethoxyphosphoryl)oxy)-5-phenylpent-4-enoate (6a) was prepared from the reaction of $\mathbf{5 a}$ and dimethyl phosphite $\mathbf{2 b}$ according to the general procedure. Compound $\mathbf{6 a}$ was isolated through silica gel column chromatography as colorless oil ($55.3 \mathrm{mg}, 88 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.21(\mathrm{~m}, 3 \mathrm{H}), 5.55(\mathrm{td}, J=7.4,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.71-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{\{ } \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.3,145.7(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 134.2,127.6,127.3,124.5,114.5(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}), 53.8(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 50.6,32.3(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 20.6(\mathrm{~d}, J=1.6 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(162$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.51$; IR (KBr) v 3003, 2959, 2857, 1736, 1664, 1602, 1579, 1494, 1445, 1367, 1266, 1172, 1041, 904, 853, 800, $770 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{6} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}$ 337.0811, found 337.0811.

(Z)-Dimethyl (5-oxo-1,5-diphenylpent-1-en-1-yl) phosphate (6b) was prepared from the reaction of $\mathbf{5 b}$ and dimethyl phosphite $\mathbf{2 b}$ according to the general procedure. Compound $\mathbf{6 b}$ was isolated through silica gel column chromatography as colorless oil ($67.7 \mathrm{mg}, 94 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{ddd}, J=24.6,14.4,7.4 \mathrm{~Hz}, 5 \mathrm{H}), 7.31-7.17(\mathrm{~m}$, $3 \mathrm{H}), 5.65(\mathrm{td}, J=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 6 \mathrm{H}), 3.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{qd}, J$ $=7.4,2.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.3,145.6(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 135.8,134.2$, $132.1,127.6,127.5,127.3,127.1,124.5,115.2(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 53.8(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 36.8(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}), 19.9 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-3.40; IR (KBr) v 3061, 2960, 2856, 1685, 1598, 1580, 1494, 1449, 1410, 1366, 1266, 1205, 1184, 1042, 901, 851, 798, $770 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+} 383.1019$, found 383.1020.

(Z)-Dimethyl (1-phenyl-4-(phenylsulfonyl)but-1-en-1-yl) phosphate (6c) was prepared from
the reaction of $\mathbf{5 c}$ and dimethyl phosphite $\mathbf{2 b}$ according to the general procedure. Compound $\mathbf{6 c}$ was isolated through silica gel column chromatography as colorless oil ($69.8 \mathrm{mg}, 88 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.36(\mathrm{dd}, J=7.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 3 \mathrm{H}), 5.47(\mathrm{td}, J=7.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=11.4$ $\mathrm{Hz}, 6 \mathrm{H}$), 3.23 (dd, $J=8.7,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.68$ (ddd, $J=15.5,7.8,1.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.8(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 138.1,133.6,132.7,128.3,127.9,127.4,127.1,124.5,111.4$ $(\mathrm{d}, J=6.5 \mathrm{~Hz}), 54.0(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 53.8(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 19.0 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-3.52$; IR (KBr) v 3063, 2960, 2856, 1714, 1583, 1493, 1448, 1406, 1285, 1185, 1145, 1085, 1043, 900, 853, 796, $768 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{6} \mathrm{PSNa}[\mathrm{M}+\mathrm{Na}]^{+}$419.0689, found 419.0687.

Methyl (Z)-5-((dimethoxyphosphoryl)oxy)-2-phenoxy-5-phenylpent-4-enoate (6d) was prepared from the reaction of $\mathbf{5 d}$ and dimethyl phosphite $\mathbf{2 b}$ according to the general procedure. Compound 6d was isolated through silica gel column chromatography as colorless oil (69.9 mg , 86% yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51$ (dd, $J=8.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.46-7.21$ (m, 5 H), $7.05-6.81(\mathrm{~m}, 3 \mathrm{H}), 5.77(\mathrm{td}, J=7.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{dd}, J=7.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.60(\mathrm{~m}$, 9 H), $3.13-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.99$ (ddd, $J=15.3,7.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5,157.7,148.0(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 135.0,129.6,128.8,128.4,125.7,121.9(\mathrm{~d}, J=7.7 \mathrm{~Hz})$, $115.2,111.2(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 75.8,54.9(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 52.4,29.8 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(162 \mathrm{MHz}$, CDCl_{3}) δ-3.50; IR (KBr) v 3062, 3032, 2957, 2855, 1755, 1665, 1594, 1493, 1446, 1364, 1281, 1236, 1204, 1042, 895, 852, $758 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{7} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}$ 429.1074, found 429.1071.

