Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Experimental Evidence for the Formation of Phenoxenium Ions During Iodine(III)-Mediated Oxidative Dearomatization of Phenols

Ting Tang and Andrew M. Harned

Texas Tech University, Department of Chemistry & Biochemistry, 1204 Boston Ave, Lubbock, Texas 79409-1061, United States

SUPPORTING INFORMATION

Ма	terial	s and Methods	S2					
1.0	Expe	rimental Procedures–Preparative Reactions	S4					
	1.1	Synthesis of 4,4-dimethoxycyclohexa-2,5-dien-1-one	S4					
	1.2	General procedure for the preparation of 4'-substituted-4-aryl-para-quinols	S4					
	1.3	General procedure for the synthesis of 4'-subsituted-[1,1'-biphenyl]-4-ol	S6					
	1.4	Synthesis of 4'-hydroxy-[1,1'-biphenyl]-4-carboxylic acid	S7					
	1.5	Synthesis of ethyl 4'-hydroxy-[1,1'-biphenyl]-4-carboxylate (5f)	S7					
	1.6 (General procedure for the preparative oxidative dearomatization of 4'-subsituted piphenyl]-4-ols	-[1,1'- S8					
2.0	Expe	rimental Procedures–Competition Experiments	S10					
	2.1.1	General procedure for each of the competition experiments	S10					
	2.1.2	Procedure for the competition experiment of 4-phenylphenol	S10					
	2.2	HPLC data for analyzing the relative ratios of starting materials	S11					
	2.3	Representative HPLC traces	S14					
3.0	Addi	tional Information for Hammett Plots	S31					
4.0	Addi	tional Computational Experiments Concerning the Mechanism	S33					
5.0	Fina	Coordinates and Energies for Fully Optimized Structures	S41					
6.0 Copies of NMR Spectra S72								

Materials and Methods

Tetrahydrofuran (THF) was dried by passage through a column of activated molecular sieves. Methanol was purchased from Fisher Scientific and used without further purification. 4-phenylphenol (**5a**), 4'-bromo-(1,1'-biphenyl)-4-ol (**5e**), 4'-hydroxy-4-biphenylcarbonitrile were purchased from Sigma-Aldrich. All other chemicals were purchased from commercial sources and used as received.

Unless otherwise stated, reactions were monitored using thin-layer chromatography (TLC) using glass plates precoated with silica gel XHL w/ UV254 (250 mm) purchased from *SILICYCLE*® and visualized by UV light. Silica gel (particle size 32–63 mm) purchased from *SILICYCLE*® was used for flash column chromatography. Analytical achiral HPLC was performed with an Agilent ZORBAX XDB-CN, 4.6 X 150 mm, 3.5 μ m at 254.4 mm.

¹H and ¹³C NMR spectra are reported relative to the residual solvent peak (δ 7.26 and δ 77.00 for ¹H and ¹³C in CDCl₃; δ 3.31 and δ 49.00 for ¹H and ¹³C in CD₃OD), or tetramethylsilane (δ 0.00 for ¹H) when the residual solvent peak is obscured. Data for ¹H NMR spectra are reported as follows: (instrument field strength, solvent) chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). Multiplicity is described using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Data for ¹³C NMR spectra are reported in terms of chemical shift (δ ppm). Some reported spectra include minor solvent impurities of water (δ 1.56 ppm) and/or silicon grease (δ 0.07 ppm), which do not impact product assignments.

General computational details and references

Calculations were performed using the *Gaussian 09* suite¹ of electronic structure programs. All geometries were fully optimized at the M06-2X level² of density functional theory.³ The 6-31+G(d) basis set⁴ was used for C, H, O, F and Br. For iodine, the LANL2DZdp basis set⁵ was used. An ultrafine grid density was used for numerical integration.⁶ Unless otherwise noted, optimizations were performed with no frozen coordinates. Energy minima and transition states were identified though frequency analysis. In order to account for solvation effects, the SMD solvation model⁷ for CH₃OH was employed during geometry optimizations. Graphics were generated using CYLview, 1.0b.⁸

- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09*, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2013.
- (2) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
- (3) Cramer, C. J. Essentials of Computational Chemistry: Theories and Models, 2nd ed.; Wiley: West Sussex, 2004.
- (4) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. *Ab Initio Molecular Orbital Theory*; Wiley: New York, 1986.
- (5) Check, C. E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S. *J. Phys. Chem. A* **2001**, *105*, 8111.
- (6) Wheeler, S. E.; Houk, K. N. J. Chem. Theory Comput. 2010, 6, 395.
- (7) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.
- (8) Legault, C. Y., Université de Sherbrooke, 2009 (http://www.cylview.org).

1.0 Experimental Procedures–Preparative Reactions

1.1 Synthesis of 4,4-dimethoxycyclohexa-2,5-dien-1-one

(Diacetoxyiodo)benzene (5.708g, 17.72 mmol, 1.1 eq.) was added in the solution of 4methoxyphenol (2g, 16.11 mmol, 1 eq.) in methanol (80 mL) at 0 °C in an ice bath. The reaction was allowed to warm to room temperature and stirred for 3 hours. The reaction mixture was then quenched by 10% sodium thiosulfate solution, extracted with EtOAc (3X) and dried over Na₂SO₄. After concentration in vacuo, the crude residue was purified by flash column chromatography to afford yellow oil (2.46g, 99% yield). ⁹

¹**H NMR** (400 MHz, CDCl₃) δ 6.82 (not first order doublet, *J* = 10.4 Hz, 2H), 6.28 (not first order doublet, *J* = 10.4 Hz, 2H), 3.38 (s, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 184.97, 143.16, 129.83, 92.33, 50.24.

1.2 General procedure for the preparation of 4'-substituted-4-aryl-para-quinols

The 4-substituted-bromobenzene (3.89 mmol, 1.2 eq.) was loaded into a flame dried round bottom flask under argon and dissolved in dry THF (4 mL) at -78 °C. To this solution was added dropwise dry TMEDA (0.73 mL, 4.86 mmol, 1.5 eq.) followed by n-BuLi (3.04 mL, 4.86 mmol, 1.5 eq.) at -78° C and the reaction was stirred at that temperature for 1 hour. 4,4-dimethoxycyclohexa-2,5-dien-1-one (500 mg, 3.24 mmol, 1 eq.) was then added dropwise to the solution and stirred at -78° C for 2 hours. The reaction was allowed to warm up to room temperature and stirred for overnight. The reaction was then quenched by saturated NH₄Cl solution and the aqueous phase was extracted with EtOAc (3X). The combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. The crude residue was purified by flash column chromatography to afford the desired product.

(9) Hammill, J. T.; Contreras-Garcia, J.; Virshup, A. M.; Beratan, D.; Yang, W.; Wipf, P. *Tetrahedron* **2010**, *66*, 5852–5862.

1-hydroxy-4'-methyl-[1,1'-biphenyl]-4(1*H*)-one ¹⁰

White solid (605.4 mg, 93.2% yield) ¹**H NMR** (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.0 Hz, 2H), 7.19 (d, *J* = 7.9 Hz, 2H), 6.89 (d, *J* = 10 Hz, 2H), 6.22 (d, *J* = 10 Hz, 2H), 2.35 (s, 3H), 2.33 (s, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 185.94, 151.15, 138.32, 135.67, 129.61, 126.63, 125.17, 70.87, 21.05.

1-hydroxy-4'-methoxy-[1,1'-biphenyl]-4(1*H*)-one¹¹

White solid (544 mg, 77.6% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.39 (not first order doublet, *J* = 8.92 Hz, 2H), 6.92-6.87 (m, 4H), 6.20 (not first order doublet, *J* = 10.04 Hz, 2H), 3.81 (s, 3H), 2.56 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 186.01, 159.57, 151.36, 130.51, 126.57, 126.41, 114.26, 70.59, 55.31.

4'-fluoro-1-hydroxy-[1,1'-biphenyl]-4(1H)-one

White solid (580.1 mg, 87.6% yield). ¹H NMR (400 MHz, CDCl₃) $\delta \delta 7.50 - 7.42$ (m, 2H), 7.11 - 7.02 (m, 2H), 6.87 (not first order doublet, J = 10.08 Hz, 2H), 6.24 (not first order doublet, J = 10.08 Hz, 2H), 2.47 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 185.66, 162.63 (d, $J_{CF} = 247.7$ Hz), 150.75, 134.35 (d, $J_{CF} = 3.2$ Hz), 127.19 (d, $J_{CF} = 8.4$ Hz), 126.85, 115.81 (d, $J_{CF} = 21.7$ Hz), 70.57. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.42 (tt, J = 5.4, 8.9 Hz). HRMS (ESI-) 203.0508 calc'd for C₁₂H₈FO₂⁻, 203.0508 found

1-hydroxy-4'-(trifluoromethyl)-[1,1'-biphenyl]-4(1H)-one

Light yellow solid (704.8 mg, 85.5% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.6 Hz, 2H), 7.61 (d, *J* = 8.6 Hz, 2H), 6.88 (not first order doublet, *J* = 10.08 Hz, 2H), 6.28 (not first order doublet, *J* = 10.08 Hz, 2H) 2.48 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 185.57, 150.27, 142.59, 130.61 (q, *J*_{CF} = 32.6 Hz), 128.16, 125.88 (q, *J*_{CF} = 3.78 Hz), 125.84, 123.86 (d, *J*_{CF} = 272.2 Hz), 70.78 ¹⁹F NMR (376 MHz, CDCl₃) δ –62.55. HRMS (ESI+) 277.0452 calc'd for C₁₃H₉F₃O₂Na⁺, 277.0451 found

- (10) Yakura, T.; Omoto, M.; Yamauchi, Y.; Tian, Y.; Ozono. A. *Tetrahedron* **2010**, *66*, 5833–5840.
- (11) Capparelli, M. P.; DeSchepper, R. E.; Swenton, J. S. J. Org. Chem. 1987, 52, 4953–4961.

1.3 General procedure for the synthesis of 4'-subsituted-[1,1'-biphenyl]-4-ol

Zinc (326.9 mg, 5 mmol, 5 eq.) was added to a solution of the corresponding *para*-quinol (1 mmol, 1 eq.) in acetic acid (5 mL) at 0 °C in an ice bath. The reaction was allowed to warm to room temperature and stirred for 4 hours. The reaction mixture was then filtered through a pad of celite and wached with EtOAc. After concentration in vacuo, the residue was washed by saturated NaHCO₃ solution to neutralize the acetic acid. The aqueous layer was then extracted with EtOAc (3X) and dried over Na₂SO₄. After concentration in vacuo, the residue was purified by flash column chromatography to afford the desired product.

4'-methyl-[1,1'-biphenyl]-4-ol (5a) 12

White solid (quantitative yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.41 (m, 4H), 7.23 (d, *J* = 7.7 Hz, 3H), 6.91 (not first order doublet, *J* = 8.6 Hz, 2H), 4.74 (s, 1H), 2.39 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 154.72, 137.84, 136.41, 134.00, 129.43, 128.18, 126.54, 115.57, 21.02.

4'-methoxy-[1,1'-biphenyl]-4-ol (5b) ¹²

White solid (180.5 mg, 90.1% yield). ¹**H NMR** (400 MHz, CD₃OD) δ 7.45 (not first order doublet, *J* = 8.88 Hz, 2H), 7.38 (not first order doublet, *J* = 8.68 Hz, 2H), 6.94 (not first order doublet, *J* = 8.88 Hz, 2H), 6.82 (not first order doublet, *J* = 8.56 Hz, 2H), 3.81 (s, 3H).

¹³**C** NMR (101 MHz, CD₃OD) δ 160.02, 157.57, 134.99, 133.62, 128.57, 128.39, 116.52, 115.10, 55.67.

4'-fluoro-[1,1'-biphenyl]-4-ol (5d) ¹³

White solid (174.7 mg, 92.8 % yield). ¹**H NMR** (400 MHz, CD₃OD) δ 7.52 (m, 2H), 7.41 (d, *J* = 8.36 Hz, 2H), 7.10 (not first order doublet, *J* = 8.7 Hz, 2H), 6.84 (not first order doublet, *J* = 8.72, 2H).

¹³**C NMR** (100 MHz, CD₃OD) δ 163.30 (d, J_{CF} = 243.7 Hz), 158.16, 138.76 (d, J_{CF} = 3.2 Hz), 132.8, 129.09 (d, J_{CF} = 7.9 Hz), 128.96, 116.63, 116.28 (d, J_{CF} = 21.6 Hz).

¹⁹**F NMR** (376 MHz, CD₃OD) δ –119.3 (tt, *J* = 5.3, 9.3 Hz).

- (12) Edwards, G. A.; Trafford, M. A.; Hamilton, A. E.; Buxton, A. M.; Bardeaux, M. C.; Chalker, J. M. *J. Org. Chem.* **2014**, *79*, 2094–2104.
- (13) Sandgren, V.; Back, M.; Kvarnstrom, I.; Dahlgren, A. The Open Medicinal Chemistry Journal. **2013**, *7*, 1–15.

4'-(trifluoromethyl)-[1,1'-biphenyl]-4-ol (5g) ¹⁴

White solid (220.7 mg, 92.6 % yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.96 Hz, 2H), 7.65 (d, *J* = 8.68 Hz, 2H), 7.51 (not first order doublet, *J* = 8.68 Hz, 2H), 6.94 (not first order doublet, *J* = 8.72 Hz, 2H), 4.80 (s, 1H).

