Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Rhodium-catalyzed triazole-directed C-H bond functionalization of arenes with diazo compounds

Huanhong Wang, Xiaofei Yi, Yanli Cui,* and Wanzhi Chen*

Department of Chemistry, Zhejiang University, Hangzhou 310027, China.

Email: <u>chenwzz@zju.edu.cn;</u>

Contents

1.	General information	S2
2.	General procedure of Rh(III)-catalyzed alkylation of arenes	and diazo
	compoundsS2	
3.	X-ray diffraction analysis	S3
4.	Molecular structures of 3a and 3x	S4
5.	Characterization of data for the products	S5
6.	Mechanistic experiments	S24
7.	¹ H and ¹³ C NMR spectra of products	S29

1. General information

Unless otherwise noted, all chemicals were obtained from commercial resources and were used without further purification. All reactions were carried out in a glass thick-wall tube with magnetic stirring under the atmosphere of N₂. Thin layer chromatography (TLC) was performed on Huanghai GF254 silica gel coated plates and visualized by exposure to UV light (254 nm). Flash column chromatography was carried out using 200-300 mesh silica gel at increased pressure. ¹H NMR and ¹³C NMR were recorded on Bruker spectrometers with CDCl₃ as solvent and tetramethylsilane (TMS) as internal standard. Chemical shifts are referenced to residual solvent peaks (CHCl₃ in CDCl₃: 7.26 ppm for ¹H, 77.00 ppm for ¹³C). Data for ¹H NMR spectra are reported as follows: chemical shift (ppm, referenced to TMS; s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, m = multiplet), coupling constant (Hz), and integration. High-resolution mass spectra (HRMS) were recorded on a Bruker Apex IV FTMS mass spectrometer (ESI+). All triazoles 1^[1] and diazo compounds 2^[2] were prepared according to the published procedures.

Reference

[1] (a) J. Raushel, V. V. Fokin, *Org. Lett.*, 2010, **12**, 4952-4955; (b) T. Slagbrand, A. Volkov, P. Trillo, F. Tinnis, H. Adolfsson, ACS *Catal.*, 2017, **7**, 1771–1775.

[2] P. Sun, S. Gao, C. Yang, S. Guo, A. Lin, H. Yao, Org. Lett., 2016, 18, 6464-6467.

2. General procedure of Rh(III)-catalyzed alkylation of triazoles

1) General procedure for the synthesis of 3

1,2,3-Triazole **1** (0.2 mmol, 1.0 equiv), diazo compound **2** (0.44 mmol, 2.2 equiv), $[Cp*RhCl_2]_2$ (0.005 mmol, 2.5 mol %), AgSbF₆ (0.02 mmol, 10 mol %), and 1,2-dichloroethane (2.0 mL) were added into an oven-dried 15 mL tube with a Teflon screw cap. The sealed tube was heated at 40 °C for 12 h. The solvent was then removed under reduced pressure, and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate to afford the desired products **3**.

2) General procedure for the synthesis of 4

1,2,3-Triazole 1 (0.2 mmol, 1.0 equiv), diazo compound 2 (0.24 mmol, 1.2 equiv),

 $[Cp*RhCl_2]_2$ (0.005 mmol, 2.5 mol%), AgSbF₆ (0.02 mmol, 10 mol%), and 1,2dichloroethane (2.0 mL) were added into an oven-dried 15 mL tube with a Teflon screw cap. The sealed tube was heated at 40 °C for 2 h. The solvent was then removed under reduced pressure, and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate to afford the desired products **4**.

3. X-ray diffraction analysis

The single crystals of compounds were grown by slow diffusion of their hexane solutions for **3a** and **3x**, methanol solution for **A**. Single-crystal X-ray diffraction data were collected at 150 K for **3x**, and 273 K for **3a** and **A** on a Siemens Smart/CCD areadetector diffractometer with a MoK α radiation ($\lambda = 0.71073$ Å) by using an ω -2 θ scan mode. Unit-cell dimensions were obtained with least-squares refinement. Data collection and reduction were performed using the SMART and SAINT software.¹ All structures were solved by direct methods and refined against F^2 by the full-matrix least squares techniques.² All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were introduced in their calculated positions. The octyl group is severely disordered, which are not treated. CCDC Nos. 1844325 (**A**), 1844326 (**3a**), and 1844334 (**3x**).

