Supporting information for

H- and J-aggregates formed from a nontraditional π -gelator depending on the solvent polarity for the detection of amine vapors

Solvents	$\lambda_{abs}\!/nm$	$\lambda_{em}\!/nm$	Stokes shift/ cm ⁻¹	FWHM ^a /nm	${\pmb \Phi}_{\!F}^{{ m b}}$
Cyclohexane	357, 485	526	1607	90	0.38
Toluene	373, 488	590	3542	93	0.25
Diphenyl ether	372, 496	628	4237	108	0.04
Chloroform	371, 491	652	5029	131	0.01

Table S1 Photophysical data of TCbzB in different solvents.

^a Full width at half maxima

^b Fluorescence quantum yield determined by a standard method with Fluorescein in 0.1 N NaOH ($\Phi_F = 0.88$, $\lambda_{ex} = 460$ nm) as reference.

Figure S1 Photographs of **TCbzB** in *o*-dichlorobenzene/cyclohexane (v/v = 1/5) during the formation of red organogel under daylight.

Figure S2 Photographs of **TCbzB** in *o*-dichlorobenzene/cyclohexane (v/v = 1/2) during the formation of orange organogel under daylight.

Figure S3 Tempreature-dependent UV-vis absorption (a, b) and fluorescence emission spectra (c, d) of **TCbzB** in toluene/cyclohexane (v/v = 1/2) (a, c), chlorobenzene/cyclohexane (v/v = 1/2) (b, d) during gelation. Dash line: the electronic spectra of **TCbzB** in xerogels. Insets in c-d: Photos of **TCbzB** in solutions (left vial) and in gel states (right vial) under 365 nm light.

Figure S4 XRD patterns of the xerogels of **TCbzB** gained in *o*-dichlorobenzene /cyclohexane (v/v = 1/2, black), *o*-dichlorobenzene/cyclohexane (v/v = 1/5, red), toluene/cyclohexane (v/v = 1/2, blue) and chlorobenzene/cyclohexane (v/v = 1/2, green).

Figure S5 The fluorescence emission (a, c $\lambda_{ex} = 360$ nm) and UV-vis absorption (b, d) spectra of **TCbzB** in toluene (2.0 ×10⁻⁶ M) upon adding different amount of *n*-propylamine (a, b) and aniline (c, d).

Figure S6 SEM images of the xerogels of **TCbzB** obtained from toluene/cyclohexane (v/v = 1/2) (a) and chlorobenzene/cyclohexane (v/v = 1/2) (b).

Figure S7 Dynamic strain sweep measurement (G': storage modulus; G": loss modulus) of the organogels formed in *o*-dichlorobenzene/cyclohexane (v/v = 1/2) (a) and in *o*-dichlorobenzene/cyclohexane (v/v = 1/5) (b).

Figure S8¹¹B NMR (128.3 MHz) spectra of compound **TCbzB** (a) and after adding *n*-propyl amine (b) and aniline (c).

Figure S9 ¹H NMR (500 MHz, CDCl₃) spectra of compound **3**.

Figure S10¹³C NMR (100 MHz, CDCl₃) spectra of compound 3.

Figure S11. MALDI/TOF MS spectrum of compound 3.

Figure S12 ¹H NMR (500 MHz, CDCl₃) spectra of **TCbzB**.

Figure S13¹³C NMR (125 MHz, CDCl₃) spectra of TCbzB.

Figure S14 MALDI/TOF MS spectrum of TCbzB.