¹³**C NMR** (101 MHz, CDCl₃,) δ 155.69, 144.14, 132.51, 128.68(q, J_{CF} = 32.16 Hz), 128.61, 126.85, 125.67 (q, J_{CF} = 3.5Hz), 125.68 (q, J_{CF} = 271.83) 115.87.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.17.

1.4 Synthesis of 4'-hydroxy-[1,1'-biphenyl]-4-carboxylic acid

Dimethoxyethane (7 ml) was added to a solution of the 4'-hydroxy-4-biphenylcarbonitrile (300 mg, 1.54 mmol) in 50% of H_2SO_4 (5 mL) and refluxed overnight. The reaction was allowed to cool to room temperature and concentrated in vacuo. The reaction mixture was carefully quenched with 10% NaOH solution while in an ice bath and when bubbling ceased it was washed with saturated NaHCO₃ solution and extracted with EtOAc (3x). The remaining aqueous layer was then acidified with 10% HCl solution and extracted with EtOAc (3x). The organic layer drained, dried over Na₂SO₄ and concentrated in vacuo. The extracted product was used in next step without further purification.

1.5 Synthesis of ethyl 4'-hydroxy-[1,1'-biphenyl]-4-carboxylate (5f)

Concentrated H_2SO_4 (0.5 mL) was added to a solution of the crude 4'-hydroxy-[1,1'-biphenyl]-4carboxylic acid dissolved in EtOH (10 mL). The mixture was then refluxed overnight. The reaction was cooled to room temperature and concentrated in vacuo. Saturated NaHCO₃ solution was added slowly to the mixture and extracted with EtOAc (3x). The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column chromatography to afford a white solid. (215.1 mg, 57.8% yield over 2 steps).¹⁵

- (14) Chadwick, J.; Amewu, R. K.; Marti, F.; Garah, F. B. E.; Sharma, R.; Berry, N. G.; Stocks, P. A; Saward, H. B.; Wittlin, S.; Ward, S. A.; O'Neill, P. M. *ChemMedChem*, **2011**, *6*, 1357–1361.
- (15) Kang, S. H,; Jang, K. S.; Theato, P.; Zentel, R.; Chang, J. Y. *Macromolecules* **2007**, *40*, 8349–8354.

¹**H NMR** (400 MHz, CDCl₃) δ 8.09 (not first order doublet, J = 8.64 Hz, 2H), 7.61 (not first order doublet, J = 8.64 Hz, 2H), 7.53 (not first order doublet, J = 8.72 Hz, 2H), 6.94 (not first order doublet, J = 8.72 Hz, 2H), 5.11 (s, 1H), 4.40 (q, J = 7.1 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 167.08, 156.14, 145.26, 132.36, 130.08, 128.56, 128.30, 126.42, 115.86, 61.16, 14.30.

1.6 General procedure for the preparative oxidative dearomatization of 4'-subsituted-[1,1'biphenyl]-4-ols

4'-Subsituted-[1,1'-biphenyl]-4-ol (0.2 mmol, 1 eq.) and (diacetoxyiodo)benzene (70.9 mg, 0.22 mmol, 1.1 eq.) was dissolved in methanol (2 mL) and stirred for 3 hours at room temperature. The reaction mixture was then quenched with 10% sodium thiosulfate solution, extracted with EtOAc (3X) and dried over Na₂SO₄. After concentration in vacuo, the residue was purified by flash column chromatography to afford the desired product.

The preparation of compounds 1-methoxy-[1,1'-biphenyl]-4(1*H*)-one (**6a**), 4'-bromo-1-methoxy-[1,1'-biphenyl]-4(1*H*)-one (**6e**), and 1,4'-dimethoxy-[1,1'-biphenyl]-4(1*H*)-one (**6b**) using a similar procedure has been reported in the literature.¹⁶

1-methoxy-4'-methyl-[1,1'-biphenyl]-4(1*H*)-one (6a)

OMe

Incomplete reaction after 3 hrs. Light yellow solid (22 mg, 51.4% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.33 (not first order doublet, *J* = 8.28 Hz, 2H), 7.17 (d, *J* = 8.12 Hz, 2H), 6.79 (not first order doublet, *J* = 10.16 Hz, 2H), 6.39 (not first order doublet, *J* = 10.16 Hz, 2H), 3.42 (s, 3H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 185.66, 150.70, 138.21, 135.19, 129.88,

¹³**C NMR** (101 MHz, CDCl₃) δ 185.66, 150.70, 138.21, 135.19, 129.88, 129.46, 125.57, 76.43, 52.83, 21.05.

HRMS (ESI+) 237.0892 calc'd for $C_{14}H_{14}O_2Na^{+}$, 237.0892 found.

4'-fluoro-1-methoxy-[1,1'-biphenyl]-4(1*H*)-one (6d)

Incomplete reaction after 3 hrs. Light yellow solid (21.4 mg, 49.1% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.47 – 7.40 (m, 2H), 7.09 – 7.01 (m, 2H), 6.76 (not first order doublet, J = 10.2 Hz, 2H), 6.41 (not first order doublet, J = 10.2 Hz, 2H), 3.42 (s, 3H).

¹³**C NMR** (101 MHz, CDCI₃) δ 185.38, 162.55 (d, J_{CF} = 247.5 Hz), 150.26, 134.04 (d, J_{CF} = 3.1 Hz), 130.15, 127.54 (d, J_{CF} = 8.4 Hz), 115.65 (d, J_{CF} = 21.6 Hz), 76.09, 52.91.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –113.52 (tt, *J* = 5.2, 8.4 Hz). **HRMS** (ESI+) 241.0641 calc'd for C₁₃H₁₁FO₂Na⁺, 241.0641 found.

(16) Sawama, Y.; Masude, M.; Nakatani, R.; Yokoyama, H.; Monguchi, Y.; Dohi, T.; Kita, Y.; Sajiki, H. *Adv. Synth. Catal.* **2016**, *358*, 3683–3687.

ethyl 1'-methoxy-4'-oxo-1',4'-dihydro-[1,1'-biphenyl]-4-carboxylate (6f)

Light yellow solid (40.6 mg, 74.6% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (not first order doublet, *J* = 8.48 Hz, 2H), 7.52 (not first order doublet, *J* = 8.48 Hz, 2H), 6.76 (not first order doublet, *J* = 10.2 Hz, 2H), 6.44 (not first order doublet, *J* = 10.16 Hz, 2H), 4.37 (q, *J* = 7.1 Hz, 2H), 3.44 (s, 3H), 1.38 (t, *J* = 7.1 Hz, 3H) ¹³C NMR (101 MHz, CDCl₃) δ 185.24, 166.03, 149.71, 143.06, 130.49, 130.40, 129.93, 125.69, 76.44, 61.04, 52.88, 14.25. HRMS (ESI+) 295.0946 calc'd for C₁₆H₁₆O₄Na⁺, 295.0948 found.

1-methoxy-4'-(trifluoromethyl)-[1,1'-biphenyl]-4(1H)-one (6g)

Incomplete reaction after 3 hrs. Light yellow solid (27.1 mg, 50.6% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.8 Hz, 2H), 7.58 (d, *J* = 8.7 Hz, 2H) 6.75 (not first order doublet, *J* = 10.2 Hz, 2H), 6.4 (not first order doublet, *J* = 10.2 Hz, 2H), 3.44 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 185.17, 149.63, 142.36, 130.64, 130.18 (d, J_{CF} = 32.7 Hz), 126.20, 125.64 (q, J_{CF} = 3.8 Hz), 123.87 (d, J_{CF} = 272.2 Hz), 76.30, 52.93.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.55

HRMS (ESI+) 291.0609 calc'd for $C_{14}H_{11}F_3O_2Na^+$, 291.0609 found.

2.0 Experimental Procedures–Competition Experiments

$H \xrightarrow{OH} + \chi \xrightarrow{$

2.1.1 General procedure for each of the competition experiments

For each of the competition experiments (except 4-phenylphenol versus itself), naphthalene (12.8 mg, 0.1 mmol, 0.5 eq.), 4-phenylphenol (**5a**, 34 mg, 0.2 mmol, 1 eq.) and a substituted 4-phenylphenol (**5b-g**, 0.2 mmol, 1 eq.) were dissolved in methanol (2 mL) at 25±0.5 °C. A 20 μ L aliquot was transferred to an HPLC vial and diluted to 2 mL with an isopropyl/hexane mixture to determine the ratios of starting materials. (Diacetoxyiodo)benzene (32.2 mg, 0.1 mmol, 0.5 eq.) was then added to the remaining reaction mixture and stirred at 25±0.5 °C. After 2 hours, a 20 μ L aliquot was transferred to an HPLC vial and diluted to 2 mL with an isopropyl/hexane mixture to determine the ratios of starting materials after the (diacetoxyiodo)benzene was consumed. Each experiment was run in triplicate.

2.1.2 Procedure for the competition experiment of 4-phenylphenol

Naphthalene (12.8 mg, 0.1 mmol, 0.25 eq.) and 4-phenylphenol (**5a**, 68.1 mg, 0.4 mmol, 1 eq.) were dissolved in methanol (2 mL) at 25±0.5 °C. A 20 μ L aliquot was transferred to an HPLC vial and diluted to 2 mL with an isopropyl/hexane mixture to determine the ratios of starting materials. (Diacetoxyiodo)benzene (32.2 mg, 0.1 mmol, 0.25 eq.) was added to the remaining reaction mixture and stirred at 25±0.5 °C. After 2 hours, a 20 μ L aliquot was transferred to an HPLC vial and diluted to 2 mL with an isopropyl/hexane mixture to determine the ratios of starting materials after the (diacetoxyiodo)benzene was consumed. This experiment was run in triplicate.

2.2 HPLC data for analyzing the relative ratios of starting materials

The following tables contain the HPLC data (peak areas) used to measure the relative rates. Equation 1 from the main text was used to calculate k_X/k_H . IS = internal standard (naphthalene) 4-phenylphenol (**5a**)

				4-phenyiphen	JI (Ja)		
Specie	es	Peak	Area		Rela	tive Ratios	
				start	2hrs		kulku
run 1	mmol	start	2 hrs	(cmpd/IS)	(cmpd/IS)	2hrs/start	KH/KH
napthalene	0.1006	3476.8	3527.3	1	1	0	1
5a	0.4001	75942.7	55450.1	21.84270018	15.72026763	0.719703493	ļ
				start	2hrs		k.lk.
run2	mmol	start	2 hrs	(cmpd/IS)	(cmpd/IS)	2hrs/start	KH/KH
napthalene	0.0999	1540.5	1751.6	1	1	0	1
5a	0.4001	36618.6	29505.6	23.77059396	16.84494177	0.708646229	ļ
				start	2hrs		k lk
run3	mmol	start	2 hrs	(cmpd/IS)	(cmpd/IS)	2hrs/start	KH/KH
napthalene	0.0999	1577.8	1829.7	1	1	1	1
5a	0.4001	36470.7	29745.3	23.11490683	16.25692737	0.703309232	i

4-phenylphenol (5a) vs 4'-methoxy-[1,1'-biphenyl]-4-ol (5b)											
Specie	es	Peak Area			Relative Ratios						
				start	2hrs		Kooualku				
run1	mmol	start	2 hrs	(cmpd/IS)	(cmpd/IS)	2hrs/start	KOCH3/KH				
napthalene	0.1006	3149.6	1534.2	1	1	0					
5a	0.2003	53784.1	15735.3	17.0764859	10.2563551	0.600612747	1.840096547				
5b	0.1998	60132	11463.7	19.09194818	7.472102725	0.391374555					

run2	mmol	start	2 hrs	start (cmpd/IS)	2hrs (cmpd/IS)	2hrs/start	<i>к</i> _{оснз} / <i>к</i> _н
napthalene	0.0999	1478.2	1271.4	1	1	0	
5a	0.2003	19332.6	13154.4	13.07847382	10.34638981	0.791100701	2.325964578
5b	0.1998	20621.6	10284	13.95048031	8.088721095	0.579816674	

run3	mmol	start	2 hrs	start (cmpd/IS)	2hrs (cmpd/IS)	2hrs/start	<i>к</i> _{оснз} / <i>к</i> _н
napthalene	0.0999	1619	1819.7	1	1	0	
5a	0.2003	19211.5	17505.1	11.86627548	9.61977249	0.810681709	2.634426399
5b	0.1998	20158.2	13034	12.45101915	7.16271913	0.575271714	

4-phenylphenol (5a) vs 4'-fluoro-[1,1'-biphenyl]-4-ol (5d)											
Specie	es	Peak Area			Relative Ratios						
				start	2hrs		k-1k.				
run 1	mmol	start	2 hrs	(cmpd/IS)	(cmpd/IS)	2hrs/start	KF/KH				
napthalene	0.0999	1680.6	1709.3	1	1	0					
5a	0.2003	26698.4	13663.7	15.88623111	7.993740128	0.503186695	0.944843818				
5d	0.1998	28746	15279.6	17.1046055	8.939097876	0.522613508					

run2	mmol	start	2 hrs	start (cmpd/IS)	2hrs (cmpd/IS)	2hrs/start	k _F /k _H
napthalene	0.0999	1441.5	1847.1	1	1	0	
5a	0.1998	17229.8	14762.2	11.95268817	7.992095718	0.668644208	0.869380723
5d	0.1998	17087.3	15430.4	11.85383281	8.353851984	0.704738469	

run3	mmol	start	2 hrs	start (cmpd/IS)	2hrs (cmpd/IS)	2hrs/start	k _F /k _H
napthalene	0.1006	1774.6	1742.5	1	1	0	
5a	0.1998	20231.6	13467.6	11.40065367	7.728895265	0.677934397	0.852365254
5d	0.2009	20854.5	14702.2	11.75166235	8.437417504	0.717976509	

