S1

Cu-Catalyzed/Mediated Synthesis of *N***-Fluoroalkylanilines from Arylboronic Acids: Fluorine Effect on the Reactivity of Fluoroalkylamines**

Hui Wang, Yuan-Hong Tu, De-Yong Liu, Xiang-Guo Hu*

National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang,330022, China. Email: <u>huxiangg@iccas.ac.cn</u>

Contents

1. General information	2
2. General procedure	3
3. Characterization data of Compounds	6
4. X-ray structure of 3f and 11b	14
5. Refeence	15
6. NMR spectra of novel compounds	16

1. General information

All purchased reagents were used without further purification unless otherwise noted. All solvents were dried over activated 4Å molecular sieves. Analytical TLC was performed with 0.2 mm silica gel 60F plates with 254 nm fluorescent indicator. TLC plates were visualized by ultraviolet light or by treatment with a spray off Pancaldi reagent {Ce(SO₄)₂}. Column chromatograph was performed on 200-300 mesh silica gal. NMR spectra were measured in CDCl₃ (TMS, 1H δ = 0; CDCl₃, 1H δ = 7.26, 13C δ = 77.36) (¹H at 400 MHz, ¹³C at 100 MHz, ¹⁹F at 376 MHz) magnetic resonance spectrometer Chemical shifs (δ) are reported in ppm, and coupling constants (*J*) are in Hz. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. What should be noted is that all petroleum ether and ethyl acetate (EtOAc) used for flash column chromatography were redistilled twice before using, but the trace amount of residue of impurities such as H-grease and silicone grease could still be seen on NMR spectra of some products

2. General procedure

2.1 Procedure A: Cu-catalyzed reaction of aryl boric acid with CF₃CH₂NH₂ or

$HCF_2CH_2NH_2 \\$

To a reaction tube containing Cu(OAc)₂ (9.1 mg, 0.05 mmol, 0.2 equiv), aryl boronic acid (0.25 mmol, 1.0 equiv) and 4 Å MS was added TEA (105 μ L, 0.75 mmol, 3 equiv), CF₃CH₂NH₂ (40 μ L, 0.5 mmol, 2.0 equiv) and CH₃CN (2.5 mL) were added successively via syringe. The mixture was stirred vigorously under 80 °C overnight. Then the reaction solution was filtered over a sintered-glass funnel with a tightly packed pad of Celite (1 cm thick), and the filter cake was rinsed with DCM (20 mL). The combined filtrates were concentrated. The residue was purified with silica gel column chromatography to provide the desired product.

2.2 Procedure B: Cu-promoted coupling reactions of CF₃CF₂CH₂NH₂ or

CF₃CF₂CF₂CH₂NH₂ with boronic acids

To a reaction tube containing Cu(OAc)₂ (45.4 mg, 0.25 mmol, 1.0 equiv), aryl boronic acid (0.25 mmol, 1.0 equiv) and 4 Å MS was added TEA (105 μ L, 0.75 mmol, 3 equiv), CF₃CF₂CH₂NH₂ (54 μ L, 0.5 mmol, 2.0 equiv) and CH₃CN (2.5 mL) were added successively via syringe. The mixture was stirred vigorously under 80 °C overnight. Then the reaction solution was filtered over a sintered-glass funnel with a tightly packed pad of Celite (1 cm thick), and the filter cake was rinsed with DCM (20 mL). The combined filtrates were concentrated. The residue was purified with silica gel column chromatography to provide the desired product.

2.3 Optimization reaction

Ph B(OH) ₂ +	H_2N CF ₃ $\frac{Cu(OAc)_2,(1equiv)}{TEA, 80^{\circ}C, solvent,}$ Ph
Solvent	Yield (%)
CH ₃ CN	70%
DCM	17%
toluene	41%
DMF	65%
MeOH	0
dioxane	48%

Table S1 the effect of solvents

DCE	35%
THF	45%

4-biphenylboronic acid (0.10 mmol, 1 equiv), CF3CH2NH2 (0.20 mmol, 2 equiv), Cu(OAc)2 (0.1 mmol, 1 equiv), solvents (2.0 ml), T= 80 °C, TEA (0.2 mmol, 2 equiv), 4Å MS, overnight. Yields were determined by ¹⁹F NMR spectroscopy using benzotrifluoride as an internal standard.

Table S2 Base screen

Ph B(OH) ₂ + H ₂ N	$CF_3 \xrightarrow{Cu(OAc)_2,(1equiv)}_{base, 80^{\circ}C, CH_3CN, Ph} Ph$
base	Yield (%)
NaOAc	58%
CsCO3	26%
DBU	16%
DIPEA	63%
TEA	70%
K ₃ PO ₄	58%
pyridine	52%
K_2CO_3	39%
Na ₂ CO3	47%

4-biphenylboronic acid (0.1 mmol, 1 equiv), CF3CH2NH2 (0.2 mmol, 2 equiv), Cu(OAc)2 (0.1 mmol, 1 equiv), CH3CN (2.0 ml), T= 80 °C, base (0.2 mmol, 2 equiv), 4 Å MS, overnight. Yields determined by ¹⁹F NMR spectroscopy using benzotrifluoride as an internal standard.