Ethyl (Z)-2-(allyloxy)-5-((dimethoxyphosphoryl)oxy)-5-phenylpent-4-enoate (6e) was prepared from the reaction of $\mathbf{5 e}$ and dimethyl phosphite $\mathbf{2 b}$ according to the general procedure. Compound 6e was isolated through silica gel column chromatography as colorless oil $(56.1 \mathrm{mg}$,
73% yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49$ (ddd, $J=17.9,8.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.42-7.32$ (m, $3 \mathrm{H}), 6.00-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.78-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.36-5.17(\mathrm{~m}, 2 \mathrm{H}), 4.29-4.13(\mathrm{~m}, 2 \mathrm{H}), 4.03-$ $3.90(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.68(\mathrm{~m}, 6 \mathrm{H}), 2.97-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.55(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.19(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.0,147.5(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 134.0,128.6,128.3,125.6,117.8$, $111.9(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 71.4(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 61.0,54.8(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 31.1,29.8,14.2 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-3.53; IR (KBr) v 3061, 2983, 2959, 2858, 1744, 1665, 1579, 1494, 1449, 1374, 1276, 1191, 1110, 1043, 927, 906, 853, $771 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{7} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+} 407.1230$, found 407.1231.

Methyl (Z)-5-(4-chlorophenyl)-5-((dimethoxyphosphoryl)oxy)-2-((4-methylphenyl)sulfona-mide)pent-4-enoate (6 g) was prepared from the reaction of 5 g and dimethyl phosphite $\mathbf{2 b}$ according to the general procedure. Compound $\mathbf{6 g}$ was isolated through silica gel column chromatography as colorless oil ($46.3 \mathrm{mg}, 89 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78$ (d, $J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{td}, J=8.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{td}, J=8.1,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.80 (ddd, $J=11.0,8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.43$ (td, $J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=10.5,4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.72(\mathrm{~d}, ~ J=11.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~d}, ~ J=11.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.13$ (dddd, $J=14.4,7.0$, $4.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dddd}, J=14.4,10.4,7.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0,163.1(\mathrm{dd}, J=252.0,11.8 \mathrm{~Hz}), 159.9(\mathrm{dd}, J=254.1,12.0 \mathrm{~Hz}), 145.5,142.5(\mathrm{dd}, J=8.8$, $3.0 \mathrm{~Hz}), 134.2,130.7(\mathrm{dd}, J=9.7,3.9 \mathrm{~Hz}), 129.7,129.3,119.3(\mathrm{dd}, J=13.0,3.3 \mathrm{~Hz}), 114.9(\mathrm{t}, J$ $=6.8 \mathrm{~Hz}), 111.4(\mathrm{dd}, J=21.4,3.6 \mathrm{~Hz}), 104.4(\mathrm{t}, J=25.9 \mathrm{~Hz}), 69.3,55.0-54.9(\mathrm{~m}), 53.0,23.6$, 21.7; ${ }^{31} \mathrm{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.99$ (hept, $J=12.5,11.8 \mathrm{~Hz}$); ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-107.82(\mathrm{p}, J=8.2 \mathrm{~Hz}),-109.08(\mathrm{q}, ~ J=9.3 \mathrm{~Hz}) ; \operatorname{IR}(\mathrm{KBr}) v 3488,3007,2959,2857,1748,1616$, 1596, 1503, 1430, 1281, 1145, 1024, 853, $780 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{8} \mathrm{PS}[\mathrm{M}$ $+\mathrm{H}]^{+} 520.1001$,found 520.1002

IV. Mechanistic Related Control Experiments

a. $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ promoted reaction of 1 d with trimethyl phosphite

To an oven-dried reaction tube charged with a magnetic stir bar were added methyl 2-(2,4-difluorobenzoyl)-1-chlorocyclopropane-1-carboxylate $\mathbf{1 p}(54.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and trimethyl phosphite ($28.4 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$). The reactants were dissolved in dried acetonitrile (1 mL) under stirring, followed by the addition of $\mathrm{Cs}_{2} \mathrm{CO}_{3}(141.2 \mathrm{mg}, 0.4 \mathrm{mmol})$. The reaction was kept stirring for 3 h . Water (5 mL) was added to quench the reaction and the mixture was extracted with EtOAc ($3 \mathrm{~mL} \times 3$). The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was then purified through silica gel column chromatography with petroleum ether/ethyl acetate as eluent to afford compound 4 as colorless oil ($45.2 \mathrm{mg}, 68 \%$ yield).