	4-phenylphenol (5a) vs 4'-bromo-[1,1'-biphenyl]-4-ol (5e)											
Specie	es	Peak	Area		Relative Ratios							
				start	2hrs		ko /ku					
run 1	mmol	start	2 hrs	(cmpd/IS)	(cmpd/IS)	2hrs/start	VBt/ VH					
napthalene	0.0999	1417.2	1512.6	1	1	0						
5a	0.2003	17318.1	11794.4	12.21994073	7.79743488	0.638091056	0.654694731					
5e	0.2003	15686.2	12475.8	11.06844482	8.247917493	0.745174017						

run2	mmol	start	2 hrs	start (cmpd/IS)	2hrs (cmpd/IS)	2hrs/start	k _{Br} /k _H
napthalene	0.0999	1316.4	1375	1	1	0	
5a	0.1998	16280.1	11213.1	12.36713765	8.154981818	0.659407379	0.587520536
5e	0.1999	15010.3	12275.9	11.40253722	8.927927273	0.782977253	

run3	mmol	start	2 hrs	start (cmpd/IS)	2hrs (cmpd/IS)	2hrs/start	k _{Br} /k _H
napthalene	0.0999	1562.3	1711.3	1	1	0	
5a	0.2003	20184.9	13885	12.91998976	8.11371472	0.627996993	0.636241699
5e	0.1999	18679.8	15219	11.95660245	8.893239058	0.743793155	

	4-phenylphenol (5a) vs ethyl 4'-hydroxy-[1,1'-biphenyl]-4-carboxylate (5f)											
Specie	es	Peak Area			Relative Ratios							
				start	2hrs		Koostilku					
run 1	mmol	start	2 hrs	(cmpd/IS)	(cmpd/IS)	2hrs/start	ACO2E#AH					
napthalene	0.0999	1083.3	1451.8	1	1	0						
5a	0.1998	12466.3	8438.8	11.50770793	5.81264637	0.505108959	0.493536276					
5f	0.2002	1622.9	1552.6	1.498107634	1.069431051	0.713854617						

run2	mmol	start	2 hsr	start (cmpd/IS)	2hrs (cmpd/IS)	2hrs/start	k _{CO2Et} /k _H
napthalene	0.0999	1071	1359.5	1	1	0	
5a	0.1998	12279.2	8113.8	11.46517274	5.968223612	0.520552437	0.492539725
5f	0.2002	1655.3	1523.4	1.545564893	1.120559029	0.72501584	

run3	mmol	start	2 hrs	start (cmpd/IS)	2hrs (cmpd/IS)	2hrs/start	k _{CO2Et} /k _H
napthalene	0.0999	1106.9	1214.3	1	1	0	
5a	0.1998	12530.3	7141.8	11.32017346	5.88141316	0.519551505	0.486662724
5f	0.2002	1624.1	1295.5	1.467250881	1.066869802	0.727121596	

	4-phenylphenol (5a) vs 4'-(trifluoromethyl)-[1,1'-biphenyl]-4-ol (5g)										
Species Peak Area				Relative Ratios							
run 1	mmol	start	2 hrs	start (cmpd/IS)	start 2hrs (cmpd/IS) (cmpd/IS) 2hrs/start						
napthalene	0.0999	1622.5	1505.4	1	1	0					
5a	5a 0.1998		10292.2	11.83993837	6.836853992	0.577439998	0.218556803				
5g	0.1998	12396.4	10200.9	7.640308166	6.77620566	0.88690214					

run2	mmol	start	2 hrs	start (cmpd/IS)	2hrs (cmpd/IS)	2hrs/start	k _{CF3} /k _H
napthalene	0.0999	1532.5	1121.7	1	1	0	
5a	0.1998	19787.9	6839.8	12.91216966	6.097708835	0.472245099	0.418774486
5g	0.1998	12521.6	6694	8.170701468	5.967727556	0.7303813	

run3	mmol	start	2 hrs	start (cmpd/IS)	2hrs (cmpd/IS)	2hrs/start	k _{CF3} /k _H
napthalene	0.0991	1539.5	1671.4	1	1	0	
5a	0.1998	19124.9	11521.9	12.42279961	6.893562283	0.554912137	0.263917042
5g	0.1998	12192	11331.1	7.919454368	6.779406486	0.856044643	

4-Phenylphenol (**5a**) and 4'-methyl-[1,1'-biphenyl]-4-ol (**5c**) had the same retention time on the HPLC. Because of this, k_{CH3}/k_{H} was determined using a modified procedure. First procedure 2.1.1 was used to carry out a competition experiment between phenol **5c** and phenol **5e**. The relative rate constant obtained from this set of experiments was then multiplied by k_{Br}/k_{H} , according to the following relationship:

$$\frac{k_{\rm CH3}}{k_{\rm H}} = \frac{k_{\rm CH3}}{k_{\rm Br}} \times \frac{k_{\rm Br}}{k_{\rm H}}$$

	4'-bromo-[1,1'-biphenyl]-4-ol (5e) vs 4'-methyl-[1,1'-biphenyl]-4-ol (5c)										
Species Peak Area				Relative Ratios							
				start	2hrs	k lk					
run 1	mmol	start	2 hrs	(cmpd/IS)	(cmpd/IS)	2hrs/start	KCH3/KBr				
napthalene	0.0999	1227.8	363.1	1	1	0					
5e	5e 0.1999		2798.5	10.61557257	7.707243184	0.726031793	1.989359213				
5c	5c 0.1997 15349.8 2401 12.50187327 6.612503443 0.52892101										

run2	mmol	start	2 hrs	start (cmpd/IS)	2hrs (cmpd/IS)	2hrs/start	k _{CH3} /k _{Br}
napthalene	0.0999	1282.8	1488	1	1	0	
5e	0.1999	13842.6	12722.9	10.7909261	8.550336022	0.792363505	2.296218502
5c	0.1997	14992.9	10191.5	11.68763642	6.849126344	0.586014665	

run3	mmol	start	2 hrs	start (cmpd/IS)	2hrs (cmpd/IS)	2hrs/start	k _{CH3} /k _{Br}
napthalene	0.0999	1120.5	1758	1	1	0	
5e	0.1999	14921	15288.3	13.31637662	8.696416382	0.653061762	1.794946315
5c	0.1997	17505.3	12782.9	15.6227577	7.271274175	0.46542834	

After averaging the three runs for the different competition experiments, the following values were used to generate the different Hammett plots:

compound	Х	k _X /k _H	$\log (k_{\rm X}/k_{\rm H})$
5a	Н	1.000	0.000
5b	OCH ₃	2.267	0.355
5c	CH ₃	1.265	0.102
5d	F	0.889	-0.051
5e	Br	0.626	-0.203
5f	CO ₂ Et	0.491	-0.309
5g	CF ₃	0.300	-0.522

2.3 Representative HPLC traces

2.3.1 HPLC Chromatogram of 4-phenylphenol (5a) versus itself (hexane/isopropanol = 99:1, 1.0 mL/ min)

Naphthalene:

4-phenylphenol (5a):

experiment start:

after 2 hrs:

2.3.2 HPLC Chromatogram of 4-phenylphenol (5a) vs 4'-methoy-[1,1'-biphenyl]-4-ol (5b) (hexane/isopropanol = 99:1, 1.0 mL/ min)

Naphthalene:

4-phenylphenol (5a):

4'-methoy-[1,1'-biphenyl]-4-ol (**5b**):

experiment start:

2.3.3 HPLC Chromatogram of 4-phenylphenol (5a) vs 4'-fluoro-[1,1'-biphenyl]-4-ol (5d) (hexane/isopropanol = 99:1, 1.0 mL/ min)

Naphthalene:

4-phenylphenol (5a):

4'-fluoro-[1,1'-biphenyl]-4-ol (5d):

experiment start:

after 2 hrs:

2.3.4 HPLC Chromatogram of 4-phenylphenol (5a) vs 4'-bromo-[1,1'-biphenyl]-4-ol (5e) (Condition: hexane/isopropanol = 99:1, 1.0 mL/ min)

Naphthalene:

4-phenylphenol (5a):

4'-bromo-[1,1'-biphenyl]-4-ol (**5e**):

experiment start:

2.3.5 HPLC Chromatogram of 4-phenylphenol (5a) vs ethyl 4'-hydroxy-[1,1'-biphenyl]-4-carboxylate (5f) (hexane/isopropanol = 95:5, 1.0 mL/ min)

Naphthalene:

4-phenylphenol (5a):

ethyl 4'-hydroxy-[1,1'-biphenyl]-4-carboxylat (5f):

experiment start:

after 2 hrs:

2.3.6 HPLC Chromatogram of 4-phenylphenol (5a) vs 4'-(trifluoromethyl)-[1,1'-biphenyl]-4-ol (5g) (hexane/isopropanol = 99:1, 1.0 mL/ min)

Naphthalene:

4-phenylphenol (5a):

4'-(trifluoromethyl)-[1,1'-biphenyl]-4-ol (5g):

experiment start:

2.3.7 HPLC Chromatogram of 4'-bromo-[1,1'-biphenyl]-4-ol (5e) vs 4'-methyl-[1,1'-biphenyl]-4-ol (5c) (hexane/isopropanol = 99:1, 1.0 mL/ min)

Naphthalene:

4'-bromo-[1,1'-biphenyl]-4-ol (**5e**):

4'-methyl-[1,1'-biphenyl]-4-ol (5c):

experiment start:

after 2 hrs:

3.0 Additional Information for Hammett Plots

	σ_{p}	σ^{+}	σ	σ_{R}	σ_{I}
Н	0.00	0.00	0.00	0.00	0.00
CF ₃	0.54	0.61	0.65	0.11	0.40
OCH ₃	-0.27	-0.78	-0.26	-0.58	0.30
Br	0.23	0.15	0.25	-0.25	0.47
F	0.06	-0.07	-0.03	-0.48	0.54
CH ₃	-0.17	-0.31	-0.17	-0.16	-0.01
CO ₂ Et	0.45	0.48	0.64	0.11	0.32

The following sigma values from the literature¹⁷ were used for all Hammett plots.

(1) A Hammett plot was constructed using the calculated free energy change for the formation of aryl- λ^3 -iodane **S1** from the different substituted 4-phenylphenols (**5a-g**) and PhI(OAc)₂. In this case, a nonlinear plot was observed with all sigma values. The free energy changes were also relatively small (< 2 kcal/mol) suggesting that the initial ligand exchange process is rapid and likely reversible.

(17) Values for σ_p , σ^+ , and σ^- were obtained from Hansch, C.; Leo, A.; Taft, R. W. *Chem. Rev.* **1991**, *91*, 165. Values for σ_l and σ_R were obtained from Charton, M. *Prog. Phys. Org. Chem.* **1981**, *13*, 119. (2) As mentioned in the main text, a Hammett plot was constructed using the calculated free energy change for the formation of phenoxenium ion **7a-g** from the different substituted 4-phenylphenols (**5a-g**) and PhI(OAc)₂. In this case, the use of σ^+ values gave a linear plot with very good correlation. Notably, the plots using σ^- and σ_p values resulted in plots with a curvature that was quite similar to that observed for the Hammett plot of the experimental data (see Figure 2B in main text).

4.0 Additional Computational Experiments Concerning the Mechanism

1. General methods: Two alternative computational methods were employed: (1) M06-2X/DGDZVP with IEFPCM=methanol and (2) B97D3/DGDZVP with IEFPCM=methanol. An ultrafine integration grid was used in all cases. The DGDVP basis set was suggested by the reviewer in order to avoid effects of basis set mixing. The alternative solvation model was suggested by the reviewer as well. The M06-2X functionals were previously used in our calculations. The B97D3 functionals were chosen as a suitable alternative as they include Grimme's dispersion correction. M06-2X also contains dispersion corrections.

The originally calculated Mulliken charges for the neutral phenol and phenoxenium ion ar given below for comparison.

	atom	charge	6	atom	charge
•	C1	0.136395	T	C1	-0.027648
	C2	0.495426		C2	1.159182
	C3	-0.157656		C3	0.062465
ΨΨ	C4	0.032744		C4	0.062227
	C5	-0.133693	6 6	C5	-0.141503
	C6	-0.164721		C6	-0.142271
Ϋ́	011	-0.202718	I	011	-0.457011
	C13	0.297091		C12	0.741443
	C14	0.124131	13 14	C13	0.241214
Ϋ́́Υ	C15	0.125480	ΤĬ	C14	0.242795
	C16	-0.300477	15 17	C15	-0.466372
	C18	-0.302315		C17	-0.466620
Ť	C20	0.050313	Ť	C19	0.192100
Ģ	sum	0.0	C	sum	1.000001

2. Evaluation of structure and partial charges in neutral and protonated iodine-bound phenol complexes:

(a) The calculated (M06-2X/6-31+G(d) and LANL2DZdp with SMD=methanol) structure of the protonated iodine-bound phenol complex used in our original work is shown below along with the calculated partial charges (Mulliken with charges summed into heavy atoms).