- SMART-CCD Software, version 4.05; Siemens Analytical X-ray Instruments, Madison, WI, 1996.
- (2) G. K. Sheldrick, SHELXS-97 and SHELXL-97, Program for X-ray Crystal Structure Refinement; University of Götingen: Götingen, Germany 1997.

4. Molecular structures of 3a and 3x

3a

3x

Figure S1. Molecular structures of 3a and 3x. Thermal ellipsoid plot drawn at 40% probability.

5. Characterization of data for the products

tetramethyl 2,2'-(2-(1-benzyl-1*H*-1,2,3-triazol-4-yl)-5-methyl-1,3-phenylene) -dimalonate (3a)

White solid (89.5 mg, 88 %); mp 139-141 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (s, 1H), 7.43-7.37 (m, 3H), 7.36 (s, 2H), 7.32-7.30 (m, 2H), 5.62 (s, 2H), 4.57 (s, 2H), 3.64 (s, 12H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 143.2, 139.4, 134.5, 133.0, 129.8, 129.2, 128.8, 128.3, 128.0, 124.7, 54.5, 54.3, 52.8, 21.6; HRMS (ESI+) calcd for C₂₆H₂₇N₃O₈ [M+Na]⁺ 532.1696, found 532.1690.

tetramethyl 2,2'-(2-(1-benzyl-1*H*-1,2,3-triazol-4-yl)-1,3-phemylene)dimalonate (3b)

White solid (91.0 mg, 92 %); mp 166-169 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 1.2 Hz, 1H), 7.56 (s, 1H), 7.48-7.45 (m, 2H), 7.41-7.37 (m, 3H), 7.33-7.30 (m, 2H), 5.63 (s, 2H), 4.59 (s, 2H), 3.64 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 143.1, 134.5, 133.3, 131.1, 129.3, 129.2, 129.1, 128.8, 128.0, 124.7, 54.7, 54.3, 52.8; HRMS (ESI+) calcd for C₂₅H₂₅N₃O₈ [M+Na]⁺ 518.1540, found 518.1534.

tetramethyl 2,2'-(2-(1-benzyl-1*H*-1,2,3-triazol-4-yl)-5-methoxy-1,3-phemylene)

-dimalonate (3c)

White solid (100.8 mg, 96 %); mp 126-127 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.44 (s, 1H), 7.42-7.37 (m, 3H), 7.31-7.29 (m, 2H), 7.12 (s, 2H), 5.62 (s, 2H), 4.57 (s, 2H), 3.84 (s, 3H), 3.64 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 159.7, 143.1, 134.6, 134.4, 129.2, 128.8, 128.0, 124.8, 123.5, 114.9, 55.5, 54.6, 54.3, 52.8; HRMS (ESI+) calcd for C₂₆H₂₇N₃O₉ [M+Na]⁺ 548.1645, found 548.1640.

tetramethyl 2,2'-(2-(1-benzyl-1*H*-1,2,3-triazol-4-yl)-5-fluoro-1,3-phemylene) -dimalonate (3d)

White solid (86.2 mg, 84 %); mp 136-168 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (s, 1H), 7.44-7.38 (m, 3H), 7.35 (s, 1H), 7.33-7.30 (m, 3H), 5.63 (s, 2H), 4.56 (s, 2H), 3.65 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 162.5 (d, J_{C-F} = 253.5 Hz), 142.4, 135.4 (d, J_{C-F} = 8.4 Hz), 134.4, 129.2, 128.9, 128.0, 127.3 (d, J_{C-F} = 3.4 Hz), 124.8, 116.7 (d, J_{C-F} = 23.2 Hz), 54.5, 54.4, 53.0; ¹⁹F NMR (CDCl₃, 376 MHz) δ -110.1; HRMS (ESI+) calcd for C₂₅H₂₄FN₃O₈ [M+Na]⁺ 536.1445, found 536.1440.

tetramethyl 2,2'-(2-(1-benzyl-1*H*-1,2,3-triazol-4-yl)-5-chloro-1,3-phemylene) -dimalonate (3e)

White solid (64.2 mg, 61 %); mp 134-136 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.48 (s, 1H), 7.43-7.38 (m, 3H), 7.32-7.29 (m, 2H), 7.12 (s, 2H), 5.63 (s, 2H), 4.56

(s, 2H), 3.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 142.2, 135.3, 134.8, 134.3, 129.7, 129.5, 129.2, 128.9, 128.0, 124.8, 54.4, 54.3, 53.0; HRMS (ESI+) calcd for C₂₅H₂₄ClN₃O₈ [M+Na]⁺ 552.1150, found 552.1144.

