Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

contents

1. General methods	S2
2. NMR spectra for time-course study	S 3
3. Reaction by dropwise addition	S4
4. Esterification using DMT-MM and 3,5-lutidine	S5
5. Experimental procedure and characterization data for products	S6
6. References	S10
7. HPLC analyses	S11
8. ¹ H and ¹³ C NMR spectra	S13

1. General methods

Nuclear magnetic resonance (¹H NMR (400 MHz), ¹³C NMR (100 MHz)) spectra were determined on a JEOL JNM-ECS400 spectrometer. Chemical shifts for ¹H NMR are reported as δ values relative to tetramethylsilane as the internal standard and coupling constants are in hertz (Hz). The following abbreviations are used for spin multiplicity: s = singlet, d = doublet, t = triplet, m = multiplet, br = broad. Chemical shifts for ¹³C NMR were reported in ppm relative to the center line of a triplet at 77.16 ppm for deuteriochloroform. Mass spectra were measured on JMS-T100TD (DART). Analytical thin layer chromatography (TLC) was performed on Merck precoated analytical plates, 0.25 mm thick, silica gel 60 F₂₅₄. Preparative TLC separations were performed on KANTO CHEMICAL Silica Gel 60 N (spherical, neutral, 40-100 mesh) unless otherwise noted. Amino acid derivatives, Cbz-phenylalanine **1f** and Boc-alanine **1g**, were purchased from Watanabe chemical industries, LTD and used without further purification. Other reagents were commercial grades and were used without any purification unless otherwise noted. All reactions sensitive to oxygen or moisture were conducted under a N₂ atmosphere.

2. NMR spectra for time-course study

FigureS1. NMR spectra for the reaction using DMT-3,5-LUT at 10 min after reaction initiation. (a) overall picture

(b) Yields were determined based on these signals.

3. Reaction by dropwise addition

The reaction was conducted by dropwise addition of the solution of 1h and NMM.

4. Esterification using DMT-MM and 3,5-lutidine

Esterification using a combination of DMT-MM and 3,5-lutidine for 1 h afforded products **3ha** and **8** in 50% and 45% yields, respectively (Scheme S2). After 3 hours, **3ha** increased to 85% and **8** decreased to 12%, respectively. These results are ascribed to the low solubility of DMT-MM in CDCl₃ and the low basicity of 3,5-lutidine, which is insufficient to generate carboxylate anions.

Scheme S1.

5. Experimental procedure and characterization data for products

General procedure for the synthesis of the condensing reagents:

To a solution of CDMT (2.23 g, 12.7 mmol) in THF (25 mL) was added 3,5-lutidine (1.74 mL, 15.2 mmol) at room temperature. After stirring for 4 hours, a precipetate was filtered and washed with THF to give DMT-3,5-LUT (3.47 g, 97% yield) as a white solid.

1-(4,6-dimethoxy-1,3,5-triazin-2-yl)-3-methylpyridin-1-ium chloride (DMT-3-PIC)

¹H NMR (400 MHz, CDCl₃): δ 10.2 (d, J = 6.4 Hz, 1H), 10.1 (s, 1H), 9.01 (d, J = 8.2 Hz, 1H), 8.62 (dd, J = 6.4, 8.2 Hz, 1H), 4.30 (s, 6H), 2.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 173.6, 164.6, 153.2, 140.2, 139.8, 138.6, 128.8, 57.4, 19.1; HRMS (ESI+) Calcd for C₁₁H₁₃N₄O₂⁺ ([M]⁺): 233.1039; found: 233.1046.

1-(4,6-dimethoxy-1,3,5-triazin-2-yl)-3,5-dimethylpyridin-1-ium chloride (DMT-3,5-LUT)

¹H NMR (400 MHz, CDCl₃): δ 9.98 (s, 2H), 8.68 (s, 1H), 4.32 (s, 6H), 2.80 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 173.7, 164.7, 153.6, 139.6, 137.8, 57.6, 19.1; HRMS (ESI+) Calcd for C₁₂H₁₅N₄O₂⁺([M]⁺): 247.1195; found: 247.1201.

3-(4,6-dimethoxy-1,3,5-triazin-2-yl)-1,5-dimethyl-1H-imidazol-3-ium chloride (DMT-1,2-M2Im)

¹H NMR (400 MHz, CDCl₃): δ 8.48 (d, J = 2.3 Hz, 1H), 8.18 (d, J = 2.3 Hz, 1H), 4.31 (s, 3H), 4.16 (s, 6H), 3.33 (s, 3H) ; ¹³C NMR (100 MHz, CDCl₃): δ 173.3, 163.2, 147.9, 124.8, 118.8, 56.7, 36.9, 15.0; HRMS (ESI+) Calcd for C₁₀H₁₄N₅O₂⁺ ([M]⁺): 236.1148; found: 236.1153.