Notes: No imaginary frequencies.

(b) The calculated structure (M06-2X/DGDZVP with IEFPCM=methanol) of the protonated iodine-bound phenol complex is shown below along with the calculated partial charges (Mulliken with charges summed into heavy atoms).

2	atom	charge	atom	charge
	I1	0.820242	C32	0.185901
	C2	-0.010669	C33	-0.082005
	C3	0.054081	C34	-0.082542
	C4	0 047513	C35	-0 003984
	C5	0 074832	C37	-0.003670
2	C6	0.051689	C39	-0.003087
▼ 1	C7	0.048789	sum	0.010613
0.17 Å	01	1.096477	Sum	0.010010
2.47 A	Sum	1.000477		
	024	0 457200		
	024	-0.457390		
	C25	0.515274		
	O26	-0.008779		
179.5° 2.05 Å	C27	0.127401		
	sum	0.176506		
33	O13	-0.586055		
35 15	C14	0.410563		
32	C15	0.208753		
39	C16	-0 106752		
	C17	-0.078024		
37	C18	-0.058339		
	C10	0.063740		
8	019	-0.003740		
-	sum	-0.273594		

Notes: No imaginary frequencies.

(c) The calculated structure (B97D3/DGDZVP with IEFPCM=methanol) of the protonated iodinebound phenol complex is shown below along with the calculated partial charges (Mulliken with charges summed into heavy atoms).

Notes: Two imaginary frequencies (–21.32 and –10.10) corresponding to rocking motions involving all fragments. There is clearly no I–O bonding. Partial charge analysis reveals the

phenolic portion is probably best thought of as a phenoxenium ion. This calculation started with a geometry very similar to that found in Parts 2.a and 2.b shown above.

(d) The calculated structure (M06-2X/DGDZVP with IEFPCM=methanol) of the neutral iodinebound phenol complex is shown below along with the calculated partial charges (Mulliken with charges summed into heavy atoms).

Notes: No imaginary frequencies.

(e) The calculated structure (B97D3/DGDZVP with IEFPCM=methanol) of the neutral iodinebound phenol complex is shown below along with the calculated partial charges (Mulliken with charges summed into heavy atoms).

Notes: Two imaginary frequencies (-22.96 and -9.78) corresponding to twisting of the acetate C–C bond and a rocking motion involving all fragments. Several attempts were made to reoptimize the structure in order to remove these frequencies, but all gave the same result.

3. Evaluation of structure and partial charges in protonated unimolecualar decomposition transition states:

(a) The calculated (M06-2X/6-31+G(d) and LANL2DZdp with SMD=methanol) structure of the protonated unimolecular decomposition transition state used in our original work is shown below along with the calculated partial charges (Mulliken with charges summed into heavy atoms).

Notes: One imaginary frequency (-177.45) corresponding to stretching of the I-O13 bond. Note that the sum of the partial charges for O13 to C19 has become less negative (more positive) than in the starting structure (Part 2.a above).
(b) The calculated (M06-2X/DGDZVP with IEFPCM=methanol) structure of the protonated unimolecular decomposition transition state is shown below along with the calculated partial charges (Mulliken with charges summed into heavy atoms).

Notes: One imaginary frequency (-181.75) corresponding to stretching of the I-O13 bond.

(c) The calculated (B97D3/DGDZVP with IEFPCM=methanol) structure of the protonated unimolecular decomposition transition state is shown below along with the calculated partial charges (Mulliken with charges summed into heavy atoms).

Notes: Three imaginary frequencies (–29.37, –21.60 and –13.09) corresponding to rocking of the acetic acid, and rocking motions involving all fragments. This structure was obtained after two rounds of optimization to a transition state. The starting structure was similar to that used for

Part 3.a and 3.b above. These optimizations were also run with a step size of 1 in order to ensure account for a flat potential energy surface. Further rounds of optimization just caused the acetic acid to move further away from the iodobenzene.

4. Attempts at locating bimolecular decomposition transition state:

Attempts were made at locating the biomolecular decomposition transition state using a "forcing" methodology reported in our previous paper (*Org. Biomol. Chem.* **2018**, *16*, 2324). Briefly, this involved generating an initial guess structure in which the incoming methanol molecule and the 4-arylphenol moiety of the protonated (or neutral) iodine-bound phenol complex are positioned close to what was observed in the transition state that was located for the trapping of the phenoxenium ion. This initial guess was then minimized with the C–O bond distance between the methanol and para carbon of the phenol frozen. This minimized structure was then used (with the frozen distance removed) as the initial structure for a transition state calculation. This method was used after a simple relaxed scan of the C–O bond distance failed to locate a transition state. For each set of calculations shown below we provide the initial starting structure, initially minimized structure with frozen C–O distance, and final structure returned by the transition state calculation. For comparison, our originally calculated transition state for the reaction between the phenoxenum ion and methanol is given below along with important measurements.

(a) Method = M06-2X/DGDZVP with IEFPCM=methanol

Notes: Just like our originally reported calculations (*Org. Biomol. Chem.* **2018**, *16*, 2324) The methanol moves away from the phenolic portion during the transition state optimization. In fact it actually moves in such a way that it is under the meta carbon atom. The biaryl linkage also flattens out during the two optimization steps.

(b) Method = B97D3/DGDZVP with IEFPCM=methanol

Starting structure	Minimized structure with frozen C–O distance	Final structure from transition state calculation
161.2° 2.38 Å 2.01 Å 2.17 Å	184.0° 2.17 Å	176.9° 3.33 Å

Notes: During the first optimization the acetic acid has been lost and the I–O13 bond has completely broken. But, once the frozen C–O distance is removed, the methanol once again moves away from the para carbon and the biaryl linkage flattens out.

Starting structure
Minimized structure with frozen C–O distance
Final structure from transition state calculation

Image: Starting structure
Image: Starting structure from transition state calculation
Image: Starting structure from transition state calculation

Image: Starting structure
Image: Starting structure from transition state calculation
Image: Starting structure from transition state calculation

Image: Starting structure
Image: Starting structure from transition state calculation
Image: Starting structure from transition state calculation

Image: Starting structure
Image: Starting structure from transition state calculation
Image: Starting structure from transition state calculation

Image: Starting structure
Image: Starting structure from transition state calculation
Image: Starting structure from transition state calculation

Image: Starting structure
Image: Starting structure from transition state calculation
Image: Starting structure from transition state calculation

Image: Starting structure
Image: Starting structure from transition state calculation
Image: Starting structure from transition state from transition structure state from transition state from transition state from tr

(c) Method = B97D3/DGDZVP with IEFPCM=methanol – These calculations were run starting with the neutral iodine-bound phenol complex

Notes: Given the problems associated with these functionals with the protonated species, an attempt was made to locate the bimolecular fragmentation using the neutral complex as the starting structure. The movement of the acetate seen during the first optimization is very similar to what was seen when modeling the neutral unimolecular fragmentation during our reported work (*Org. Biomol. Chem.* **2018**, *16*, 2324). Again, when the C–O restriction is removed, the methanol moves away from the para carbon and becomes located under the meta carbon. The methanol adopts a conformation in which the lone pairs of the oxygen are pointed away from the phenolic aromatic ring. The biaryl linkage also flattens out during the transition state optimization.

5. Conclusions:

The above work demonstrates that our original basis sets give, qualitatively, similar results to the DGDZVP basis set suggested by the reviewer. In addition, the difficulties experienced when using the B97D3 funcationals suggests that M06-2X is better able to handle the weak interactions between the acetic acid and the iodine. Not only that, but the B97D3 functionals displayed poor performance in modeling the neutral complex (Part 2.e). More importantly, none of the methods were able to locate a transition state for the bimolecular decomposition. All attempts at forcing the methanol to add to the para carbon resulted in the methanol moving away.

5.0 Final Coordinates and Energies for Fully Optimized Structures

The final optimized geometry of each species is given below, along with the following:

(i) Number of imaginary frequencies (frequency if present)

(ii) Returned energies (in Hartrees) at 298.15 K and 1 atm using SMD^{Methanol} solvation.

CH ₃ CO ₂ H	
C0.0860000.116000-0.001000O0.6260001.2070000.000000O0.789000-1.025000-0.000000H1.745000-0.8190000.004000C-1.390000-0.124000-0.000000H-1.661000-0.745000-0.859000H-1.667000-0.6690000.907000H-1.9210000.827000-0.041000	
*** 0 imaginary frequencies ***	
Sum of electronic and zero-point Energies=	-228.943330
Sum of electronic and thermal Energies=	-228.938781
Sum of electronic and thermal Enthalpies=	-228.937836
Sum of electronic and thermal Free Energies=	-228.970548
iodobenzene	
C 0.000000 0.000000 -0.555000 C 0.000000 0.000000 -3.337000 C 0.000000 1.215000 -1.241000 C 0.000000 -1.215000 -1.241000 C 0.000000 -1.207000 -2.637000 C 0.000000 1.207000 -2.637000 C 0.000000 2.156000 -0.699000 H 0.000000 -2.156000 -0.699000 H 0.000000 -2.151000 -3.175000 H 0.000000 0.000000 -4.423000 I 0.000000 0.000000 1.548000	
*** 0 imaginary frequencies *** Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies=	-242.799995 -242.794157 -242.793212 -242.831025

CH ₃ CO ₂ ⁻ (acetate anion)	
C0.176000-0.0010000.000000O0.7210001.140000-0.000000C-1.348000-0.040000-0.000000H-1.7270000.4830000.884000H-1.727000-1.064000-0.004000H-1.7270000.489000-0.881000O0.805000-1.0970000.000000	
*** 0 imaginary frequencies ***	
Sum of electronic and zero-point Energies=	-228.499134 -228.494858
Sum of electronic and thermal Entergies=	-228.493914
Sum of electronic and thermal Free Energies=	-228.526108
lodobenzene diacetate	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
*** 0 imaginary frequencies ***	
Sum of electronic and zero-point Energies=	-699.446469 -699.429749
Sum of electronic and thermal Enthalpies=	-699.428805
Sum of electronic and thermal Free Energies=	-699.494192

4-phenylphenol	
4-phenylphenolC -3.109000 -0.014000 -0.004000 C -0.297000 -0.004000 -0.000000 C -2.407000 -1.163000 -0.371000 C -2.417000 1.140000 0.365000 C -1.024000 1.137000 0.365000 C -1.024000 1.137000 0.365000 C -1.024000 1.137000 0.365000 C -1.024000 1.137000 0.365000 C -1.024000 2.053000 -0.666000 H -2.958000 2.030000 0.659000 H -2.968000 2.037000 0.674000 H -0.499000 2.037000 0.675000 O -4.474000 -0.075000 -0.025000 H -4.854000 0.780000 0.240000 C 1.189000 0.000000 0.001000 C 1.904000 1.148000 -0.372000 H 1.378000 -2.038000 0.687000 C 3.298000 1.153000 -0.371000 H 1.366000 2.040000 -0.685000	
H 1.366000 2.040000 -0.685000	
H 3.844000 -2.035000 0.001000	
H 3.833000 2.051000 -0.669000	
H 5.092000 0.011000 0.001000	
*** 0 imaginary frequencies ***	
Sum of electronic and zero-point Energies=	-538.142434
Sum of electronic and thermal Energies=	-538.132359
Sum of electronic and thermal Enthalpies=	-538.131415
Sum of electronic and thermal Free Energies=	-538.178435

4-phenylphenoxenium cation	
C -3.183000 0.000000 0.000000	
C -0.332000 -0.000000 -0.000000	
C -2.414000 -1.249000 -0.213000	
C -2.414000 1.249000 0.213000	
C -1.069000 1.239000 0.197000	
C -1.069000 -1.239000 -0.198000	
H -2.984000 -2.157000 -0.392000	
H -2.983000 2.157000 0.391000	
H -0.525000 2.156000 0.388000	
H -0.526000 -2.156000 -0.389000	
O -4.402000 0.000000 0.000000	Ĭ
C 1.090000 -0.000000 -0.000000	
C 1.818000 -1.211000 0.202000	
C 1.818000 1.210000 -0.202000	
C 3.198000 -1.199000 0.219000	
H 1.298000 -2.141000 0.398000	
C 3.197000 1.200000 -0.219000	
H 1.297000 2.141000 -0.398000	
C 3.888000 0.000000 0.000000	
H 3.746000 -2.117000 0.401000	
H 3.746000 2.118000 -0.401000	
H 4.974000 0.000000 0.000000	\Box
*** 0 imaginary frequencies ***	
Sum of electronic and zero-point Energies=	-537.300665
Sum of electronic and thermal Energies=	-537.290618
Sum of electronic and thermal Enthalpies=	-537.289674
Sum of electronic and thermal Free Energies=	-537.336962