Table S3 Evaluation of copper salts

Ph B(OH) ₂ + H ₂ N CF ₃	Cu salt, (1equiv) TEA, CH ₃ CN,80 °C 4Å MS, overnight Ph
Cu salts	Yield 3a (%)
$Cu(OAc)_2$	70%
Cu(OAc) ₂ •H ₂ O	67%
CuCl	2%
CuBr	0
Cu(OTf) ₂	5%
$Cu(acac)_2$	0
CuBr ₂	3%
CuCN	0
CuI	0

4-biphenylboronic acid (0.1 mmol, 1 equiv), CF3CH2NH2 (0.2 mmol, 2 equiv), Cu salts (0.1 mmol, 1 equiv), CH3CN (2.0 ml), T= 80 °C,

TEA (0.2 mmol, 2 equiv), 4Å MS, overnight. Yields were determined by ¹⁹F NMR spectroscopy using benzotrifluoride as an internal standard.

Ph + H ₂ N CF ₃	Cu(OAc) ₂ TEA,80°C,CH ₃ CN 4Å MS, overnight	Ph H CF ₃
Cu(OAc) ₂	yeild	
1equiv	70%	
0.2equiv	60%	
0.1equiv	24%	
0.05equiv	23%	

4-biphenylboronic acid (0.10 mmol, 1 equiv), CF3CH2NH2 (0.20 mmol, 2 equiv), CH3CN (2.0 ml), T= 80 °C, TEA (0.2 mmol, 2 equiv),

4Å MS, overnight. Yields were determined by ¹⁹F NMR spectroscopy using benzotrifluoride as an internal standard.

Table S5 The effect of concentration.

$\begin{array}{c} & & & \\ & &$	(OAc) ₂ (20 mol ⁹ se,80 °C,CH ₃ Cl MS,overnight	N, Ph
4-biphenylboronic acid (mmol)	Yield (%)	
0.1	68%	
0.2	70%	
0.5	52%	

The amount of reagents was adjusted while the volume of the solvent was kept constant. 4-biphenylboronic acid (1 equiv), CF₃CH₂NH₂ (2 equiv), Cu(OAc)₂. (0.2 equiv), TEA (3 equiv), CH₃CN (2.0 ml), T = 80 °C, base, 4Å MS, overnight. Yields were determined by ¹⁹F NMR spectroscopy using benzotrifluoride as an internal standard.

Table S6 Control experiments

4-biphenylboronic acid (0.10 mmol, 1 equiv), CF3CH2NH2 (0.20 mmol, 2 equiv), TEA (0.3 mmol, 3 equiv), CH3CN (2.0 ml), T = 80 °C,

4Å MS, overnight. Yields were determined by ¹⁹F NMR spectroscopy using benzotrifluoride as an internal standard.

3. Characterization data of Compounds

N-(2,2,2-trifluoroethyl)-[1,1'-biphenyl]-4-amine

Purified by flash column chromatography (petroleum ether/AcOEt =

F₃**C N**^P **3a** 100:1), white solid (39.6 mg, 63% yield); ¹**H** NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.6 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H), 7.40 (t, J = 7.6 Hz, 2H), 7.32 – 7.22 (m, 1H), 6.76 (d, J = 8.4 Hz, 2H), 4.20 (s, 1H), 3.80 (q, J = 9.0 Hz, 2H); ¹³**C** NMR (100 MHz, CDCl₃) δ 145.6, 140.8, 132.1, 128.7, 128.1, 126.4, 125.0 (q, J = 280.0 Hz), 113.4, 46.0 (q, J = 33.3 Hz); ¹⁹**F** NMR (376 MHz, CDCl₃) δ -72.27 (t, J = 8.9 Hz, 3F); ¹⁹**F** {¹**H**} NMR (376 MHz, CDCl₃) δ -72.27 (s, 3F). (Consistent with previous reported values.¹)

4-(tert-butyl)-N-(2,2,2-trifluoroethyl)aniline

Purified by flash column chromatography (petroleum ether 100%), pale F_3C H Sb Y yellow liquid (43 mg, 74% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, J = 8.7 Hz, 2H), 6.64 (d, J = 8.6 Hz, 2H), 3.83 (s, 1H), 3.79 – 3.67 (m, 2H), 1.28 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 141.9, 126.2, 125.1 (q, J = 280.1 Hz), 112.9, 46.3 (q, J = 33.5Hz), 34.0, 31.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -72.32 (t, J = 8.7 Hz, 3F); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -72.32 (s, 3F); HRMS (ESI) m/z calcd for C₁₂H₁₇F₃N⁺ [M+H]⁺ 232.13076, found 232.13084.