White solid (90.5 mg, 79 %); mp 140-142 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.71 (s, 2H), 7.48 (s, 1H), 7.41-7.36 (m, 3H), 7.30-7.28 (m, 2H), 5.61 (s, 2H), 5.53 (s, 2H), 3.63 (s, 12H); ¹³C NMR (125 MHz, CDCl₃) δ 167.9, 142.2, 134.9, 134.3, 132.3, 130.3, 129.2, 128.9, 128.0, 124.8, 123.4, 54.4, 54.3, 53.0; HRMS (ESI+) calcd for C₂₅H₂₄BrN₃O₈ [M+Na]⁺ 596.0639, found 596.0632.

tetramethyl 2,2'-(2-(1-benzyl-1*H*-1,2,3-triazol-4-yl)-5-(methoxycarbonyl)-1,3phenylene)dimalonate (3g)

White solid (59.7 mg, 54 %); mp 123-125 °C; ¹H NMR (CDCl₃, 600 MHz) δ 8.21 (s, 2H), 7.53 (s, 1H), 7.42-7.36 (m, 3H), 7.31 (d, J = 7.8 Hz, 2H), 5.63 (s, 2H), 4.63 (s, 2H), 3.92 (s, 3H), 3.65 (s, 12H); ¹³C NMR (CDCl₃, 150 MHz) δ 170.7, 168.5, 145.0, 138.2, 136.9, 136.5, 133.7, 133.0, 131.9, 131.5, 130.7, 127.5, 57.4, 57.1, 55.6, 55.1; HRMS (ESI+) calcd for C₂₇H₂₇N₃O₁₀ [M+Na]⁺ 576.1589, found 576.1584.

tetramethyl

2,2'-(2-(1-benzyl-1*H*-1,2,3-triazol-4-yl)-5-cyano-1,3-

phenylene)dimalonate (3h)

White solid (26.0 mg, 25 %); mp 156-159 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.90 (s, 2H), 7.54 (s, 1H), 7.42-7.38 (s, 3H), 7.31 (d, *J* = 7.2 Hz, 2H), 5.63 (s, 2H), 4.60 (s, 2H), 3.67 (s, 12H); ¹³C NMR (150 MHz, CDCl₃) δ 170.2, 144.1, 138.5, 137.3, 136.7, 135.5, 131.9, 131.8, 130.7, 127.6, 120.4, 116.1, 57.2, 56.9, 55.8; HRMS (ESI+) calcd for C₂₆H₂₄N₄O₈ [M+Na]⁺ 543.1486, found 543.1474.

tetramethyl 2,2'-(2-(1-octyl-1*H*-1,2,3-triazol-4-yl)-1,3-phemylene) dimalonate (3i) White solid (80.9 mg, 78 %); mp 86-87 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (s,1H), 7.60 (d, *J* = 2.4 Hz, 2H), 7.51-7.47 (m, 1H), 4.62 (s, 2H), 4.44 (t, *J* = 7.2 Hz, 2H), 3.70 (s, 12H), 2.00-1.93 (m, 2H), 1.35-1.27 (m, 10H), 0.88 (t. *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 142.6, 133.2, 131.3, 129.3, 129.2, 124.5, 54.7, 52.9, 50.6, 31.7, 30.3, 29.1, 29.0, 26.4, 22.6, 14.1; HRMS (ESI+) calcd for C₂₆H₃₅N₃O₈ [M+Na]⁺ 540.2322, found 540.2315.

tetramethyl

2,2'-(5-methyl-2-(1-octyl-1*H*-1,2,3-triazol-4-yl)-1,3-phemylene)-

dimalonate (3j)