4-(4-methylphenyl)phenol	
C 3 580000 -0 015000 0 003000	
C 0.768000 -0.003000 0.000000	
C 2.878000 -1.166000 0.363000	
C 2.889000 1.142000 -0.357000	
C 1.496000 1.139000 -0.358000	
C 1.488000 -1.153000 0.360000	
H 3.428000 -2.058000 0.651000	
H 3.440000 2.034000 -0.645000	
H 0.971000 2.042000 -0.661000	
H 0.954000 -2.051000 0.662000	
O 4.946000 -0.076000 0.023000	
H 5.327000 0.782000 -0.232000	
C -0.718000 0.002000 0.001000	
C -1.445000 -1.141000 -0.367000	
C -1.438000 1.146000 0.367000	
C -2.837000 -1.135000 -0.365000	
H -0.917000 -2.040000 -0.677000	
C -2.833000 1.148000 0.363000	
H -0.906000 2.043000 0.676000	
C -3.557000 0.010000 -0.000000	
H -3.375000 -2.034000 -0.660000	
H -3.366000 2.050000 0.657000	
C -5.064000 0.001000 -0.001000	
H -5.456000 -0.277000 -0.986000	
H -5.454000 -0.726000 0.720000	
H -5.465000 0.985000 0.260000	
*** 0 imaginary frequencies ***	·
Sum of electronic and zero-point Energies=	-577.412258
Sum of electronic and thermal Energies=	-577.400407
Sum of electronic and thermal Enthalpies=	-577.399463
Sum of electronic and thermal Free Energies=	-577.450579

4-(4-methylphenyl)phenoxenium cation	
C 3.657000 -0.003000 -0.000000 C 0.790000 0.002000 0.001000	
C 2.888000 1.258000 -0.082000	
C 2.884000 -1.261000 0.083000	
C 1.540000 -1.248000 0.078000	
C 1.543000 1.249000 -0.075000	
H 3.456000 2.181000 -0.152000	
H 3.449000 -2.186000 0.153000	
H 1.010000 -2.189000 0.153000	
H 1.018000 2.192000 -0.149000	
O 4.878000 -0.005000 -0.001000	
C -0.623000 0.003000 -0.001000	
C -1.366000 1.225000 0.077000	
C -1.370000 -1.219000 -0.079000	
C -2.740000 1.219000 0.083000	
H -0.861000 2.179000 0.154000	Y Y
C -2.742000 -1.207000 -0.086000	
H -0.867000 -2.174000 -0.156000	
C -3.458000 0.008000 -0.003000	
H -3.285000 2.155000 0.155000	
H -3.290000 -2.142000 -0.159000	
$\square -5.321000 -0.300000 -0.002000$	
H = -5.507000 - 0.529000 - 0.697000	
H -5.364000 1.002000 -0.012000	
*** 0 imaginary frequencies ***	
Sum of electronic and zero-point Energies=	-576.575956
Sum of electronic and thermal Energies=	-576.564148
Sum of electronic and thermal Enthalpies=	-576.563204
Sum of electronic and thermal Free Energies=	-576.614735

4-(4-trifluoromethylphenyl)phenol	
4-(4-trifluoromethylphenyl)phenolC 4.661000 -0.016000 0.012000 C 1.852000 -0.003000 -0.006000 C 3.957000 -1.167000 0.370000 C 3.957000 1.141000 -0.355000 C 2.580000 1.141000 -0.360000 C 2.580000 1.141000 -0.360000 C 2.580000 1.141000 -0.360000 C 2.567000 -1.155000 0.357000 H 4.506000 -2.058000 0.662000 H 4.526000 2.032000 -0.641000 H 2.058000 2.043000 -0.666000 H 2.058000 2.043000 -0.657000 O 6.024000 -0.079000 0.039000 H 6.408000 0.778000 -0.215000 C 0.368000 0.003000 -0.013000 C -0.353000 -1.143000 -0.388000 H 0.177000 -2.041000 -0.686000 C -1.743000 -1.167000 0.339000 H 0.188000 2.049000 0.657000 C -2.433000 0.017000 -0.031000 H -2.285000 -2.037000 -0.680000 H -2.273000 2.068000 0.627000 C -3.930000 0.003000 0.003000 F -4.464000 1.227000 -0.166000	
F -4.412000 -0.457000 1.182000 F -4.460000 -0.789000 -0.949000	
*** 0 imaginary frequencies *** Sum of electronic and zero-point Energies=	-875.095495
Sum of electronic and thermal Energies=	-8/5.081813
Sum of electronic and thermal Enthalpies=	-875.080868
Sum of electronic and thermal Free Energies=	-875.138109

4-(4-trifluoromethylphenyl)phenoxenium	
cation	
4-(4-trifluoromethylphenyl)phenoxenium cationC 4.718000 -0.002000 0.016000 C 1.878000 0.000000 -0.014000 C 3.954000 1.247000 -0.230000 C 3.954000 1.247000 0.243000 C 3.947000 -1.250000 0.243000 C 2.601000 -1.236000 0.212000 C 2.607000 1.235000 -0.229000 H 4.527000 2.150000 -0.418000 H 4.515000 -2.154000 0.442000 H 2.049000 -2.147000 0.409000 H 2.060000 2.146000 -0.440000 O 5.936000 -0.002000 0.030000 C -0.275000 1.205000 0.202000 C -0.276000 -1.199000 -0.251000 C -1.658000 1.201000 0.213000 H 0.244000 2.132000 0.415000 C -1.659000 -1.191000 -0.274000 H 0.243000 -2.127000 -0.460000 C -2.338000 0.006000 -0.034000 H -2.203000 2.118000 0.410000 H -2.205000 -2.107000 -0.475000	
C -3.847000 -0.001000 0.007000 E -4.293000 -0.220000 1.258000	
F -4 370000 -0 959000 -0 770000	
F -4.367000 1.168000 -0.395000	
*** 0 imaginary frequencies *** Sum of electronic and zero-point Energies=	-874.244019
Sum of electronic and thermal Energies=	-874.230527
Sum of electronic and thermal Enthalpies=	-874.229583
Sum of electronic and thermal Free Energies=	-874.286014

4-(4-fluorophenyl)phenol	
C -3.543000 0.013000 0.004000 C -0.732000 0.005000 0.000000 C -2.842000 1.161000 0.376000 C -2.850000 -1.139000 -0.370000 C -1.458000 -1.135000 -0.370000 C -1.452000 1.150000 0.373000 H -3.393000 2.049000 0.674000 H -3.401000 -2.028000 -0.667000 H -0.932000 -2.034000 -0.683000 H -0.919000 2.045000 0.685000 O -4.908000 0.073000 0.025000 H -5.288000 -0.781000 -0.244000 C 0.753000 0.001000 -0.001000 C 1.475000 1.144000 -0.377000 C 1.475000 1.152000 0.378000 C 2.868000 1.152000 0.377000 C 1.470000 -1.145000 0.377000 C 2.863000 -1.159000 0.377000 C 2.863000 -0.0	
*** 0 imaginary frequencies ***	1
Sum of electronic and zero-point Energies=	-637.363710
Sum of electronic and thermal Energies=	-637.352783
Sum of electronic and thermal Enthalpies=	-637.351839
Sum of electronic and thermal Free Energies=	-637.401005

4-(4-fluorophenyl)phenoxeniu	um cation	
C 3.619000 -0.000000 0.	.000000	
C 0.756000 -0.000000 -0.	.000000	
C 2.848000 1.259000 -0.	.112000	
C 2.848000 -1.259000 0.	.112000	
C 1.503000 -1.248000 0.	.103000	
C 1.503000 1.248000 -0.	.103000	Y Y
Н 3.415000 2.180000 -0.	.207000	
H 3.415000 -2.180000 0.	.207000	
H 0.975000 -2.186000 0.	.202000	
Н 0.975000 2.186000 -0.	.202000	
O 4.839000 0.000000 0.	.000000	
C -0.662000 -0.000000 -0	.000000	
C -1.399000 1.223000 0.	.105000	
C -1.399000 -1.223000 -0	.105000	
C -2.774000 1.226000 0.	.115000	Y Y
H -0.893000 2.174000 0.	.206000	
C -2.774000 -1.226000 -0	.116000	
H -0.893000 -2.174000 -0	.206000	
C -3.433000 0.000000 -0.000000 -0.000000 -0.0000000 -0.00000000	.000000	
H -3.346000 2.142000 0.	.210000	
H -3.346000 -2.142000 -0	.210000	
F -4.759000 0.000000 -0.	.000000	_
*** 0 imaginary frequencies ***		
Sum of electronic and zero-poin	nt Energies=	-636.522581
Sum of electronic and thermal E	Energies=	-636.511664
Sum of electronic and thermal E	Enthalpies=	-636.510720
Sum of electronic and thermal F	Free Energies=	-636.560436

4-(4-bromophenyl)phenol	
4-(4-bromophenyl)phenolC -4.723000 0.012000 0.004000 C -1.913000 0.005000 0.001000 C -4.023000 1.161000 0.374000 C -4.029000 -1.141000 -0.368000 C -2.637000 -1.137000 -0.366000 C -2.633000 1.152000 0.369000 H -4.575000 2.049000 0.670000 H -4.575000 2.049000 -0.663000 H -2.110000 -2.036000 -0.676000 H -2.100000 2.048000 0.678000 O -6.088000 0.070000 0.024000 H -6.467000 -0.784000 -0.243000 C 0.291000 1.145000 -0.375000 C 0.287000 -1.142000 0.374000 C 1.683000 1.153000 -0.374000 H -0.238000 2.041000 -0.6990000 C 1.680000 -1.154000 0.372000 H -0.244000 -2.036000 0.689000 C 2.363000 -0.001000 H 2.224000 2.046000 -0.671000	
H 2.219000 -2.048000 0.669000	
Br 4.259000 -0.004000 -0.000000	
*** 0 imaginary frequencies ***	
Sum of electronic and zero-point Energies=	-3109.361303
Sum of electronic and thermal Energies=	-3109.349920
Sum of electronic and thermal Enthalpies=	-3109.348976
Sum of electronic and thermal Free Energies=	-3109.400270

4-(4-bromophenyl)p	henoxenium cation	
C -4.788000 0.0	00000 0.001000	
C -1.928000 -0.0	00000 0.00000	I I
C -4.018000 -1.2	262000 -0.079000	
C -4.017000 1.2	262000 0.079000	
C -2.672000 1.2	249000 0.066000	
C -2.672000 -1.2	249000 -0.066000	
H -4.584000 -2.1	86000 -0.145000	
H -4.584000 2.1	86000 0.145000	
H -2.144000 2.1	91000 0.132000	
H -2.144000 -2.1	91000 -0.132000	I I
O -6.008000 0.0	000000 -0.000000	
C -0.504000 -0.0	000000 0.000000	
C 0.233000 -1.2	20000 0.072000	
C 0.233000 1.2	20000 -0.072000	
C 1.610000 -1.2	22000 0.076000	
H -0.267000 -2.1	77000 0.145000	
C 1.610000 1.2	22000 -0.076000	
H -0.267000 2.1	76000 -0.144000	
C 2.289000 -0.0	00000 -0.000000	
H 2.155000 -2.1	58000 0.139000	
H 2.155000 2.1	57000 -0.139000	
Br 4.157000 0.0	00000 -0.000000	
*** 0 imaginary freque	encies ***	
Sum of electronic and	d zero-point Energies=	-3108.515395
Sum of electronic and	d thermal Energies=	-3108.504207
Sum of electronic and	d thermal Enthalpies=	-3108.503263
Sum of electronic and	d thermal Free Energies=	-3108.554349

4-(4-methoxyphenyl)phenol	
C -3.993000 -0.117000 0.024000	
C -1.184000 0.028000 -0.012000	
C -3.243000 -1.220000 -0.385000	T
C -3.351000 1.058000 0.416000	
C -1.959000 1.122000 0.396000	
C -1.855000 -1.141000 -0.402000	
H -3.756000 -2.126000 -0.697000	
H -3.938000 1.913000 0.743000	
H -1.473000 2.037000 0.724000	
H -1.284000 -2.001000 -0.744000	
O -5.355000 -0.243000 0.019000	
Н -5.773000 0.585000 0.310000	
C 0.299000 0.104000 -0.032000	
C 1.086000 -1.004000 0.297000	
C 0.961000 1.293000 -0.383000	
C 2.481000 -0.949000 0.281000	T I
H 0.608000 -1.935000 0.593000	
C 2.346000 1.368000 -0.401000	
H 0.383000 2.170000 -0.664000	
H = 3.051000 - 1.831000 = 0.551000	
H = 2.853000 = 2.288000 = 0.080000	
C = 5.282000 = 0.705000 = 0.224000	
H = 6.312000 - 0.703000 - 0.224000	
H = 5.095000 - 1.026000 = 1.255000	
H = 5.108000 - 1.520000 - 0.464000	
11 0.100000 -1.040000 -0.404000	
*** 0 imaginary frequencies ***	
Sum of electronic and zero-point Energies=	-652.592089
Sum of electronic and thermal Energies=	-652.579534
Sum of electronic and thermal Enthalpies=	-652.578590
Sum of electronic and thermal Free Energies=	-652.631413