N-(2,2,2-trifluoroethyl)aniline

F₃ Purified by flash column chromatography (petroleum ether 100%), pale yellow liquid (33.7 mg, 77% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.22 (dd,

J = 8.5, 7.3 Hz, 2H), 6.81 (tt, J = 7.4, 1.1 Hz, 1H), 6.69 (d, J = 8.0 Hz, 2H), 3.91 (s, 1H), 3.77 (qd, J = 8.9, 7.0 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -72.35 (t, J = 8.9 Hz, 3F); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -72.35(s, 3F). (Consistent with previous reported values.¹)

4-bromo-N-(2,2,2-trifluoroethyl)aniline

Purified by flash column chromatography (petroleum ether 100%), yellow liquid (49.2 mg, 77% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.29

(d, J = 8.8 Hz, 2H), 6.57 (d, J = 8.8 Hz, 2H), 3.96 (s, 1H), 3.88 – 3.58 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 145.3, 132.2, 124.9 (q, J = 280.0 Hz), 114.7, 110.8, 46.0 (q, J = 33.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -72.27 (t, J = 8.7 Hz, 3F); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -72.27

(s, 3F). (Consistent with previous reported values¹.)

3-nitro-N-(2,2,2-trifluoroethyl)aniline

Purified by flash column chromatography (petroleum ether/ Dichloromethane = 5:1), yellow solid (34.9 mg, 63% yield); ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.65 \text{ (dd}, J = 8.2, 2.0 \text{ Hz}, 1\text{H}), 7.52 \text{ (s}, 1\text{H}), 7.35 \text{ (t}, J = 8.1 \text{ Hz}, 1\text{H}), 6.98 \text{ (dd}, J = 8.2, 2.0 \text{ Hz}, 1\text{H}), 7.52 \text{ (s}, 1\text{H}), 7.35 \text{ (t}, J = 8.1 \text{ Hz}, 1\text{H}), 6.98 \text{ (dd}, J = 8.2, 2.0 \text{ Hz}, 1\text{H}), 7.52 \text{ (s}, 1\text{H}), 7.35 \text{ (t}, J = 8.1 \text{ Hz}, 1\text{H}), 6.98 \text{ (dd}, J = 8.2, 2.0 \text{ Hz}, 1\text{H}), 7.52 \text{ (s}, 1\text{H}), 7.35 \text{ (t}, J = 8.1 \text{ Hz}, 1\text{H}), 6.98 \text{ (dd}, J = 8.2, 2.0 \text{ Hz}, 1\text{H}), 7.52 \text{ (s}, 1\text{H}), 7.35 \text{ (t}, J = 8.1 \text{ Hz}, 1\text{H}), 6.98 \text{ (dd}, J = 8.2, 2.0 \text{ Hz}, 1\text{H}), 7.52 \text{ (s}, 1\text{H}), 7.35 \text{ (t}, J = 8.1 \text{ Hz}, 1\text{H}), 6.98 \text{ (dd}, J = 8.2, 2.0 \text{ Hz}, 1\text{H}), 7.52 \text{ (s}, 1\text{H}), 7.35 \text{ (t}, J = 8.1 \text{ Hz}, 1\text{H}), 6.98 \text{ (dd}, J = 8.2, 2.0 \text{ Hz}, 1\text{H}), 7.52 \text{ (s}, 1\text{H}), 7.35 \text{ (t}, J = 8.1 \text{ Hz}, 1\text{H}), 6.98 \text{ (dd}, J = 8.2, 2.0 \text{ Hz}, 1\text{H}), 7.52 \text{ (s}, 1\text{H}), 7.35 \text{ (t}, J = 8.1 \text{ Hz}, 1\text{H}), 6.98 \text{ (dd}, J = 8.2, 2.0 \text{ Hz}, 1\text{H}), 7.52 \text{ (s}, 1\text{H}), 7.35 \text{ (t}, J = 8.1 \text{ Hz}, 1\text{H}), 7.52 \text{ (s}, 1\text{Hz}, 1\text{Hz}, 1\text{Hz}), 7.52 \text{ (s}, 1\text{Hz}, 1\text{Hz}, 1\text{Hz}), 7.52 \text{ (s}, 1\text$

Purified by flash column chromatography (petroleum ether/AcOEt =

J = 8.2, 2.4 Hz, 1H), 4.33 (s, 1H), 3.85 (qd, J = 8.7, 1.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.3, 147.0, 130.1, 124.7 (q, J = 280.2 Hz), 119.0, 113.8, 107.0, 45.6 (q, J = 34.2 Hz); ¹⁹F NMR $(376 \text{ MHz}, \text{CDCl}_3) \delta$ -72.16 (t, J = 8.8 Hz, 3F); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -72.16 (s, 3F). (Consistent with previous reported values.¹)

4-((2,2,2-trifluoroethyl)amino)benzonitrile

10:1), white solid (35.7 mg, 71% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 8.7 Hz, 2H), 6.70 (d, J = 8.8 Hz, 2H), 4.59 (s, 1H), 3.83 (qd, J = 7.0, 1.7 Hz, 2H); ¹³C **NMR** (100 MHz, CDCl₃) δ 149.6, 133.7, 124.4 (q, J = 280.0 Hz), 119.7, 112.6, 100.9, 44.9 (q, J = 34.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -72.11(t, J = 8.7 Hz, 3F); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -72.11 (s, 3F). (Consistent with previous reported values.²)

ethyl 4-((2,2,2-trifluoroethyl)amino)benzoate OEt Purified by flash column chromatography (petroleum ether/Dichloromethane = 3:1), white solid (39.1 mg, 63% yield); ${}^{1}H$ **NMR** (400 MHz, CDCl₃) δ 7.91 (d, J = 8.8 Hz, 2H), 6.67 (d, J = 8.8 Hz, 2H), 4.47 (s, 1H), 4.33 (q, J = 7.2 Hz, 2H), 3.82 (q, J = 9.0 Hz, 2H), 1.37 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 150.1, 131.5, 124.7 (q, J = 280.0 Hz), 120.7, 112.0, 60.5, 45.2 (q, 34.0 Hz), 14.4; ¹⁹F NMR $(376 \text{ MHz, CDCl}_3) \delta$ -72.22 (t, J = 8.7 Hz, 3F); ¹⁹F {¹H} NMR (376 MHz, CDCl}_3) \delta -72.22 (s, 3F). (Consistent with previous reported values.¹)