White solid (94.6 mg, 89 %); mp 78-79 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, 1H), 7.40 (s, 2H), 4.60 (s, 2H), 4.43(t, *J* = 6.8 Hz, 2H), 3.70 (s, 12H), 2.43 (s, 3H), 1.98-1.94 (m, 2H), 1.35-1.27 (m, 10H), 0.88 (t, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 142.6, 139.2, 132.9, 132.9, 128.5, 124.5, 54.5, 52.9, 50.5, 31.7, 30.3, 29.1, 29.0, 26.4, 22.6, 21.6, 14.1; HRMS (ESI+) calcd for C₂₇H₃₇N₃O₈ [M+Na]⁺ 554.2478, found 554.2473.

tetramethyl 2,2-(5-methoxy-2-(1-octyl-1*H*-1,2,3-triazol-4-yl)-1,3-phenylene)dimalinate (3k)

White solid (103.7 mg, 95 %); mp 78-80 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 1H), 7.16 (s, 2H), 4.60 (s, 2H), 4.43 (t, *J* = 7.2 Hz, 2H), 3.86 (s, 3H), 3.70 (s, 12H), 1.99-1.94 (m, 2H), 1.35-1.27 (m, 10H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 159.6, 142.5, 134.3, 124.6, 123.7, 114.9, 55.5, 54.6, 52.9, 50.5, 31.7, 30.3, 29.1, 28.9, 26.4, 22.6, 14.0; HRMS (ESI+) calcd for C₂₇H₃₇N₃O₉ [M+Na]⁺ 570.2428, found 570.2422.

tetramethyl 2,2-(5-fuoro-2-(1-octyl-1*H*-1,2,3-triazol-4-yl)-1,3-phenylene)dimalinate (3l)

White solid (78.4 mg, 73 %); mp 92-94 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.37 (s, 1H), 7.34 (s, 1H), 4.58 (s, 2H), 4.43 (t, *J* = 7.2 Hz, 2H), 3.69 (s, 12H), 1.96-1.93

(m, 2H), 1.33-1.25 (m, 10H), 0.86 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 162.4 (d, $J_{C-F} = 247.2$ Hz), 141.8, 135.3 (d, $J_{C-F} = 8.4$ Hz), 127.5 (d, $J_{C-F} = 3.4$ Hz), 124.7, 116.7 (d, $J_{C-F} = 23.0$ Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ -110.3; HRMS (ESI+) calcd for C₂₆H₃₄FN₃O₈ [M+Na]⁺ 558.2222, found 558.2215.

tetramethyl 2,2-(5-methyl-2-(1-phenethl-1*H*-1,2,3-triazol-4-yl)-1,3-phenylene)dimalomate (3m)

White solid (97.3 mg, 93 %); mp 116-118 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (s, 2H), 7.29-7.27 (m, 3H), 7.23-7.19 (m, 1H), 7.12-7.10 (2H), 4.68 (t, *J* = 6.8 Hz, 2H), 4.48 (s, 2H), 3.69 (s, 12H), 3.28 (t, *J* = 6.8 Hz, 2H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 142.3, 139.2, 137.0, 132.9, 129.9, 128.9, 128.7, 128.3, 127.1, 124.9, 54.4, 52.8, 51.9, 36.7, 21.5; HRMS (ESI+) calcd for C₂₇H₂₉N₃O₈ [M+Na]⁺ 546.1847, found 546.1842.

tetramethyl 2,2-(5-methoxy-2-(1-phenethl-1*H*-1,2,3-triazol-4-yl)-1,3-phenylene)dimalomate (3n)

White solid (102.3 mg, 95 %); mp 137-138 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.26 (m, 3H), 7.23-7.20 (m, 1H), 7.14 (s, 2H), 7.11 (d, *J* = 6.8 Hz, 2H) 4.68 (t, *J* = 6.8 Hz, 2H), 4.47 (s, 2H), 3.84 (s, 3H), 3.69 (s, 12H), 3.28 (t, *J* = 6.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 159.6, 142.2, 137.0, 134.3, 128.9, 128.7, 127.1, 125.0, 123.5, 114.9, 58.4, 555.4, 54.5, 52.9, 51.9, 36.7, 18.4; HRMS (ESI+) calcd for C₂₇H₂₉N₃O₉ [M+Na]⁺ 562.1802, found 562.1796.

tetramethyl 2,2-(5-fluoro-2(1-phenethyl-1*H*-1,2,3-triazol-4-yl)-1,3-phenylene)dimalonate (30)