Methyl 2-(2,4-difluorobenzoyl)-1-(dimethoxyphosphoryl)cyclopropane-1-carboxylate (4): ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{td}, J=8.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.00-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.91$ (ddd, $J=11.0$, $8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.86(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.83(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.33$ (dddd, J $=15.3,8.6,6.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.15$ (dddd, $J=13.2,5.9,4.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{ddd}, J=16.3,8.6$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.8(\mathrm{t}, J=3.5 \mathrm{~Hz}), 166.7(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 166.1$ (dd, $J=258.0,12.3 \mathrm{~Hz}$), 162.7 (dd, $J=258.5,12.7 \mathrm{~Hz}$), 132.8 (dd, $J=10.7,3.7 \mathrm{~Hz}$), 122.4 (dd, J $=12.1,3.5 \mathrm{~Hz}), 112.4(\mathrm{dd}, J=21.5,3.4 \mathrm{~Hz}), 105.0(\mathrm{t}, J=26.3 \mathrm{~Hz}), 53.9$ (dd, $J=6.2,1.7 \mathrm{~Hz}$), $53.1,53.8(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 31.3(\mathrm{~d}, J=180.7 \mathrm{~Hz}), 31.2(\mathrm{dd}, J=9.0,2.6 \mathrm{~Hz}), 18.2(\mathrm{~d}, J=3.8 \mathrm{~Hz})$; ${ }^{31} \mathrm{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.79-22.32(\mathrm{~m}) ;{ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-100.62(\mathrm{dq}, J$ $=14.6,7.4 \mathrm{~Hz}),-105.30(\mathrm{q}, J=10.9 \mathrm{~Hz}) ; \operatorname{IR}(\mathrm{KBr}) v 3481,3100,3015,2959,2855,1737,1681$, 1611, 1489, 1432, 1305, 1252, 1208, 1147, 1102, 1031, 973, 875, $781 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{O}_{6} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+} 371.0467$, found 371.0467 .

b. Deturated dimethylphosphite

$$
\underset{\mathrm{H}-\stackrel{\mathrm{P}}{\mathrm{O}}(\mathrm{OMe})_{2}}{\substack{\text { methanol- } d_{4} \\ \text { rt, overnight, } c 1.0}} \stackrel{\substack{\mathrm{Cs}_{2} \mathrm{CO}_{3}(5 \mathrm{~mol} \%) \\ \mathrm{D}-\mathrm{P}(\mathrm{OMe})_{2} \\(80 \% \mathrm{D})}}{\substack{\mathrm{O} \\ \hline}}
$$

Deuturated dimethyl phosphite was prepared through the proton exchange between dimethyl phosphite and methanol-d4 with catalytic amount of cesium carbonate. After filtration and concentration in vacuo, the content was determined to be 80% by ${ }^{1} \mathrm{H}$ NMR.

To an oven-dried reaction tube charged with a magnetic stir bar and anhydrous $\mathrm{Cs}_{2} \mathrm{CO}_{3}(6.5 \mathrm{mg})$ were added anhydrous acetonitrile (0.3 mL) and trimethyl phosphite- $d 1(28.5 \mu \mathrm{~L}, 0.24 \mathrm{mmol}, 80 \%$ D-labelled). The mixture was stirred for 5 minutes at room temperature, followed by the addition of an solution of ethyl 2-(2,4-difluorobenzoyl)-1-chlorocyclopropane-1-carboxylate $\mathbf{1 p}$ (53.3 mg , 0.2 mmol , dissolved in 0.7 mL of anhydrous acetonitrile). The reaction was kept stirring for 3 h and diluted with a 1:1 mixture hexanes/EtOAc. The insoluble salt was removed through filtration and the filtrate was concentrated in vacuo. The residue was then submitted for ${ }^{1} \mathrm{H}$ NMR analysis with trimethoxybenzene as an internal standard.

c. ${ }^{31} \mathrm{P}$ NMR monitoring of the reaction process.