1-(4-((2,2,2-trifluoroethyl)amino)phenyl)ethan-1-one

Purified by flash column chromatography (petroleum ether/ AcOEt = 9:1), white solid (35.2 mg, 65% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d,

J = 8.9 Hz, 2H), 6.69 (d, J = 8.7 Hz, 2H), 4.75 (s, 1H), 3.96 - 3.71 (m, 2H), 2.52 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 196.5, 150.4, 130.7, 128.4, 124.7 (q, J = 280.1 Hz), 112.0, 45.2 (q, J = 280.1 Hz) 34.2 Hz), 26.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -72.14 (t, J = 8.8 Hz, 3F); ¹⁹F {¹H} NMR (376

MHz, CDCl₃) δ -72.14 (s, 3F). (Consistent with previous reported values.²)

6-methoxy-N-(2,2,2-trifluoroethyl)naphthalen-2-amine Purified by flash column chromatography (petroleum

ether/AcOEt = 100:1), white solid (46.7 mg, 73% yield); ¹H **NMR** (400 MHz, CDCl₃) δ 7.57 (dd, J = 12.8, 9.1 Hz, 2H), 7.09 (dd, J = 8.9, 2.6 Hz, 1H), 7.04 (d, J = 2.6 Hz, 1H), 6.91 (d, J = 7.9 Hz, 2H), 3.88 (s, 3H), 3.86 – 3.79 (m, 2H); ¹³C NMR (100 MHz, $CDCl_3$) δ 155.7, 142.3, 130.0, 129.0, 128.1 127.7, 125.1 (q, J = 280.0 Hz), 119.2, 117.8, 106.4, 106.1, 55.3, 46.4 (q, J = 33.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -72.05 (t, J = 8.9 Hz, 3F); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -72.05 (s, 3F); HRMS (ESI) m/z calcd for C₁₃H₁₃F₃NO⁺

[M+H]⁺ 256.0944, found 256.0946.

4-methoxy-N-(2,2,2-trifluoroethyl)aniline

Purified by flash column chromatography (petroleum ether/AcOEt = 3i 50:1), yellow liquid (37 mg, 72% yield); ¹H NMR (400 MHz, CDCl₃) δ 6.80 (d, J = 9.0 Hz, 2H), 6.66 (d, J = 8.9 Hz, 2H), 3.75 (s, 3H), 3.70 (q, J = 8.9 Hz, 2H), 3.50(s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.1, 140.3, 125.2 (q, J = 280.0 Hz), 114.9, 114.7, 55.7, 47.1 (q, J = 33.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -72.27 (t, J = 9.0 Hz, 3F); ¹⁹F {¹H} NMR $(376 \text{ MHz}, \text{CDCl}_3) \delta$ -72.7 (s, 3F). (Consistent with previous reported values.¹)

N-(2,2,2-trifluoroethyl)dibenzo[b,d]thiophen-4-amine

Purified by flash column chromatography (petroleum ether, 100%), white solid (15.1 mg, 21% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.10

(dd, J = 5.8, 3.2 Hz, 1H), 7.84 (dd, J = 5.9, 3.1 Hz, 1H), 7.66 (d, J = 7.8 Hz, 1H), 7.43 (dd, J = 5.9, 3.1 Hz, 1H), 7.66 (d, J = 7.8 Hz, 1H), 7.43 (dd, J = 5.9, 3.1 Hz, 1H), 7.84 (dd, J = 5.9, 3.1 Hz, 1H), 7.84 (dd, J = 5.9, 3.1 Hz, 1H), 7.86 (dd, J = 5.9, 3.1 Hz, 1H), 7.84 (dd, J = 5.9, 3.1 Hz, 1H), 7.84 (dd, J = 5.9, 3.1 Hz, 1H), 7.86 (dd, J = 5.9, 3.1 Hz, 1H), 7.84 (dd, J = 5.9, 3.1 Hz, 1H), 7.86 (dd, J = 5.9, 3.1 Hz, 1H), 7.84 (dd, J = 5.9, 3.1 Hz, 1H), 7.86 (dd, J = 5.9, 3.1 Hz, 1H), 7.84 (dd, J = 5.9, 3.1 Hz, 1H), 7.84 (dd, J = 5.9, 3.1 Hz, 1H), 7.86 (dd, J = 5.9, 3.1 Hz, 1H), 7.84 (dd, J = 5.9, 3.1 Hz, 1H), 7.84 (dd, J = 5.9, 3.1 Hz, 1H), 7.86 (dd, J = 5.9, 3.1 Hz, 1H), 7.84 (dd, J = 5.9, 3.1 Hz, 1H), 7.86 (dd, J = 5.9, 3.1 Hz, 1H), 7.84 (dd, J =3.1 Hz, 2H), 7.36 (t, J = 7.8 Hz, 1H), 6.78 (d, J = 7.8 Hz, 1H), 4.03 – 3.82 (m, 3H); ¹³C NMR (400 MHz, CDCl₃) δ 141.0, 138.3, 136.8, 136.4, 126.8, 126.1, 125.9, 125.0 (q, J = 278.8 Hz), 124.7, 123.0, 122.1, 113.1, 108.2, 46.1 (q, J = 33.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -71.93 (t, J = 8.3 Hz, 3F; ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -71.93 (s, 3F); HRMS (ESI): calcd. for C₁₄H₁₁F₃NS⁺ [M+H]⁺ 282.05588, found 282.05591.