White solid (70.0 mg, 66 %); mp 118-119 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 9.2 Hz, 2H), 7.31 (s, 1H), 7.30-7.26 (m, 2H), 7.24-7.20 (m, 1H), 7.11 (d, J = 7.2, 2H), 4.70 (t, J = 6.8, 2H), 4.46 (s, 2H), 3.71 (s, 12H), 3.29 (t, J = 6.8 Hz , 2H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 162.3 (d, J_{C-F} = 247 Hz), 141.5, 136.9, 135.3 (d, J_{C-F} = 8.0 Hz), 128.9, 128.8 (d, J_{C-F} = 24.0 Hz), 127.3 (d, J_{C-F} = 3.0 Hz), 127.1, 125.1, 116.7 (d, J_{C-F} = 23.0 Hz), 54.4, 53.1, 52.0, 36.7; ¹⁹F NMR (CDCl₃, 376 MHz) δ -110.4; HRMS (ESI+) calcd for C₂₆H₂₆FN₃O₈ [M+Na]⁺ 550.1602, found 550.1596.

tetramethyl 2,2'-(3-(1-benzyl-1*H*-1,2,3-triazol-4-yl)thiophene-2,4-diyl)-

dimalonate (3p)

White solid (73.1 mg, 73 %); mp 140-142 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.59 (s, 1H), 7.43-7.37 (m, 3H), 7.33-7.31 (m, 2H), 5.60 (s, 2H), 5.11 (s, 1H), 4.87 (s, 1H), 3.72 (s, 6H), 3.68 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 167.5, 140.9, 134.5, 132.1, 130.8, 130.6, 129.2, 128.8, 128.1, 126.2, 123.5, 54.3, 53.2, 52.9, 51.7, 51.6; HRMS (ESI+) calcd for C₂₃H₂₃N₃O₈S [M+Na]⁺ 524.1104, found 524.1098.

tetramethyl 2,2'-(2-(1-phenyl-1*H*-1,2,3-triazol-4-yl-1,3-phenylene)dimalonate (3q) White solid (58.1 mg, 59 %); mp 190-193 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.10 (s, 1H), 7.83-7.80 (m, 2H), 7.59-7.55 (m, 2H), 7.50-7.46 (m, 1H), 7.45 (s, 2H), 4.70 (s, 2H), 3.72 (s, 12H), 2.45 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 168.63, 143.41, 139.53, 136.86, 133.0, 129.9, 129.0, 127.9, 122.9, 120.5, 54.7, 52.9, 21.6; HRMS (ESI+) calcd for C₂₅H₂₅N₃O₈ [M+Na]⁺ 518.1534, found 518.1528.

tetramethyl 2,2'-(5-methyl-2-(1-(*p*-tolyl)-1*H*-1,2,3-triazol-4-yl)-1,3-phenylene)dimalonate (3r)

White solid (62.7 mg, 62 %); mp 198-200 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.04 (s, 1H), 7.68 (d, J = 8.4 Hz, 2H), 7.44 (s, 2H), 7.36 (d, J = 8.0 Hz, 2H), 4.70 (s, 2H), 3.71 (s, 12H), 2.45 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 168.7, 143.3, 139.5, 139.2, 134.6, 133.0, 130.4, 130.1, 128.0, 122.8, 120.4, 54.6, 52.9, 21.6, 21.2; HRMS (ESI+) calcd for C₂₆H₂₇N₃O₈ [M+Na]⁺ 532.1696, found 532.1690.

tetramethyl 2,2'-(2-(1-(2-(1,3-dimethoxy-1,3-dioxopropan-2-yl)-4-methylphenyl)-

1H-1,2,3-triazol-4-yl)-5-methyl-1,3-phenylene)dimalonate (3r')

White solid (28.6 mg, 22 %); mp 178-179 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.88 (s, 1H), 7.52 (s, 1H), 7.41(s, 2H), 7.34 (s, 2H), 4.79 (s, 1H), 4.70 (s, 2H), 3.74 (s, 3H), 3.71 (s, 12H), 2.48 (s, 3H), 2.44 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 168.6, 168.0, 142.8, 140.9, 139.6, 133.7, 133.3, 131.1, 130.1, 128.5, 127.8, 127.3, 126.3, 54.8, 53.1, 52.9, 52.0, 21.6, 21.4; HRMS (ESI+) calcd for C₃₁H₃₃N₃O₁₂ [M+Na]⁺ 662.1962, found 662.1954.