To an oven-dried reaction tube charged with a magnetic stir bar were added ethyl 2-benzoyl-1-chlorocyclopropane-1-carboxylate 1a ($50.5 \mathrm{mg}, 0.2 \mathrm{mmol}$), dimethyl phosphite 2b ($26 \mu \mathrm{~L}, 0.22$ mmol) and anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$. After $10 \mu \mathrm{~L}$ of reaction mixture was taken and diluted in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$ to make the first sample, $\mathrm{Cs}_{2} \mathrm{CO}_{3}(141.6 \mathrm{mg}, 0.4 \mathrm{mmol})$ was added to start the reaction. Three additional aliquots $(10 \mu \mathrm{~L})$ were taken at 20,40 and 60 min , respectively, filtered through a $0.45 \mu \mathrm{~m}$ nylon membrane and washed with $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$. The samples obtained at different time point were immediately submitted for ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR analysis and the stacked spectra were presented below. As we can see, other than the starting material $\mathbf{2 b}$ (ppm 10.6), the final product 3ab (ppm -3.84) was observed as the major species in the mixture. Only very limited
amount of other phosphor-related species (ppm 33.02 , 24.27) were detected during the reaction process, which disappeared again as the reaction reached completion.

V. References

1. (a) M. Zhang, Y. Gong and W. Wang, Eur. J. Org. Chem., 2013, 2013, 7372-7381; (b) Y. Zhu, P. Xu and Y. Gong, J. Org. Chem., 2016, 81, 4829-4834; (c) Y. Zhu and Y. Gong, Tetrahedron, 2016, 72, 3436-3442.

VI. NMR Spectra

3aa ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3aa ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3aa ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3ba ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ba ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

$\stackrel{9}{7}$	88	하으앙	8\％	No웅․․	$\bigcirc{ }^{\circ}$	－すべらす
\％	¢	¢0．m．	O울		लं	
$\stackrel{7}{1}$	\vec{V}	ですく	V		¢	

3ba ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

3da ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3da ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3da ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3ea ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ea ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ea ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3fa ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3fa ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

3fa ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3ga ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ga ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ga ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ha ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ha ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ha ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\mathbf{3 j a}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ja ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\mathbf{3 j a}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3ka ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ka ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ka ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ | \% |
| :--- |

31a ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3la ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

®	ㄷ8\%	8880	88						
$\stackrel{\circ}{6}$			익						
\cdots	\checkmark	- 7\%	$\stackrel{7}{7}$						

3la ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ma ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ma ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ma ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ab ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
顸污

3ab ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

| 40 | 230 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 | -20 | -30 | -4 |
| :--- |

3ab ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ac ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ac ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ac ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
coicher(oi-Pr)

3ad ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ad ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ad ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3bb ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3bb ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3bb ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3cb ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3cb ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

| 40 | 230 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 10 | 30 | 20 | 10 | 0 | -10 | -20 | -30 | -4 |
| :--- |

3cb ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3db ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3db ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3db ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
\qquad

3nb ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3nb ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3nb ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3hb ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3hb ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^0]3hb ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3jb ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3jb ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8	枵年		88	 		
$\stackrel{\circ}{9}$	等家	¢igisi	\pm			
\uparrow	\checkmark	式？	$\stackrel{7}{7}$			

3jb ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
（OMe）

31b ${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

3lb ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

品	80	뇽궁	8さ
00°	¢	¢゙®jo	\bigcirc
		こご「	

[^1]
3Ib ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3ob ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ob ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ob ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3pb ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3pb ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3pb ${ }^{31} \mathrm{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

> ০০০
$\underbrace{\text { m@ Mo my }}$

3pb ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$80.601-$ $90.601--$
$90.601-7$
$0 \cdot 601$
20.601
$80 \cdot 801$
L0'801-
$90.801-5$
50'801-
$20801-$

$4{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$4{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$$
\begin{aligned}
& \text { 示 }
\end{aligned}
$$

$4{ }^{31} \mathrm{P}$ NMR（ $243 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

®๓たがようべ

$4{ }^{19} \mathrm{~F}$ NMR（ $565 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

으응으으응으으으응은
TTVTジ

6a ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

6a ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

6a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\stackrel{\rightharpoonup}{\circ}$
\dot{p}
1

6b ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

6b ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\mathbf{6 b}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

6c ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

6c ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

6c ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

6d ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

6d ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

6d ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
8
0
1
1

6e ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

6e ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

6e ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
∞
0
i

6g ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\mathbf{6 g}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 1 |
| :--- |
| $11(\mathrm{ppm})$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

6g ${ }^{31} \mathrm{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

6g ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$$
\begin{aligned}
& \text { 운문훈운웅웅운 }
\end{aligned}
$$

[^0]:

[^1]: $190 \quad 180$
 $160 \quad 150$
 $140 \quad 1$