N-(2,2-difluoroethyl)-[1,1'-biphenyl]-4-amine

Purified by flash column chromatography (petroleum ether, 100%), white solid (48.1 mg, 81% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.58

-7.50 (m, 2H), 7.45 (J = 8.6 Hz, 2H), 7.39 (t, J = 7.7 Hz, 2H), 7.30 - 7.24 (m, 1H), 6.71 (d, J = 7.7 Hz, 2H), 7.30 - 7.24 (m, 1H), 7.45 (J = 7.7 Hz, 2H), 7.

8.6 Hz, 2H), 5.92 (tt, J = 56.2, 4.4 Hz, 1H), 3.92 (s, 1H), 3.55 (tdd, J = 14.3, 6.6, 4.2 Hz, 2H); ¹³C **NMR** (100 MHz, CDCl₃) δ 146.2, 140.9, 131.7, 128.7, 128.2, 126.4, 126.4, 114.5, (t, J = 241.8Hz), 113.4, 46.5 (t, J = 25.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -122.61 (dt, J = 56.3, 14.5 Hz, 2F); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -122.61 (s, 2F); HRMS (ESI) m/z calcd for C₁₄H₁₄F₂N⁺ [M+H]⁺ 234.10888, found 234.10902.

Purified by flash column chromatography (petroleum ether, 100%),

4-(tert-butyl)-N-(2,2-difluoroethyl)aniline

yellow liquid (45.8 mg, 86% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, J = 8.7 Hz, 2H), 6.60 (d, J = 8.7 Hz, 2H), 5.88 (tt, J = 56.1, 4.2 Hz, 1H), 3.76 (s, 1H), 3.49 $(td, J = 14.3, 4.3 Hz, 2H), 1.28 (s, 9H); {}^{13}C NMR (100 MHz, CDCl_3) \delta 144.4, 141.6, 126.3, 114.7$ (t, J = 241.8 Hz), 112.9, 46.8 (t, J = 26.2 Hz), 34.0, 31.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -122.57 (dt, J = 56.3, 14.3 Hz, 2F); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -122.57 (s, 2F); HRMS (ESI) m/z calcd for $C_{12}H_{18}F_2N^+$ [M+H]⁺ 214.1402, found 214.1400.

N-(2,2-difluoroethyl)aniline

Purified by flash column chromatography (petroleum ether, 100%), pale yellow liquid (36.6 mg, 93% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.21 (dd,

J = 8.5, 7.3 Hz, 2H), 6.83 - 6.74 (m, 1H), 6.66 (m, 2H), 5.91 (tt, J = 56.1, 4.0 Hz, 2H), 3.85 (s, 1H), 3.53 (tdd, J = 14.4, 6.7, 4.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 129.5, 118.7, 114.5 (t, J = 241.2 Hz), 113.1, 46.5 (t, J = 26.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -122.67 (dt, J = 56.0, 14.4 Hz, 2F); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -122.67 (s, 2F). HRMS (ESI) m/z calcd for $C_8H_9BrF_2N^+$ [M+H]⁺, 158.0776, found 158.0772.

4-bromo-N-(2,2-difluoroethyl)aniline

Purified by flash column chromatography (petroleum ether, 100%), yellow liquid (54.6 mg, 92% yield); ¹H NMR (400 MHz, CDCl₃) δ

7.28 (d, J = 8.8 Hz, 2H), 6.53 (d, J = 8.8 Hz, 2H), 5.89 (tt, J = 55.9, 14.2 Hz, 1H), 3.89 (s, 1H), 3.50 (td, J = 14.5, 4.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 132.2, 114.7, 114.3 (t, J =242.5 Hz), 110.4, 46.4 (t, J = 26.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -122.64 (dt, J = 56.2, 14.5 Hz, 2F); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -122.64 (s, 2F); HRMS (ESI) m/z calcd for $C_8H_9BrF_2N^+$ [M+H]⁺ 235.9881, found 235.9883.