3-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-1,4-dimethyl-1H-imidazol-3-ium chloride (DMT-1,4-M2Im)

MeO Me MeC

¹H NMR (400 MHz, CDCl₃): δ 11.6 (s, 1H), 7.51 (s, 1H), 4.36 (s, 3H), 4.23 (s, 6H), 2.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 173.4, 163.2, 140.1, 132.0, 122.8, 57.3, 37.5, 13.2; HRMS (ESI+) Calcd for C₁₀H₁₄N₅O₂⁺ ([M]⁺): 236.1148; found: 236.1142.

3-(4,6-dimethoxy-1,3,5-triazin-2-yl)-1,5-dimethyl-1*H*-imidazol-3-ium chloride (DMT-1,5-M2Im)

¹H NMR (400 MHz, CDCl₃): δ 11.94 (s, 1H), 7.87 (s, 1H), 4.28 (s, 3H), 4.24 (s, 6H) 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 173.6, 161.5, 139.6, 133.0, 114.8, 57.4, 35.0, 9.6; HRMS (ESI+) Calcd for C₁₀H₁₄N₅O₂⁺ ([M]⁺): 236.1148; found: 236.1149.

General procedure for esterification using DMT-3,5-LUT:

To a suspension of DMT-3,5-LUT (271 mg, 0.96 mmol) in CH_2Cl_2 (1 mL) was added a solution of 3phenylpropionic acid **1a** (120 mg, 0.80 mmol), 1,3-diphenylpropan-2-ol **2b** (192 µL, 0.96 mmol), and *N*methylmorpholine (106 µL, 0.96 mmol) in CH_2Cl_2 (1 mL) at room temperature. After stirring for 9 hours, the reaction mixuture was washed with 1 M HCl, sat. aq. NaHCO₃, and brine. The organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/AcOEt 95:5) to afford **3ab** (254 mg, 92%) as a liquid.

Phenethyl 3-phenylpropanoate (3aa)¹⁾

¹H NMR (400 MHz, CDCl₃): δ 7.35-7.10 (m, 10H), 4.28 (t, *J* = 6.9 Hz, 2H), 2.95-2.87 (m, 4H), 2.61 (t, *J* = 7.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 172.9, 140.6, 137.9, 129.0, 128.6, 128.4, 126.7, 126.4, 65.1, 36.0, 35.2, 31.0; HRMS (DART+) Calcd for C₁₇H₁₉O₂ ([M+H]⁺): 255.1385; found: 255.1379.

1,3-Diphenylpropan-2-yl 3-phenylpropanoate (3ab)

¹H NMR (400 MHz, CDCl₃): δ 7.30-7.13 (m, 13H), 7.12-7.07 (m, 2H), 5.31 (quint, *J* = 6.4 Hz, 1H), 2.90-2.79 (m, 4H), 2.78 (t, *J* = 7.8 Hz, 2H), 2.49 (t, *J* = 7.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 172.3, 140.7, 137.6, 129.6, 128.6, 128.5, 128.4, 126.7, 126.3, 75.4, 40.1, 36.1, 31.0; HRMS (DART+) Calcd for C₂₄H₂₄O₂ ([M+H]⁺): 345.1855; found: 345.1844.

Phenethyl cyclohexanecarboxylate (3ba)²⁾

¹H NMR (400 MHz, CDCl₃): δ 7.33-7.27 (m, 2H), 7.26-7.19 (m, 3H), 4.28 (t, *J* = 6.9 Hz, 2H), 2.93 (t, *J* = 6.9 Hz, 2H), 2.27 (tt, *J* = 12.0,4.0 Hz, 1H), 1.90-1.82 (m, 2H), 1.78-1.67 (m, 2H), 1.67-1.57 (m, 1H), 1.47-1.30 (m, 2H) 1.32-1.13 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 176.2, 138.2, 129.1, 128.6, 126.6, 64.7, 43.3, 35.3, 29.1, 25.9, 25.6; HRMS (DART+) Calcd for C₁₅H₂₁O₂ ([M+H]⁺): 233.1542; found: 233.1538.

1,3-Diphenylpropan-2-yl cyclohexanecarboxylate (3bb)

¹H NMR (400 MHz, CDCl₃): δ 7.40-7.10 (m, 10H), 5.31 (quint, *J* = 6.4 Hz, 1H), 2.86 (d, *J* = 6.4 Hz, 4H), 2.20-2.10 (m, 1H), 1.75-1.54 (m, 5H), 1.35-1.09 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 175.6, 137.7, 129.6, 128.4, 126.6, 74.7, 43.5, 40.2, 29.0, 25.9, 25.5; HRMS (DART+) Calcd for C₂₂H₂₆O₂ ([M+H]⁺): 323.2011; found: 323.2017.