4-(4-methoxyphenyl)phenoxenium cation	
C -4.063000 -0.125000 -0.012000	
C -1.193000 0.031000 0.018000	I
C -3.362000 1.171000 0.077000	
C -3.225000 -1.338000 -0.075000	
C -1.884000 -1.257000 -0.054000	
C -2.020000 1.235000 0.087000	Y Y
H -3.977000 2.065000 0.138000	
H -3.740000 -2.292000 -0.145000	
H -1.310000 -2.172000 -0.116000	
H -1.548000 2.206000 0.166000	
O -5.286000 -0.190000 -0.031000	
C 0.203000 0.110000 0.015000	
C 0.892000 1.378000 -0.059000	
C 1.024000 -1.074000 0.079000	
C 2.250000 1.448000 -0.075000	$ \qquad \qquad$
H 0.338000 2.305000 -0.126000	1 1
C 2.388000 -1.014000 0.075000	
H 0.570000 -2.053000 0.156000	
C 3.024000 0.254000 -0.010000	
H 2.772000 2.397000 -0.145000	1
H 2.971000 -1.925000 0.138000	
C 5.198000 -0.723000 0.005000	
H 5.007000 -1.364000 -0.859000	
H 6.202000 -0.308000 -0.045000	
H 5.055000 -1.267000 0.941000	
0 4.320000 0.418000 -0.035000	Ŭ.
*** 0 imaginary frequencies ***	
Sum of electronic and zero-point Energies=	-651.764950
Sum of electronic and thermal Energies=	-651.752371
Sum of electronic and thermal Enthalpies=	-651.751427
Sum of electronic and thermal Free Energies=	-651.804877

4-(4-ethoxycarbonylphenyl)phenol				
C -5.114000 -0.286000 0.050000				
C -2.322000 0.017000 -0.001000				
C -4.529000 0.869000 0.573000	T			
C -4.315000 -1.290000 -0.498000				
C -2.932000 -1.134000 -0.518000				
C -3.147000 1.014000 0.542000				
H -5.162000 1.638000 1.005000				
H -4.776000 -2.183000 -0.913000				
H -2.323000 -1.916000 -0.964000				
H -2.704000 1.909000 0.970000				
0 -6.475000 -0.379000 0.103000				
H -6.775000 -1.220000 -0.283000				
C -0.848000 0.176000 -0.029000				
C = -0.205000 = 1.455000 = -0.244000				
C = -0.002000 - 0.929000 - 0.137000				
H = 0.897000 = 2.302000 = 0.413000				
C = 1.380000 = 0.785000 = 0.4130000				
H = 0.430000 = 1.910000 = 0.346000				
C = 1.947000 = 0.476000 = 0.086000				
H 1.555000 2.562000 -0.447000	Ť Ť			
H 2.015000 -1.651000 0.281000				
C 3.420000 0.677000 -0.127000				
O 3.953000 1.753000 -0.346000				
C 5.551000 -0.333000 0.060000	· · · · · · · · · · · · · · · · · · ·			
H 5.841000 0.034000 -0.929000				
H 5.862000 0.397000 0.813000				
C 6.111000 -1.707000 0.340000				
H 7.204000 -1.662000 0.320000				
H 5.799000 -2.062000 1.327000				
H 5.781000 -2.425000 -0.416000	\square			
O 4.110000 -0.439000 0.099000				
*** 0 imaginary frequencies ***				
Sum of electronic and zero-point Energies=	-805.175470			
Sum of electronic and thermal Energies=	-805.159748			
Sum of electronic and thermal Enthalpies=	-805.158803			
Sum of electronic and thermal Free Energies= -805.219881				

4-(4-ethoxycarbonylphenyl)phenoxenium	
cation	
C -5 173000 -0 322000 0 037000	↓ ▼
C = -2.347000 = 0.001000 = 0.010000	
C -4542000 0.966000 0.417000	
C -4277000 -1440000 -0.349000	
C = -2.940000 - 1.277000 - 0.344000	
C -3.204000 1.109000 0.387000	
H -5.205000 1.770000 0.724000	
H -4.748000 -2.374000 -0.641000	
H -2.300000 -2.092000 -0.659000	
H -2.758000 2.046000 0.698000	
O -6.383000 -0.458000 0.043000	
C -0.925000 0.162000 -0.016000	
C -0.346000 1.456000 -0.110000	
C -0.068000 -0.970000 0.046000	
C 1.026000 1.603000 -0.162000	
H -0.969000 2.339000 -0.195000	
C 1.305000 -0.809000 0.036000	
H -0.474000 -1.968000 0.153000	
C 1.851000 0.475000 -0.080000	
H 1.468000 2.589000 -0.262000	
H 1.952000 -1.676000 0.110000	
C 3.337000 0.688000 -0.130000	
O 3.840000 1.771000 -0.353000	
C 5.467000 -0.313000 0.050000	—
H 5.748000 0.053000 -0.942000	
H 5.772000 0.420000 0.800000	
C 6.028000 -1.686000 0.332000	
H 7.121000 -1.637000 0.310000	
H 5.718000 -2.038000 1.321000	
H 5.698000 -2.406000 -0.422000	
O 4.022000 -0.422000 0.092000	A
*** 0 imaginary frequencies ***	
Sum of electronic and zero-point Energies=	-804.325666
Sum of electronic and thermal Energies=	-804.309954
Sum of electronic and thermal Enthalpies=	-804.309009
Sum of electronic and thermal Free Energies=	-804.370294

Protonated iodane from 4-phenylphenol	
Protonated iodane from 4-phenylphenol I -2.218000 -0.652000 -0.547000 C -1.475000 1.243000 -0.108000 C -0.333000 3.703000 0.366000 C -0.333000 2.287000 -0.989000 C -0.646000 1.391000 1.002000 C -0.646000 1.391000 1.002000 C -0.644000 0.559000 -0.739000 H -2.395000 2.138000 -1.850000 H -0.444000 0.556000 1.666000 H 0.121000 4.673000 0.551000 O -0.688000 -0.990000 -1.810000 C 3.198000 -0.578000 -0.319000 C 1.088000 -1.791000 -0.382000 C 1.370000 0.210000 -1.718000 C 2.670000 0.342000 -1.236000 C 2.386000 -1.645000 0.998000 H 0.465000	
H6.396000-0.8220003.061000H7.7040000.495000-0.818000H8.216000-0.0380001.557000	
*** 0 imaginary frequencies *** Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energie	-1009.054132 -1009.031249 -1009.030305 s= -1009.111270

Transition state to form		
4-phenyiphenoxemum cation		
I 2.385000 -1.099000 -0.007000		
C = 1.054000 = 0.449000 = 0.079000		
C = -0.911000 = 2.400000 = -0.082000		
C = 0.970000 = 1.342000 = 1.005000		
C = 0.174000 = 0.534000 = 1.168000		
C = 0.820000 = 1.510000 = 1.152000		
H = 1.660000 = 1.250000 = 0.9000000		
H $0.269000 - 0.147000 - 2.008000$		
H = 1.520000 = 1.575000 = 1.980000		
H = -0.082000 = 3.027000 = 1.813000		
H -1.683000 3.165000 -0.082000		
O 0.517000 -2.490000 0.718000	9	
C -0.617000 -1.908000 0.550000		
C -3.129000 -0.673000 0.212000		
C -1.395000 -2.145000 -0.633000		
C -1.123000 -1.003000 1.538000		
C -2.351000 -0.410000 1.367000		
C -2.633000 -1.571000 -0.770000		
H -0.978000 -2.791000 -1.402000		
H -0.523000 -0.824000 2.426000		
H -2.736000 0.253000 2.135000	U	
H -3.211000 -1.757000 -1.669000	<i>A</i>	
C = -4.429000 = -0.012000 = 0.024000		
C = -5.400000 = -0.040000 = -0.0940000		
C = -4.003000 = 1.208000 = 0.357000		
H = 5.313000 = 1.646000 = 1.092000		
C = 5.889000 + 898000 + 0.371000		
H -3.874000 1.787000 1.094000		
C -6.907000 1.256000 -0.338000		
H -7.482000 -0.527000 -1.407000		
H -6.049000 2.893000 0.775000		
H -7.866000 1.747000 -0.478000		
O 4.232000 1.639000 -0.579000		
C 5.387000 1.330000 -0.355000		
O 5.699000 0.025000 -0.317000		
C 6.504000 2.301000 -0.119000		
H 6.963000 2.106000 0.856000		
H 6.121000 3.320000 -0.153000		
H 7.272000 2.166000 -0.887000		
<u>п 0.044000 -0.121000 -0.129000</u>		
*** 1 imaginary frequency (-177.4491) ***		
Sum of electronic and zero-point Energies=	-1009.037077	
Sum of electronic and thermal Energies=	-1009.014037	
Sum of electronic and thermal Enthalples=		
Sum of electronic and thermal Free Energies -1009.095789		

Protonated iodane from	
4-(4-methylphenyl)phenol	
Protonated iodane from 4-(4-methylphenyl)phenol I -2.550000 -0.611000 -0.586000 C -1.838000 1.272000 -0.055000 C -0.747000 3.725000 0.552000 C -2.110000 2.349000 -0.897000 C -1.037000 1.383000 1.079000 C -1.037000 2.631000 1.380000 C -1.552000 3.587000 -0.580000 H -2.732000 2.227000 -1.778000 H -0.836000 0.522000 1.709000 H -1.36000 2.743000 2.258000 H -1.36000 -0.833000 -1.927000 C 0.223000 -0.744000 -1.446000 C 2.867000 -0.537000 -0.540000 C 2.867000 -0.537000 -0.248000 C 2.92000 -1.670000 -2.48000 C 2.92000 -1.670000 -2.48000 C 2.092	
H 8.947000 -0.973000 0.995000	
H 8.850000 0.790000 0.989000	
0.414000 -0.122000 2.449000	
1 *** 0 imaginary frequencies ***	1040 202671
Sum of electronic and zero-point Energies=	-1048.323671 -1048.299155

Sum of electronic and thermal Enthalpies= -10 Sum of electronic and thermal Free Energies= -10

-1048.298211 -1048.381972

Tra	nsition state to form	nium cation	
(-			
Ι	2.736000 -0.998000 -0	0.001000	
С	1.346000 0.499000 -	-0.029000	
С	-0.705000 2.358000	0.029000	
С	1.224000 1.352000	1.082000	
С	0.462000 0.578000 -	-1.115000	
С	-0.574000 1.508000	-1.069000	
С	0.202000 2.292000	1.094000	
Н	1.918000 1.274000	1.913000	
Н	0.585000 -0.073000	-1.975000	
Н	-1.278000 1.568000	-1.895000	
Н	0.098000 2.962000	1.942000	
Н	-1.510000 3.087000	0.053000	
0	0.949000 -2.476000	0.691000	
С	-0.218000 -1.953000	0.534000	
С	-2.800000 -0.860000	0.224000	
С	-0.979000 -2.206000	-0.653000	Concerned and the second se
С	-0.775000 -1.102000	1.541000	
С	-2.035000 -0.577000	1.383000	
С	-2.249000 -1.703000	-0.779000	
Н	-0.526000 -2.807000	-1.437000	
Н	-0.187000 -0.910000	2.434000	
Н	-2.456000 0.042000	2.168000	
Н	-2.815000 -1.902000	-1.683000	
С	-4.140000 -0.284000	0.055000	
С	-5.125000 -0.951000	-0.694000	
С	-4.472000 0.952000	0.641000	
С	-6.396000 -0.406000	-0.838000	
Н	-4.912000 -1.918000	-1.139000	
С	-5.738000 1.496000	0.478000	l l l l l l l l l l l l l l l l l l l
Н	-3.725000 1.507000	1.202000	U U
С	-6.726000 0.825000	-0.259000	
Н	-7.147000 -0.947000	-1.407000	
Н	-5.968000 2.461000	0.924000	
С	-8.105000 1.409000	-0.397000	
Н	-8.654000 1.319000	0.548000	
Н	-8.058000 2.474000	-0.645000	
Н	-8.679000 0.895000	-1.172000	
0	4.533000 1.687000	-0.641000	
С	5.691000 1.384000 -	-0.428000	
0	6.009000 0.080000	-0.388000	
С	6.806000 2.360000 -	-0.206000	
Н	7.274000 2.174000	0.766000	
Н	6.419000 3.378000 -	-0.244000	
Н	7.569000 2.224000 -	-0.979000	
H	6.956000 -0.061000	-0.208000	

*** 1 imaginary frequency (-191.3515) *** Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies=

-1048.307660 -1048.282944 -1048.281999 -1048.367353

Pr	otonated iodane from	
4-(4-trifluoromethylphenyl)phenol	
I	-3.388000 -0.581000 -0.541000	
С	-2.802000 1.321000 0.072000	
С	-1.883000 3.820000 0.773000	
С	-3.252000 2.424000 -0.651000	
С	-1.904000 1.428000 1.132000	
С	-1.447000 2.699000 1.481000	
С	-2.780000 3.684000 -0.288000	
Н	-3.948000 2.307000 -1.476000	
Н	-1.564000 0.548000 1.669000	
Н	-0.746000 2.808000 2.303000	
Н	-3.116000 4.559000 -0.836000	
Н	-1.520000 4.806000 1.049000	
0	-2.003000 -0.570000 -2.000000	
С	-0.682000 -0.531000 -1.600000	
С	2.010000 -0.419000 -0.843000	
C	-0.059000 -1.672000 -1.094000	
C	0.023000 0.666000 -1.729000	• • •
C	1.364000 0.713000 -1.358000	
C	1.279000 -1.611000 -0.720000	
н	-0.622000 -2.597000 -1.004000	
н	-0.484000 1.549000 -2.109000	
П	1.904000 1.053000 -1.443000	8 1
	1.700000 -2.509000 -0.347000	
C	-4.935000 -0.249000 1.235000	
	5 855000 2 160000 0 708000	
c	6 787000 0 043000 2 588000	
Ц	-7.802000 -0.943000 2.388000	
н	-6.621000 0.001000 3.105000	
н	-6 669000 -1 781000 -3 282000	
н	-6 576000 -2 773000 0 951000	
С	3 434000 -0 358000 -0 430000	
č	3.880000 -1.050000 0.703000	
Ċ	4.360000 0.399000 -1.166000	
Ċ	5.214000 -0.991000 1.099000	
H	3.177000 -1.625000 1.299000	
С	5.692000 0.463000 -0.779000	
Н	4.040000 0.926000 -2.061000	
С	6.115000 -0.233000 0.356000	
Н	5.541000 -1.527000 1.984000	
Н	6.402000 1.046000 -1.361000	
С	7.560000 -0.152000 0.743000	