N-(2,2-difluoroethyl)-3-nitroaniline

Purified by flash column chromatography (petroleum ether / Dichloromethane = 5:1), yellow solid (34.7 mg, 69% yield); ¹H

Purified by flash column chromatography (petroleum ether / EtOAc =

NMR (400 MHz, CDCl₃) δ 7.60 (dd, J = 8.1, 2.0 Hz, 1H), 7.48 (t, J = 2.3 Hz, 1H), 7.33 (t, J = 8.1 Hz, 1H), 6.96 (dd, J = 8.1, 2.4 Hz, 1H), 5.96 (tt, J = 55.6, 3.9 Hz, 1H), 4.29 (s, 1H), 3.63 (tdd, J = 14.6, 6.7, 4.0 Hz, 2H); ¹³C **NMR** (100 MHz, CDCl₃) δ 149.4, 147.8, 130.1, 119.1, 114.1 (t, J = 242.5 Hz), 113.3, 106.7, 46.0 (t, J = 25.8 Hz); ¹⁹F **NMR** (376 MHz, CDCl₃) δ -122.68 (dt, J = 55.6, 14.4 Hz, 2F); ¹⁹F {¹H} **NMR** (376 MHz, CDCl₃) δ -122.68 (s, 2F); **HRMS (ESI)** m/z calcd for C₈H₉F₂N₂O₂⁺ [M+H]⁺ 203.0627, found 203.0628.

CN 4-((2,2-difluoroethyl)amino)benzonitrile

10:1), white solid (36.3 mg, 80% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.9 Hz, 2H), 6.66 (d, J = 8.8 Hz, 2H), 5.93 (tt, J = 55.5, 4.0 Hz, 1H), 4.51 (s, 1H), 3.60 (tdd, J = 14.8, 6.5, 4.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.3, 133.9, 120.0, 114.0 (t, J = 242.8 Hz), 112.6, 100.4, 45.5 (t, J = 25.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -122.52 (dt, J = 55.9, 14.4 Hz, 2F); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -122.52 (s, 2F). (Consistent with previous reported values.²)_o

ethyl 4-((2,2-difluoroethyl)amino)benzoate HF_2C HF_2C

 $HF_{2}C \longrightarrow HF_{2}C \longrightarrow HF_{$

(s, 1H), 3.62 (tdd, J = 14.6, 6.7, 4.0 Hz, 2H), 2.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.5, 151.0, 130.8, 127.9, 114.1 (t, J = 243.1 Hz), 111.8, 45.6 (t, J = 26.2 Hz), 26.1; ¹⁹F NMR (376) MHz, CDCl₃) δ -122.50 (dt, J = 55.8, 14.4 Hz, 2F); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -122.50 (s, 2 F); **HRMS (ESI)** m/z calcd for $C_{10}H_{12}F_2NO^+$ [M+H]⁺ 200.0881, found 200.0884.

(400 MHz, CDCl₃) δ 7.55 (dd, J = 11.9, 8.7 Hz, 2H), 7.13 – 7.00 (m, 2H), 6.93 – 6.82 (m, 2H), 5.97 (tt, J = 56.2, 4.2 Hz, 1H), 3.87 (s, 3H), 3.60 (td, J = 14.4, 4.2 Hz, 2H); ¹³C NMR (100 MHz, $CDCl_3$) δ 155.6, 142.9, 130.1, 128.8, 128.2, 127.6, 119.1, 118.1, 114.5 (t, J = 241.9 Hz), 106.2, 105.8, 55.5, 46.7 (t, J = 26.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -122.49(dt, J = 55.7, 14.6 Hz, 2F); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -122.49 (s, 2F); HRMS (ESI) m/z calcd for $C_{13}H_{14}F_2NO^+$ [M+H]⁺ 238.1038, found 238.1036.

N-(2,2-difluoroethyl)-4-methoxyaniline

Purified by flash column chromatography (petroleum ether / EtOAc = 50:1), yellow liquid (46.6 mg, 71% yield); ¹H NMR (400 MHz, CDCl₃) δ 6.80 (d, J = 9.1 Hz, 2H), 6.63 (d, J = 9.1 Hz, 2H), 5.91 (tt, J = 56.2, 4.1 Hz, 1H), 3.75 (s, 3H), 3.62 (s, 1H), 3.47 (td, J = 14.4, 4.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 153.0, 140.8, 115.0, 114.8 (t, J = 242.0 Hz), 114.6, 55.8, 47.5 (t, J = 25.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -122.76 (dt, J = 56.4, 14.4 Hz, 2F); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -122.76 (s, 2F). (Consistent with previous reported values.²)

N-(2,2-difluoroethyl)dibenzo[b,d]thiophen-4-amine

Purified by flash column chromatography (petroleum ether, 100%), white solid (24 mg, 36% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.12 (dd, J = 6.0, 3.2 Hz, 1H), 7.86 (dd, J = 5.8, 3.2 Hz, 1H), 7.66 (d, J = 7.8 Hz, 1H), 7.45 (dd, J = 5.9, 3.2 Hz, 1H), 7.45 (d3.2 Hz, 2H, 7.38 (t, J = 7.8 Hz, 1H), 6.02 (tt, J = 56.0, 4.2 Hz, 1H), 3.85 (s, 1H), 3.79 - 3.65 (m, 3.28 Hz, 10.28 Hz,2H); ¹³C NMR (100 MHz, CDCl₃) δ 141.5, 138.4, 136.8, 136.4, 126.8, 126.1, 125.9, 124.6, 123.0, 122.1, 114.5 (t, J = 242.1 Hz), 112.8, 107.8, 46.6 (t, J = 26.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -122.26 (tt, J = 56.1, 14.1 Hz, 2F); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -122.26 (s, 2F); HRMS (ESI) m/z calcd for $C_{14}H_{12}F_2NS^+$ [M+H]⁺ 264.06530, found 264.06546.