Phenethyl (3r,5r,7r)-adamantane-1-carboxylate (3ca)³⁾

¹H NMR (400 MHz, CDCl₃): δ 7.34-7.27 (m, 2H), 7.25-7.19 (m, 3H), 4.26 (t, *J* = 6.9 Hz, 2H), 2.93 (t, *J* = 6.9, 2H), 2.05-1.60 (m, 16H); ¹³C NMR (100 MHz, CDCl₃): δ 177.8, 138.2, 129.1, 128.6, 126.6, 64.7, 40.8, 39.0, 36.7, 35.3, 28.1; LRMS (DART+) Calcd for C₁₉H₂₅O₂([M+H]⁺): 285.1855; found: 285.1860.

Phenethyl benzoate (3da)¹⁾

¹H NMR (400 MHz, CDCl₃): δ 8.05-7.95 (m, 2H), 7.59-7.51 (m, 1H), 7.47-7.40 (m, 2H), 7.37-7.20 (m, 5H), 4.54 (t, *J* = 6.9 Hz, 2H), 3.09 (t, *J* = 6.9, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 166.6, 138.0, 133.0, 130.4, 129.7, 129.1, 128.6, 128.4, 126.7, 65.6, 35.3; HRMS (DART+) Calcd for C₁₅H₁₄O₂ ([M+H]⁺): 227.1072; found:227.1065.

Phenyl 3-phenylpropanoate (3ad)⁴⁾

¹H NMR (400 MHz, CDCl₃): δ 7.42-7.18 (m, 8H), 7.04-6.98 (m, 2H), 3.08 (t, *J* = 7.8 Hz, 2H), 2.89 (d, *J* = 7.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 171.6, 150.8, 140.3, 129.5, 128.7, 128.6, 126.6, 126.0, 121.7, 36.1, 31.1; HRMS (DART+) Calcd for C₁₅H₁₅O₂ ([M+H]⁺): 227.1072; found: 227.1078.

Diphenethyl malonate (3ea)⁵⁾

¹H NMR (400 MHz, CDCl₃): δ 7.35-7.13 (m, 10H), 4.34 (t, J = 7.1 Hz, 4H), 3.35 (s, 2H), 2.93 (t, J = 7.1 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 166.5, 137.5, 129.0, 128.7, 126.8, 66.1, 41.7, 35.0; HRMS (DART+) Calcd for C₁₉H₂₁O₄ ([M+H]⁺): 313.1440; found: 313.1446.

Benzyl ((benzyloxy)carbonyl)-L-phenylalaninate (3fe)⁶

¹H NMR (400 MHz, CDCl₃): δ 7.42-7.15 (m, 13H), 7.05-6.96 (m, 2H), 5.23 (d, *J* = 7.7 Hz, 1H), 5.16 (d, *J* = 11.9 Hz, 1H), 5.11 (d, *J* = 11.9 Hz, 1H), 5.15 (d, *J* = 12.8 Hz, 1H), 5.07 (d, *J* = 12.8 Hz, 1H), 4.71 (td, *J* = 5.96, 7.7 Hz, 1H), 3.15-3.06 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 171.5, 155.7, 136.3, 135.6, 135.2, 129.5, 128.75, 128.71, 128.66, 128.3, 128.2, 127.2, 67.4, 67.1, 54.9, 38.3; HRMS (DART+) Calcd for C₂₄H₂₄NO₄ ([M+H]⁺): 390.1705; found: 390.1702.

Benzyl (*tert*-butoxycarbonyl)-L-alaninate (3ge)⁷⁾

¹H NMR (400 MHz, CDCl₃): δ 7.42-7.30 (m, 5H), 5.20 (d, *J* = 12.4 Hz, 2H), 5.14 (d, *J* = 12.4 Hz, 2H), 5.04 (brs, 1H), 4.37 (quint, *J* = 7.2 Hz, 1H), 1.44 (s, 9H), 1.39 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 173.4, 155.2, 135.6, 128.7, 128.5, 128.3, 80.0, 67.1, 49.4, 28.4, 18.8; HRMS (DART+) Calcd for C₁₅H₂₂NO₄ ([M+H]⁺): 280.1549; found: 280.1545.