tetraisopropyl

2,2'-(2-(1-benzyl-1*H*-1,2,3-triazol-4-yl)-5-methyl-1,3-

phenylene)dimalonate (3s)

White solid (77 mg, 62 %); mp 119-121 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.50 (s, 1H), 7.38-7.34 (m, 5H), 7.30-7.28 (m, 2H), 5.60 (s, 2H), 5.50-4.93 (m, 4H), 4.48 (s, 2H), 2.38 (s, 3H), 1.18 (d, *J* = 6.0 Hz, 12H), 1.13 (d, *J* = 6.0 Hz, 12H); ¹³C NMR (125 MHz, CDCl₃) δ 167.8, 143.4, 138.7, 134.6, 133.1, 129.6, 129.2, 128.7, 128.3, 127.9, 124.7, 69.2, 55.2, 54.2, 21.6, 21.5, 21.4; HRMS (ESI+) calcd for C₃₄H₄₃N₃O₈ [M+Na]⁺ 644.2942, found 644.2938.

tetraethyl 2,2'-(2-(1-benzyl-1*H*-1,2,3-triazol-4-yl)-5-methyl-1,3-phenylene)dimalonate (3t)

White solid (101.4 mg, 90 %); mp 95-97 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.48 (s, 1H), 7.42-7.37 (m, 5H), 7.32-7.30 (m, 2H), 5.62 (s, 2H), 4.54 (s, 2H), 4.15-4.03 (m,

8H), 2.40 (s, 3H), 1.18 (t, J = 7.2 Hz, 12H); ¹³C NMR (CDCl₃, 100 MHz) δ 168.2, 143.3, 139.1, 134.5, 133.1, 129.2, 128.8, 128.3, 128.0, 124.7, 61.7, 54.9, 54.3, 21.6, 13.9; HRMS (ESI+) calcd for $C_{30}H_{35}N_3O_8$ [M+Na]⁺ 588.2316, found 588.2309.

diethyl 2,2'-(2-(1-benzyl-1H-1,2,3-triazol-4-yl)-5-methyl-1,3-phenylene)bis(2-(methylsulfonyl)acetate (3u)

Tautomer (1:1.6); white solid (90.6 mg, 78 %); mp 168-171 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.93 (s, 1H), 7.87 (s, 1H), 7.86, 7.78 (both s, 1H), 7.42-7.31 (m, 5H), 5.65 (s, 2H), 4.93, 4.92 (both s, 2H), 4.31-4.09 (both m, 4H), 2.89, 2.85 (both s, 6H), 2.49, 2.48 (both s, 3H), 1.24, 1.21 (both t, J = 7.2 Hz, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 164.9, 164.5, 142.2, 142.1, 140.1, 139.9, 134.6, 134.4, 131.6, 131.5, 131.3, 131.0, 129,3, 129.2, 129.0, 128.9, 128.0, 127.1, 126.7, 69.6, 69.4, 63.0, 54.6, 54.5, 40.1, 39.6, 21.7, 21.6, 13.9; HRMS (ESI+) calcd for $C_{26}H_{31}N_3O_8S_2[M+Na]^+$ 600.1451, found 600.1445.

2,2'-(2-(1-benzyl-1H-1,2,3-triazol-4-yl)-5-methyl-1,3-phenylene)bis(3diethyl oxobutanoate) (3v)

¹H NMR spectrum is complicated due to tautomerization (The ratio of two tautomers: 1/7).