NC

0

N-(2,2,3,3,3-pentafluoropropyl)-[1,1'-biphenyl]-4-amine

Purified by flash column chromatography (petroleum ether, 100%), white solid (51.1 mg, 68% yield); ¹H NMR (400 MHz, CDCl₃) δ

7.57 – 7.51 (m, 2H), 7.47 (d, J = 8.6 Hz, 2H), 7.40 (t, J = 7.7 Hz, 2H), 7.31 – 7.26 (m, 1H), 6.76 (d, J = 8.6 Hz, 2H), 3.94 (t, J = 6.5 Hz, 1H), 3.86 (td, J = 14.6, 6.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 145.7, 140.8, 132.2, 128.7, 128.1, 126.5, 126.5, 119.0 (qt, J = 286.0, 35.3 Hz), 113.9 (tq, J = 254.4, 36.6 Hz), 113.5, 44.21 (t, J = 23.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -83.92 (s, 3F), -121.85 (t, J = 14.6 Hz, 2F); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -83.92 (s, 3F), -121.85 (s, 2F); HRMS (ESI) m/z calcd for C₁₅H₁₃F₅N⁺ [M+H]⁺ 302.09627, found 302.09662.

4-((2,2,3,3,3-pentafluoropropyl)amino)benzonitrile

Purified by flash column chromatography (petroleum ether / EtOAc = 15:1), white solid (44 mg, 70% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.8 Hz, 2H), 6.70 (d, J = 8.7 Hz, 2H), 4.44 (t, J = 7.0 Hz, 1H), 4.05 – 3.67 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.8, 133.8, 119.7, 118.8 (qt, J = 286.1, 35.1 Hz), 113.5 (tq, J = 254.7, 36.8 Hz), 112.9, 101.3, 43.2 (t, J = 24.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -83.98 (s, 3F), -121.74 (t, J = 14.7 Hz, 2F); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -83.98 (s, 3F), -121.74 (t, J = 14.7 Hz, 2F); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -83.98 (s, 3F), -121.74 (s, 2F). (Consistent with previous reported values.²)

4-methoxy-N-(2,2,3,3,3-pentafluoropropyl)aniline

11 Purified by flash column chromatography (petroleum ether / EtOAc = 50:1), yellow liquid (39.1mg, 61% yield); ¹H NMR (400

MHz, CDCl₃) δ 6.80 (d, J = 8.9 Hz, 2H), 6.65 (d, J = 8.9 Hz, 2H), 3.79 –3.72 (m, 5H), 3.61 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.3, 140.4, 119.0 (qt, J = 286.0, 35.4 Hz), 115.0, 114.8, 114.0 (tq, J = 256.1, 36.5 Hz), 55.7, 45.4 (t, J = 23.7 Hz); ¹⁹F NMR (CDCl₃, 376 MHz, 25 °C) δ -83.98 (s, 3F), -121.94 (t, J = 29.8 Hz, 2F); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -83.98 (s, 3F), -121.94 (s, 2F). (Consistent with previous reported values.²)

Ph 12a N CF₂CF₂CF₃

N-(2,2,3,3,4,4,4-heptafluorobutyl)-[1,1'-biphenyl]-4-amine

Purified by flash column chromatography (petroleum ether, 100%), white solid (57 mg, 65% yield); ¹H NMR (400 MHz,

CDCl₃) δ 7.53 (dd, J = 8.3, 1.3 Hz, 2H), 7.47 (d, J = 8.6 Hz, 2H), 7.40 (dd, J = 8.4, 7.0 Hz, 2H), 7.28 (t, J = 7.4 Hz, 1H), 6.77 (d, J = 8.6 Hz, 2H), 4.08 – 3.72 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 140.9, 132.2, 128.7, 128.1, 126.5, 126.5, 117.8 (qt, J = 286.3, 33.7 Hz), 115.8 (tt, J = 254.6, 30.5 Hz), 113.5, 109.5 (m), 44.2 (t, J = 23.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -80.68 (t, J = 9.3 Hz, 3F), -118.99 (dqd, J = 20.2, 9.1, 5.0 Hz, 2F), -127.57 (d, J = 4.2 Hz, 2F); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -80.68 (t, J = 9.3 Hz, CDCl₃) δ -80.68 (t, J = 9.3 Hz, 3F), -118.99 (dqd, J = 20.2, 9.1, 5.0 Hz, 2F), -127.57 (d, J = 4.2 Hz, 2F); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -80.68 (t, J = 9.3 Hz, 3F), -118.91 – -119.07 (m, 2F), -127.46 – -127.64 (m, 2F); HRMS (ESI) m/z calcd for C₁₆H₁₃F₇N⁺ [M+H]⁺ 352.09307, found 352.09332.