F	7.830000	-0.780000	1.900000	
F	7.978000	1.125000	0.888000	
F	8.369000	-0.699000	-0.192000	
***	0 imaginary f	roquoncios	***	
C	o inaginary i m of electroni	iequencies	oint Enorgias-	1346 004759
Su	m of electroni	ic and thorm	ol Energies-	-1340.004730
Su	m of electroni	ic and therm	al Ellergies-	-1345.970179
Su	m of electroni	ic and therm	al Enthalples=	-1345.977235
Su			al Flee Ellergie	51540.000175
Tra	nsition state	to form		
4-(4-trifluorome	ethvlphenvl	henoxenium	
cat	ion		/	
	3.679000	-1.096000	-0.030000	
C	2.195000	0.302000	0.096000	
C	0.070000	2.065000	0.321000	
С	2.032000	1.037000	1.286000	
С	1.313000	0.456000	-0.985000	
С	0.239000	1.333000	-0.855000	
С	0.973000	1.928000	1.383000	
H	2.727000	0.904000	2.110000	
Н	1.470000	-0.097000	-1.906000	
Н	-0.462000	1.449000	-1.677000	
Н	0.838000	2.505000	2.293000	
Н	-0.762000	2.757000	0.410000	
0	1.917000	-2.750000	0.529000	
С	0.750000	-2.241000	0.416000	•
С	-1.853000	-1.192000	0.199000	
С	-0.001000	-2.390000	-0.803000	
С	0.166000	-1.504000	1.501000	
С	-1.106000	-1.000000	1.386000	
С	-1.281000	-1.910000	-0.885000	
Н	0.474000	-2.898000	-1.638000	
Н	0.745000	-1.390000	2.414000	
Н	-1.552000	-0.472000	2.224000	
Н	-1.842000	-2.029000	-1.807000	
С	-3.217000	-0.648000	0.085000	
С	-4.186000	-1.316000	-0.682000	
С	-3.568000	0.542000	0.744000	
С	-5.478000	-0.812000	-0.782000	
Н	-3.943000	-2.250000	-1.179000	
С	-4.854000	1.057000	0.634000	
Н	-2.828000	1.086000	1.323000	
С	-5.802000	0.376000	-0.129000	
Н	-6.223000	-1.345000	-1.364000	
Н	-5.110000	1.985000	1.136000	
С	-7.207000	0.902000	-0.203000	
F	-7.258000	2.244000	-0.125000	
F	-7.972000	0.432000	0.806000	
F	-7.827000	0.552000	-1.344000	
0	4.832000	2.223000	-0.638000	

C 6.037000 2.123000 -0.506000 O 6.596000 0.912000 -0.660000 C 6.962000 3.257000 -0.185000 H 7.520000 3.034000 0.730000 H 6.390000 4.176000 -0.057000 H 7.684000 3.380000 -0.999000 H 7.562000 0.941000 -0.533000 *** 1 imaginary frequency (-164.0430) *** Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Energies=	-1345.985267 -1345.958764 1345.957820
Sum of electronic and thermal Free Energie	s= -1346.048406
Protonated iodane from 4-(4-fluorophenyl)phenol	
$ \begin{array}{ll} -2.531000 & -0.608000 & -0.592000 \\ C & -1.825000 & 1.275000 & 0.562000 \\ C & -2.098000 & 2.353000 & -0.893000 \\ C & -1.024000 & 1.384000 & 1.081000 \\ C & -0.483000 & 2.633000 & 1.387000 \\ C & -1.543000 & 3.592000 & -0.571000 \\ H & -2.719000 & 2.233000 & -1.775000 \\ H & -0.821000 & 0.521000 & 1.708000 \\ H & -0.821000 & 0.521000 & 1.708000 \\ H & -0.821000 & 0.521000 & 1.708000 \\ H & -0.311000 & 4.697000 & 0.804000 \\ O & -1.046000 & -0.822000 & -1.931000 \\ C & 0.245000 & -0.737000 & -1.447000 \\ C & 2.885000 & -0.537000 & 0.530000 \\ C & 0.802000 & -1.783000 & -0.712000 \\ C & 0.802000 & -1.783000 & -0.712000 \\ C & 2.302000 & 0.501000 & -1.272000 \\ C & 2.302000 & 0.501000 & -1.272000 \\ C & 2.302000 & 0.501000 & -1.272000 \\ C & 2.51000 & -2.670000 & -0.505000 \\ H & 0.532000 & 1.221000 & -2.285000 \\ H & 2.868000 & 1.406000 & -1.476000 \\ H & 2.551000 & -2.508000 & 0.290000 \\ O & -4.156000 & 0.099000 & 1.031000 \\ C & -5.079000 & -1.958000 & 0.799000 \\ C & -6.083000 & -0.425000 & 2.387000 \\ H & -5.919000 & 0.586000 & 2.755000 \\ H & -5.819000 & -2.512000 & 1.114000 \\ C & 4.281000 & -0.427000 & -0.037000 \\ C & 4.637000 & -0.930000 & 1.224000 \\ C & 5.272000 & 0.185000 & -0.818000 \\ C & 5.272000 & 0.185000 & -0.818000 \\ C & 5.272000 & 0.185000 & -0.818000 \\ C & 5.943000 & -0.829000 & 1.697000 \\ \end{array}$	

H 3.883000 -1.389000 1.856000						
C 6.584000 0.297000 -0.361000						
H 5.026000 0.564000 -1.806000						
C 6.887000 -0.215000 0.890000						
H 6.225000 -1.207000 2.675000						
Н 7.358000 0.763000 -0.962000						
F 8.160000 -0.111000 1.344000						
*** 0 imaginary frequencies ***						
Sum of electronic and zero-point Energies=1108 274514						
Sum of electronic and thermal Energies= -1108 250968						
Sum of electronic and thermal Enthalpies= -1108 250024						
Sum of electronic and thermal Eree Energies=1108 331683						

Tra	insition state to form	
4-(4	4-fluorophenyl)phenoxenium cation	
1		
C	1 329000 0 466000 -0.026000	
c	-0 714000 2 334000 0 030000	
c	1 205000 1 316000 1 088000	
Ċ	0 450000 0 553000 -1 116000	
Ċ	-0.582000 1.487000 -1.071000	
Č	0.187000 2.259000 1.099000	
Н	1.896000 1.231000 1.922000	
Н	0.576000 -0.094000 -1.979000	2
н	-1.281000 1.554000 -1.900000	
Н	0.083000 2.926000 1.949000	
Н	-1.515000 3.067000 0.052000	
0	0.903000 -2.515000 0.677000	• •
С	-0.251000 -1.974000 0.524000	
С	-2.815000 -0.841000 0.220000	
С	-1.016000 -2.206000 -0.669000	
С	-0.797000 -1.121000 1.537000	
С	-2.048000 -0.575000 1.382000	
C	-2.278000 -1.683000 -0.790000	
H	-0.571000 -2.807000 -1.456000	
H	-0.207000 -0.945000 2.432000	
Н	-2.462000 0.045000 2.170000	
H	-2.847000 -1.865000 -1.696000	
C	-4.148000 -0.245000 0.054000	
C	-5.145000 -0.913000 -0.679000	
	-4.940000 -1.090000 -1.109000 5.705000 1.576000 0.474000	
Ц	-3.689000 1.570000 0.474000	
C	-6 659000 0 876000 -0 252000	
Н	-7 195000 -0.873000 -1.377000	
Н	-5.946000 2.546000 0.897000	
F	-7.883000 1.422000 -0.400000	
0	4.503000 1.724000 -0.626000	

C5.6630001.426000-0.417000O5.9880000.124000-0.381000C6.7750002.406000-0.196000H7.2500002.2170000.772000H6.3830003.423000-0.226000H7.5340002.279000-0.975000H6.937000-0.012000-0.203000	
*** 1 imaginary frequency (-177.0673) *** Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energie	-1108.257547 -1108.233740 -1108.232796 es= -1108.316301
Protonated iodane from 4-(4-bromophenyl)phenol	
$ \begin{array}{ll} -3.505000 & -0.591000 & -0.559000 \\ C & -2.834000 & 1.291000 & 0.020000 \\ C & -1.808000 & 3.754000 & 0.701000 \\ C & -3.162000 & 2.391000 & -0.770000 \\ C & -2.006000 & 1.383000 & 1.137000 \\ C & -2.006000 & 1.383000 & 1.475000 \\ C & -2.637000 & 3.634000 & -0.416000 \\ H & -3.805000 & 2.286000 & -1.638000 \\ H & -1.762000 & 0.505000 & 1.726000 \\ H & -0.846000 & 2.733000 & 2.341000 \\ H & -2.879000 & 4.507000 & -1.014000 \\ H & -2.879000 & 4.507000 & -1.014000 \\ H & -1.404000 & 4.725000 & 0.969000 \\ C & -2.051000 & -0.737000 & -1.938000 \\ C & -0.745000 & -0.647000 & -1.504000 \\ C & 1.947000 & -0.460000 & -0.759000 \\ C & -0.138000 & -1.710000 & -0.834000 \\ C & -0.029000 & 0.517000 & -1.784000 \\ C & 1.311000 & 0.602000 & -1.417000 \\ C & 1.201000 & -1.612000 & -0.469000 \\ H & -0.711000 & -2.609000 & -0.621000 \\ H & -0.526000 & 1.342000 & -2.287000 \\ H & 1.860000 & 1.515000 & -1.629000 \\ H & 1.677000 & -2.457000 & 0.023000 \\ O & -5.151000 & -0.072000 & 1.081000 \\ C & -5.949000 & -0.930000 & 1.477000 \\ O & -5.845000 & -2.143000 & 0.976000 \\ C & -7.014000 & -0.639000 & 2.477000 \\ H & -6.923000 & 0.388000 & 2.829000 \\ H & -6.512000 & -2.758000 & 1.338000 \\ C & 3.382000 & -0.368000 & -0.387000 \\ C & 3.853000 & -0.922000 & 0.811000 \\ C & 4.299000 & 0.272000 & -1.231000 \\ C & 5.198000 & -0.843000 & 1.161000 \\ \end{array}$	

Н	3.161000	-1.406000	1.495000			
С	5.648000	0.360000	-0.895000			
Н	3.968000	0.691000	-2.178000			
С	6.083000	-0.201000	0.301000			
Н	5.546000	-1.272000	2.096000			
Н	6.346000	0.851000	-1.565000			
Br	7.922000	-0.086000	0.768000			
*** 0	*** 0 imaginary frequencies ***					
Sum	O inaginary nequencies					
Sum	Sum of electronic and zero-point Energies= -3579.949408					
Sum of electronic and thermal Energies= -3579.925167						
Sum of electronic and thermal Enthalpies -3579.924222						
Sum	Sum of electronic and thermal Free Energies= -3580.009511					

Tra 4-(4	nsition state	e to form nyl)phenoxe	enium cation	
	3 720000	1 054000	0.040000	
	2 236000	0 343000	0.049000	
C	0.095000	2 078000	0.359000	
C	2 088000	1 074000	1 288000	
c	1 334000	0 485000	-0.970000	
Ċ	0.252000	1.350000	-0.821000	
Č	1.019000	1.952000	1.404000	
Н	2,798000	0.949000	2.099000	
н	1.481000	-0.066000	-1.894000	9
Н	-0.465000	1.457000	-1.630000	
Н	0.892000	2.527000	2.317000	
н	-0.745000	2.759000	0.464000	
0	2.018000	-2.703000	0.529000	•
С	0.831000	-2.225000	0.427000	
С	-1.798000	-1.231000	0.228000	
С	0.073000	-2.400000	-0.779000	
С	0.241000	-1.500000	1.514000	
С	-1.043000	-1.023000	1.408000	
С	-1.220000	-1.947000	-0.853000	
Н	0.550000	-2.902000	-1.617000	
H	0.824000	-1.369000	2.421000	
H	-1.491000	-0.502000	2.249000	
H	-1.783000	-2.084000	-1.771000	
C	-3.164000	-0.700000	0.116000	
C	-4.130000	-1.361000	-0.661000	
C	-3.528000	0.482000	0.784000	
C	-5.424000	-0.864000	-0.764000	
Н	-3.886000	-2.290000	-1.166000	
	-4.814000	0.996000	0.075000	
	-2.190000	1.02/000	1.312000	
	-0.702000	1 304000	-0.090000	
н	-5.100000	1 918000	1 182000	
Br	-7 508000	1 008000	-0.248000	
0	4.928000	2.179000	-0.649000	