Light yellow oil (82.0 mg, 81 %); ¹H NMR (400 MHz, CDCl₃) for the major tautomer: δ 12.80, 12.77 (both s, 2H), 7.43-7.33 (m, 3H), 7.19-7.17 (m, 1H), 7.11-7.08 (m, 2H), 7.00 (s, 2H), 5.52 (s, 1H), 5.52 (s, 1H), 4.02-3.87 (m, 4H), 2.40 (s, 3H), 1.78, 1.77 (both s, 3H), 1.75, 1.66 (both s, 3H); 1.01 (t, J = 7.2 Hz, 3H), 0.98 (t, J = 7.2 Hz, 3H); ¹H NMR (400 MHz, CDCl₃) for the minor tautomer: δ 7.29 (s, 3H), 7.15 (s, 1H), 6.95 (d, J = 6.8 Hz, 4H), 5.57, 5.56 (both s, 2H), 5.22 (s, 1H), 5.26 (s, 1H), 4.24-4.09 (m, 4H), 2.40 (s, 3H), 2.25 (s, 3H), 2.23 (s, 3H), 1.23 (t, J = 7.2 Hz, 3H), 1.22 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 202.7, 202.4, 174.4, 174.0, 173.5, 173.3, 172.0, 171.8, 169.1, 168.9, 146.0, 145.9, 145.0, 144.9, 138.8, 138.7 138.2, 138.0, 135.7, 135.6, 135.5, 135.2, 135.1, 134.7, 134.6, 132.6, 132.4, 132.3, 131.8, 130.6, 130.5, 129.2, 129.1, 128.5, 127.6, 127.6, 127.5, 127.3, 123.2, 123.1, 103.6, 103.5, 103.1, 103.0, 61.9, 61.8, 61.4, 60.6, 60.4, 60.3, 60.1, 54.1, 53.8, 53.7, 29.7, 29.6, 29.4, 26.9, 21.3, 21.2, 20.1, 20.0, 19.8, 14.2, 14.1, 14.0, 13.9; HRMS (ESI+) calcd for C₂₈H₃₁N₃O₆ [M+Na]⁺ 528.2105, found 528.2096.

diethyl 2,2'-(2-(1-benzyl-1*H*-1,2,3-triazol-4-yl)-5-methyl-1,3-phenylene)bis(3-oxo-3-phenylpropanoate) (3w).

¹H NMR spectrum is complicated due to tautomerization (The ratio of two tautomers: 1/7).

Yellow solid (108.8 mg, 86 %); mp 106-109 °C; ¹H NMR (400 MHz, CDCl₃) for the major tautomer: 7.86 (d, J = 6.8 Hz, 2H), 7.64 (d, J = 7.6 Hz, 1H), 7.43-7.39 (m, 2H), 7.65 (s, 1H), 7.33-7.24 (m, 6H), 7.22-7.17 (m, 2H), 7.11-7.09 (m, 3H), 7.01 (s, 1H), 5.51 (s, 1H), 5.42, 5.41 (both s, 2H), 4.14-3.78 (m, 4H), 2.18, 2.11 (both s, 3H), 1.03 (t, J = 6.8 Hz, 6H); ¹H NMR (400 MHz, CDCl₃) for the minor tautomer: δ 13.37 (s, 1H), 13.36 (s, 1H), 8.00 (d, J = 8.0 Hz, 2H), 7.74 (d, J = 7.6 Hz, 2H), 7.64 (d, J = 7.6 Hz, 1H), 7.33-7.24 (m, 2H), 7.14 (s, 3H), 7.00-6.97 (m, 2H), 6.94-6.88 (m, 4H), 6.78 (s, 1H), 6.72 (s, 1H), 6.02, 5.85 (both s, 2H), 5.39, 5.38 (both s, 2H), 4.14-3.78 (m, 4H), 2.06 (s, 3H), 2.05 (s, 3H), 0.88 (t, J = 7.2 Hz, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 194.9, 194.8, 194.0, 193.9, 172.8, 172.7, 170.4, 169.5, 169.2, 168.8, 145.0, 143.9, 143.8, 139.9, 139.7, 138.9, 135.1, 134.1, 134.0, 133.4, 133.2, 133.0, 130.0, 129.2,

128.9, 128.7, 127.9, 127.8, 127.3, 124.7, 124.6, 123.1, 123.0, 103.4, 103.4, 77.4, 77.1, 76.8, 61.6, 61.4, 61.3, 61.1, 60.9, 57.8, 54.4, 54.2, 54.1, 54.0, 29.7, 26.9, 21.5, 21.4, 21.2, 14.1, 14.0; HRMS (ESI+) calcd for $C_{38}H_{35}N_3O_6$ [M+Na]⁺ 652.2418, found 652.2416.

diethyl 2,2'-(5-methyl-2-(1-octyl-1*H*-1,2,3-triazol-4-yl)-1,3-phenylene)bis(3-oxo-3-phenylpropanoate) (3x).