NC 12f N CF₂CF₂CF₃

4-((2,2,3,3,4,4,4-heptafluorobutyl)amino)benzonitrile

Purified by flash column chromatography (petroleum ether / EtOAc = 15:1), white solid (49.2 mg, 65% yield); ¹H NMR

(CDCl₃, 400 MHz, 25 °C) δ 7.49 (d, J = 8.8 Hz, 2H), 6.70 (d, J = 8.8 Hz, 2H), 4.40 (s, 1H), 3.92 (tdt, J = 15.2, 7.1, 1.3 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz, 25 °C) δ 149.9, 133.8, 119.7, 117.6 (qt, J = 288.5, 33.8 Hz), 115.4 (tt, J = 256.7, 30.7 Hz), 112.9, 109.5(m), 101.2, 43.2 (t, J = 23.7 Hz); ¹⁹F NMR (CDCl₃, 376 MHz, 25 °C) δ -80.64 (t, J = 9.3 Hz, 3F), -118.87 (dtt, J = 15.0, 9.2, 5.6 Hz, 2F), -127.52 (d, J = 5.4 Hz, 2F); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -80.64 (t, J = 9.4 Hz, 3F), -118.87 (ttd, J = 9.4, 5.6, 2.7 Hz, 2F), -125.44 – -128.88 (m, 2F); HRMS (ESI) m/z calcd for C₁₁H₆F₇N₂⁻⁻ [M-H]⁻⁻ 299.04247, found 299.04263.

N-(2,2,3,3,4,4,4-heptafluorobutyl)-4-methoxyaniline

Purified by flash column chromatography (petroleum ether / EtOAc = 50:1), yellow liquid (47.8mg, 62% yield); ¹H NMR

(CDCl₃, 400 MHz, 25 °C) δ 6.80 (d, J = 8.9 Hz, 2H), 6.66 (d, J = 8.9 Hz, 2H), 3.81 (dt, J = 15.2, 5.0 Hz, 2H), 3.75 (s, 3H), 3.62 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, 25 °C) δ 153.3, 140.4,117.7 (qt, J = 286.7, 34.5 Hz), 115.9 (tt, J = 255.2, 30.4 Hz), 114.9, 114.8, 109.1 (m), 55.7, 45.4 (t, J = 23.3 Hz); ¹⁹F NMR (CDCl₃, 376 MHz, 25 °C) δ -80.75 (t, J = 9.5 Hz, 3F), -119.10 (tddd, J = 15.2, 11.6, 7.4, 4.0 Hz, 2F), -127.65 (d, J = 4.8 Hz, 2F); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -80.75 (t, J = 9.3 Hz, 3F), -116.32 – -121.56 (m, 2F), -127.65 (d, J = 4.8 Hz, 2F). (Consistent with previous reported values.³)

4. X-ray structure of 3f and 11b Compound 3f (CCDC 1853090)

Compound 11b (CCDC 1853088)

5. Refeence

1. Luo, H.; Wu, G.; Zhang, Y.; Wang, J., Silver(I)-Catalyzed N-Trifluoroethylation of Anilines and O-Trifluoroethylation of Amides with 2,2,2-Trifluorodiazoethane. *Angew. Chem. Int. Ed. Engl.* **2015**, *54* (48), 14503-7.

2. Brusoe, A. T.; Hartwig, J. F., Palladium-Catalyzed Arylation of Fluoroalkylamines. *J. Am. Chem. Soc.* **2015**, *137* (26), 8460-8.

3. Berzina, B.; Sokolovs, I.; Suna, E., Copper-Catalyzed para-Selective C–H Amination of Electron-Rich Arenes. *ACS Catalysis* **2015**, *5* (11), 7008-7014.

 1H NMR (CDCl_3, 400 MHz) of 3b $\begin{matrix} 7.25\\ 7.23\\ 6.65\\ 6.63 \end{matrix}$ 3.83 3.75 3.75 3.75 3.74 3.74 3.71 3.71 3.71 å -14000 -13000 -12000 -11000 - 10000 F₃C N H -9000 -8000 - 7000 - 6000 - 5000 4000 - 3000 -2000 - 1000 -0 1.99<u>1</u> 0.90 110 110 110 Ľ. 2: 03T -1000 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 f1 (ppa) 3.5 3. 0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 ^{13}C NMR (CDCl_3, 100 MHz) of 3b129.29 126.51 126.22 123.73 120.95 - 112.86 143.84
141.93 F20000 46.81 46.47 46.14 45.81 33.96 31.50 - 19000 18000 17000 -16000 -15000 -14000 F₃C N 13000 12000 -11000 - 10000 9000 .8000 7000 6000 5000 4000 - 3000 2000 1000 -0 -1000 170 160 150 110 100 90 80 fl (ppm) 60 50 40 30 20 140 120 70 10 0 130 -10

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -111 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -10 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

 50
 40
 30
 20
 10
 -10
 -20
 -30
 -40
 -50
 -60
 -70
 -80
 -90
 -100
 -110
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -110 (ppm)

S29

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

S36

 50
 40
 30
 20
 10
 -10
 -20
 -30
 -60
 -70
 -80
 -90
 -100
 -110
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10
 -10

-60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm) 0 -10 -20 -30 -40 -50

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -111 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (pm)