N-phenethyl-3-phenylpropanamide $(5)^{8}$

¹H NMR (400 MHz, CDCl₃): δ 7.32-7.15 (m, 8H), 7.10-6.98 (m, 2H), 5.31 (br s, 1H), 3.48 (td, *J* = 7.0, 6.1 Hz, 2H), 2.94 (t, *J* = 7.8 Hz, 2H), 2.74 (t, *J* = 7.0 Hz, 2H), 2.42 (t, *J* = 7.8 Hz, 2H).

4,6-dimethoxy-*N*-phenethyl-1,3,5-triazin-2-amine (6)⁸⁾

¹H NMR (400 MHz, CDCl₃): δ 7.40-7.15 (m, 5H), 5.34 (br s, 1H), 3.98 (s, 3H), 3.91 (s, 3H), 3.72 (td, *J* = 7.0, 6.2 Hz, 2H), 2.90 (t, *J* = 7.0 Hz, 2H).

6. References

- 1. S. Magens, B. Plietker, J. Org. Chem. 2010, 75, 3715-3721.
- 2. L. Lu, R. Shi, L. Liu, J. Yan, F. Lu, A. Lei, Eur. J. Org. Chem. 2016, 22, 14484-14488.
- 3. A. Chighine, S. Crosignani, M.-C. Arnal, M. Bradley, B. Linclau, J. Org. Chem. 2009, 74, 4753-4762.
- 4. M. Chanmiya Sheikh, S. Takagi, T. Yoshimura, H. Morita, Tetrahedron 2010, 66, 7272-7278.
- 5. J. Duran, M. Gulias, L. Castedo, J. L. Mascarenas, Org. Lett. 2005, 7, 5693-5696.
- 6. L. Konnert, F. Lamaty, J. Martinez, E. Colacino, J. Org. Chem. 2014, 79, 4008-4017.
- 7. J. Tummatorn, P. A. Albiniak, G. B. Dudley, J. Org. Chem. 2007, 72, 8962-8964.
- 8. M. Kunishima, T. Ujigawa, Y. Nagaoka, C. Kawachi, K. Hioki, M. Shiro, Chem. Eur. J. 2012, 18, 15856.

7. HPLC analyses Benzyl ((benzyloxy)carbonyl)-L-phenylalaninate (3fe)

Conditions

Chiralpak IB-3 4.6×25 cm

Flow: 1.0 mL/min (hexane/2-propanol = 95:5)

Detection at 254 nm

- panel a: 1. Benzyl ((benzyloxy)carbonyl)-L-phenylalaninate, 14.1 min, 50%2. Benzyl ((benzyloxy)carbonyl)-D-phenylalaninate, 17.0 min, 50%
- panel b: 1. Benzyl ((benzyloxy)carbonyl)-L-phenylalaninate, 14.2 min, 98% 2. Benzyl ((benzyloxy)carbonyl)-D-phenylalaninate, 18.1 min, 2%

Benzyl (tert-butoxycarbonyl)-L-alaninate (3ge)

Conditions

Chiralpak IB-3 4.6×25 cm

Flow: 0.5 mL/min (hexane/2-propanol = 99.5:0.5)

Detection at 208 nm

- panel a: 1. Benzyl (*tert*-butoxycarbonyl)-D-alaninate, 20.8 min, 50%2. Benzyl (*tert*-butoxycarbonyl)-L-alaninate, 23.7 min, 50%
- panel b: 1. Benzyl (*tert*-butoxycarbonyl)-D-alaninate, 21.7 min, 1% 2. Benzyl (*tert*-butoxycarbonyl)-L-alaninate, 23.3 min, 99%

1-(4,6-dimethoxy-1,3,5-triazin-2-yl)-3,5-dimethylpyridin-1-ium chloride (DMT-3,5-LUT)

3-(4,6-dimethoxy-1,3,5-triazin-2-yl)-1,5-dimethyl-1H-imidazol-3-ium chloride (DMT-1,2-M2Im)

3-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-1,4-dimethyl-1H-imidazol-3-ium chloride (DMT-1,4-M2Im)

Phenethyl 3-phenylpropanoate (3aa)

1,3-Diphenylpropan-2-yl 3-phenylpropanoate (3ab)

Phenethyl cyclohexanecarboxylate (3ba)

1,3-Diphenylpropan-2-yl cyclohexanecarboxylate (3bb)

Phenethyl (3r,5r,7r)-adamantane-1-carboxylate (3ca)³

Phenethyl benzoate (3da)

Phenyl 3-phenylpropanoate (3ad)⁴

Benzyl ((benzyloxy)carbonyl)-L-phenylalaninate (3fe)

Benzyl (tert-butoxycarbonyl)-L-alaninate (3ge)

N-phenethyl-3-phenylpropanamide (5)

4,6-dimethoxy-N-phenethyl-1,3,5-triazin-2-amine (6)