С	6.131000	2.071000	-0.517000				
0	6.683000	0.857000	-0.672000				
С	7.063000	3.201000	-0.196000				
Н	7.618000	2.975000	0.721000				
Н	6.496000	4.123000	-0.069000				
Н	7.787000	3.319000	-1.008000				
Н	7.649000	0.881000	-0.545000				
***	*** 1 imaginary fraguancias (176 2262) ***						
	Timaginary nequencies (-176.3563)						
Sum	Sum of electronic and zero-point Energies= -3579.931411						
Sum	Sum of electronic and thermal Energies= -3579.907078						
Sum of electronic and thermal Enthalpies= -3579.906134							
Sum of electronic and thermal Free Energies= -3579.991940							

Pr	otonated iodane fro	om	
4-	(4-methoxyphenyl)p	phenol	
1	-2 870000 -0 600	000 -0.578000	
C	-2 159000 1 284	4000 -0 052000	
Č	-1.071000 3.740	0000 0.549000	
С	-2.437000 2.359	9000 -0.893000	
С	-1.353000 1.39	7000 1.079000	
С	-0.810000 2.64	7000 1.377000	
С	-1.880000 3.599	9000 -0.580000	
Н	-3.063000 2.230	6000 -1.771000	
Н	-1.147000 0.53	7000 1.708000	
Н	-0.178000 2.76	1000 2.252000	
Н	-2.082000 4.452	2000 -1.220000	
Н	-0.640000 4.709	9000 0.785000	v
0	-1.399000 -0.82	20000 -1.930000	
С	-0.103000 -0.74	7000 -1.457000	
С	2.552000 -0.580	0000 -0.572000	
С	0.458000 -1.810	0000 -0.750000	
С	0.642000 0.402	2000 -1.718000	
С	1.961000 0.478	8000 -1.279000	
С	1.778000 -1.72	.3000 -0.318000	
Н	-0.136000 -2.70	0000 -0.554000	
Н	0.182000 1.228	.8000 -2.254000	
H	2.527000 1.386	6000 -1.469000	
H	2.218000 -2.56	8000 0.205000	
0	-4.481000 0.03		
C	-5.374000 -0.74	9000 1.412000	
0	-5.409000 -1.93	36000 0.845000	
	-6.394000 -0.39	18000 2.440000	
п	-7.392000 -0.48		
	-0.224000 0.01	2000 2.002000	
		2000 3.207000	
	3 958000 -2.40		
	4 3530000 -0.49	8000 1 120000	
	4 934000 - 1.000		
C	5 666000 -0 97	6000 1 559000	

Н	3.619000	-1.553000	1,750000			
C	6 260000	0 255000	-0 437000			
й	4 660000	0.504000	-1 826000			
	4.009000	0.334000	-1.020000			
C	0.028000	-0.319000	0.782000			
H	5.964000	-1.408000	2.511000			
Н	6.985000	0.763000	-1.063000			
С	8.890000	0.403000	0.553000			
Н	9.806000	0.316000	1.137000			
Н	9.038000	-0.055000	-0.431000			
Н	8.627000	1.460000	0.436000			
0	7.891000	-0.288000	1.293000			
*** 0	imaginary f	roquoncios	***			
	o inaginary nequencies					
Sum	of electroni	c and zero-p	ooint Energies=	-1123.503027		
Sum	of electroni	c and therm	al Energies=	-1123.477906		
Sum	of electroni	c and therm	al Enthalpies=	-1123.476961		
Sum	of electroni	c and therm	al Free Energie	s= -1123.561647		

Tra 4-(4	Transition state to form 4-(4-methoxyphenyl)phenoxenium cation						
1	3.045000	-0.970000	-0.032000				
Ċ	1.666000	0.539000	-0.033000				
С	-0.376000	2.403000	0.076000				
С	1.575000	1.391000	1.081000				
С	0.756000	0.619000	-1.096000				
С	-0.276000	1.552000	-1.025000				
С	0.556000	2.334000	1.118000				
Н	2.289000	1.310000	1.895000				
Н	0.855000	-0.035000	-1.957000				
Н	-1.000000	1.613000	-1.833000				
Н	0.475000	3.004000	1.968000				
Н	-1.179000	3.133000	0.120000				
0	1.302000	-2.426000	0.711000				
С	0.120000	-1.920000	0.573000				
С	-2.491000	-0.880000	0.309000				
С	-0.659000	-2.196000	-0.595000				
С	-0.430000	-1.073000	1.582000				
С	-1.704000	-0.573000	1.448000				
С	-1.941000	-1.718000	-0.699000				
Н	-0.212000	-2.794000	-1.385000				
н	0.171000	-0.861000	2.462000				
н	-2.120000	0.042000	2.240000				
Н	-2.520000	-1.935000	-1.591000				
C	-3.844000	-0.338000	0.169000				
C	-4.829000	-1.026000	-0.559000				
	-4.202000	0.889000	0.768000				
	-0.124000	-0.533000					
	-4.001000	-1.900000	-1.013000				
	-0.479000	1.399000	1 215000				
	-3.400000	0.688000	0.080000				
U	-0.400000	0.000000	-0.000000				

	6 961000	1 105000	1 222000			
	-0.001000	-1.105000	-1.232000			
н	-5.748000	2.352000	1.088000			
С	-8.707000	0.568000	-0.843000			
Н	-8.894000	-0.413000	-0.396000			
Н	-9.597000	1.190000	-0.748000			
Н	-8.446000	0.457000	-1.901000			
0	-7.677000	1.257000	-0.138000			
0	4.848000	1.632000	-0.718000			
С	6.005000	1.328000	-0.495000			
0	6.323000	0.026000	-0.453000			
С	7.118000	2.305000	-0.264000			
Н	7.577000	2.119000	0.712000			
Н	6.730000	3.323000	-0.305000			
Н	7.887000	2.170000	-1.031000			
Н	7.269000	-0.116000	-0.266000			
***	*** 1 imaginary frequency (220.3853) ***					
Sum	n naginary i	a and zora	zzu.3033)	1100 100151		
Sum of electronic and zero-point Energies=				-1123.488454		
Sun	1 of electroni	c and therm	al Energies=	-1123.463002		
Sun	n of electroni	c and therm	al Enthalpies=	-1123.462058		
Sum	n of electroni	c and therm	al Free Energies=	-1123.549361		

Pro 4-(4	otonated ioda 4-ethoxycarb	ane from onylpheny	l)phenol	
I.	-3 755000	-0.305000	-0 703000	
Ċ	-3 057000	1 029000	0 735000	
Ċ	-1 980000	2 827000	2 521000	
č	-3.478000	2.356000	0.679000	
Č	-2.112000	0.574000	1.653000	
Ĉ	-1.575000	1.492000	2.555000	
Ċ	-2.926000	3.258000	1.589000	Ĩ
Н	-4.210000	2.682000	-0.053000	
Н	-1.797000	-0.466000	1.663000	💕 💜
Н	-0.837000	1.161000	3.279000	
Н	-3.239000	4.298000	1.567000	
Н	-1.555000	3.537000	3.224000	
0	-2.415000	0.390000	-2.033000	
С	-1.081000	0.317000	-1.692000	
С	1.651000	0.242000	-1.089000	
С	-0.405000	-0.903000	-1.704000	
С	-0.412000	1.497000	-1.366000	
С	0.949000	1.455000	-1.076000	
С	0.953000	-0.935000	-1.403000	
Н	-0.942000	-1.813000	-1.960000	
Н	-0.962000	2.434000	-1.342000	
Н	1.462000	2.376000	-0.811000	
Н	1.481000	-1.884000	-1.441000	
0	-5.264000	-0.805000	1.056000	
С	-6.078000	-1.732000	0.957000	
0	-6.080000	-2.432000	-0.157000	
С	-7.040000	-2.077000	2.040000	

Н	-8.060000 -1.978000 1.655000	
Н	-6.892000 -1.416000 2.893000	
Н	-6.887000 -3.120000 2.336000	
Н	-6.750000 -3.143000 -0.151000	
С	3.103000 0.204000 -0.786000	
С	3.661000 -0.867000 -0.070000	
С	3.949000 1.238000 -1.215000	
С	5.022000 -0.905000 0.210000	
Н	3.022000 -1.668000 0.289000	
С	5.309000 1.204000 -0.938000	
Н	3.542000 2.066000 -1.790000	
С	5.854000 0.133000 -0.224000	
Н	5.433000 -1.737000 0.771000	
Н	5.956000 2.006000 -1.282000	
С	7.316000 0.135000 0.052000	
0	8.075000 1.017000 -0.316000	
0	7.722000 -0.925000 0.746000	
С	9.130000 -0.996000 1.065000	
Н	9.398000 -0.103000 1.637000	
Н	9.695000 -0.998000 0.128000	
С	9.346000 -2.261000 1.859000	
H	9.061000 -3.143000 1.277000	
H	10.406000 -2.347000 2.118000	
Н	8.766000 -2.246000 2.787000	
*** () imaginary frequencies ***	
Sun	n of electronic and zero-point Energies=	-1276.084850
Sun	n of electronic and thermal Energies=	-1276.056297
Sun	n of electronic and thermal Enthalpies=	-1276.055353
Sun	n of electronic and thermal Free Energies	-1276.150854
Tra	nsition state to form	
4-(4	-ethoxycarbonylphenyl)phenoxenium	
cati	on	
Ι	3.983000 -1.061000 -0.129000	٥
С	2.496000 0.331000 0.029000	~
С	0.363000 2.073000 0.316000	
С	2.395000 1.108000 1.198000	
С	1.548000 0.431000 -1.002000	
С	0.471000 1.298000 -0.840000	

С	2.395000	1.108000	1.198000
С	1.548000	0.431000	-1.002000
С	0.471000	1.298000	-0.840000
С	1.330000	1.989000	1.325000
Н	3.140000	1.017000	1.983000
Н	1.658000	-0.157000	-1.909000
Н	-0.280000	1.373000	-1.622000
Н	1.241000	2.599000	2.219000
Н	-0.474000	2.756000	0.429000
0	2.285000	-2.712000	0.584000
С	1.104000	-2.223000	0.529000
С	-1.514000	-1.189000	0.429000
С	0.277000	-2.433000	-0.629000
С	0 582000	-1 447000	1 618000

C -0.097000 -0.949000 1.301000 C -1.010000 -1.962000 -0.651000 H 0.700000 -2.978000 -1.469000 H 1.216000 -1.291000 2.487000				
H 0.70000 -1.982000 -0.851000 H 1.216000 -1.291000 2.487000				
H 1.216000 -1.291000 2.487000				
H -1.092000 -0.384000 2.399000				
H -1.628000 -2.126000 -1.528000				
C = -2.873000 - 0.628000 = 0.362000				
C = -3.893000 = 1.308000 = 0.325000				
C -3.168000 0.600000 0.980000				
C -5.176000 -0.779000 -0.388000				
H -3.693000 -2.270000 -0.787000				
C -4.446000 1.136000 0.904000				
H -2.389000 1.153000 1.496000				
C -5.454000 0.448000 0.221000				
Н -5.958000 -1.322000 -0.909000				
H -4.666000 2.091000 1.370000				
C -6.812000 1.063000 0.160000				
O -7.090000 2.136000 0.668000				
O -7.691000 0.322000 -0.507000				
C -9.033000 0.849000 -0.624000				
H -9.430000 1.001000 0.384000				
H -8.975000 1.816000 -1.132000				
C -9.842000 -0.158000 -1.406000				
H -9.880000 -1.119000 -0.884000				
H -10.865000 0.214000 -1.519000				
H -9.418000 -0.311000 -2.403000				
O 5.182000 2.166000 -0.787000				
C 6.386000 2.055000 -0.660000				
O 6.935000 0.840000 -0.815000				
C 7.321000 3.183000 -0.343000				
H 7.877000 2.958000 0.573000				
H 6.757000 4.107000 -0.219000				
H 8.045000 3.296000 -1.157000				
H 7.902000 0.862000 -0.692000				
*** 1 imaginary frequency (-168 0200) ***				
Sum of electronic and zero-point Energies= -1276.065452				
Sum of electronic and thermal Energies -1276.036863				
Sum of electronic and thermal Enthalpies= -1276.035919				
Sum of electronic and thermal Free Energies= -1276,130229				

	· ·		· ·	· · ·	· ·		· · ·	· ·		· · ·	· .		· · ·	· · ·	· (· · ·	· .		· · ·		· I	· I		
10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-220	-230	-240	-25
												f1 (ppm)											

S85

|--|

												, , , , , , , , , , , , , , , , , , ,
-119.18	-119.22	-119.26	-119.30	-119.34	-119.38	-119.42 f1 (ppm)	-119.46	-119.50	-119.54	-119.58	-119.62	-119.66

00	,0	00	50	100	110	120	100	110	100	100	1,0	100	100	200
						4	(mmm)							
							T (DDIII)							
							ALL Y							

ÓМе

-113.35 -113.37 -113.41 -113.43 -113.45 -113.47 -113.49 -113.51 -113.53 -113.55 -113.57 -113.59 -113.61 -113.63 -113.65 -113.67 -113.69 -113.71 -113.7 f1 (ppm)