¹H NMR spectrum is complicated due to tautomerization (The ratio of two tautomers: 1/5.3).

White solid (98.9 mg, 76 %); mp 104-106 °C; ¹H NMR (400 MHz, CDCl₃) for the major tautomer: δ 7.80 (d, J = 7.2 Hz, 2H), 7.69 (d, J = 7.6 Hz, 1H), 7.45-7.40 (m, 2H), 7.35-7.29 (m, 4H), 7.21-7.12 (m, 3H), 7.04 (s, 1H), 6.26, 5.93, 5.45 (s, 2H), 4.33 (t, J = 7.2 Hz, 1H), 4.26-3.93 (m, 5H), 2.23, 2.16, 2.09 (all s, 3H), 1.83-1.71 (m, 2H), 0.80 (t, J = 6.4 Hz, 3H); ¹H NMR (400 MHz, CDCl₃) for the minor tautomer: δ 13.43 (s, 1H), 13.41 (s, 1H), 8.07 (d, J = 7.6 Hz, 2H), 7.75 (d, J = 7.6 Hz, 2H), 7.69 (d, J = 7.6 Hz, 2H), 7.45-7.40 (m, 1H), 7.35-7.29 (m, 2H), 7.00-6.95 (m, 4H), 6.76 (d, J = 14.0 Hz, 2H), 4.26-3.93 (m, 6H), 2.08 (s, 3H), 1.61-1.55 (m, 3H), 0.78 (t, J = 6.4 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 195.1, 194.8, 194.0, 193.9, 172.9, 172.8, 170.1, 169.4, 169.3, 169.2, 168.9, 168.8, 144.6, 144.4, 143.5, 139.9, 139.7, 138.8, 135.8, 135.4, 135.1, 134.1, 133.5, 133.2, 133.0, 132.9, 129.3, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 127.9, 127.8, 127.5, 127.4, 124.5, 122.8, 122.7, 103.8, 103.6, 61.7, 61.6, 61.4, 61.3, 61.1, 61.0, 58.2, 58.1, 57.9, 57.8, 50.6, 50.4, 50.2, 31.8, 31.7, 30.2, 28.9, 26.4, 26.3, 22.6, 21.6, 21.5, 21.2, 14.1, 14.0; HRMS (ESI+) calcd for C₃₉H₄₅N₃O₆ [M+Na]+ 674.3201, found 674.3203.

dimethyl 2-(2-(1-benzyl-1*H*-1,2,3-triazol-4-yl)-5-methylphenyl)malonate (4a) Pale yellow oil (28.8 mg, 38 %); ¹H NMR (CDCl₃, 400 MHz) δ 7.62 (s, 1H), 7.38-7.35 (m, 4H), 7.34-7.30 (m, 3H), 7.16 (dd, *J* = 8.0 Hz, 1.2 Hz, 1H), 5.57 (s, 2H), 5.54 (s, 1 H), 3.72 (s, 6H), 2.37 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 169.3, 147.1, 138.6, 134.6, 130.6, 130.3, 129.5, 129.2, 129.1, 128.8, 128.2, 127.5, 122.0, 54.2, 54.1, 52.8, 21.3. HRMS (ESI+) calcd for C₂₁H₂₁N₃O₄ [M+Na]⁺ 402.1424, found 402.1411.

dimethyl 2-(2-(1-benzyl-1*H*-1,2,3-triazol-4-yl)phenyl)malonate (4b)

Pale yellow oil (23.4 mg, 32 %); ¹H NMR (CDCl₃, 400 MHz) δ 7.66 (s, 1H), 7.57-7. 54 (m, 1H), 7.50-7.48 (m, 1H), 7.40-7.34 (m, 5H), 7.32-7.31 (s, 2H), 5.59 (s, 2H), 5.54 (s, 1H), 3.72 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 169.1, 147.0, 134.5, 130.8, 130.3, 129.9, 129.6, 129.2, 128.8, 128.6, 128.3, 128.1, 122.2, 54.3, 54.2, 52.8; HRMS (ESI+) calcd for C₂₀H₁₉N₃O₄ [M+Na]⁺ 388.1268, found 388.1260.

dimethyl 2-(2-(1-benzyl-1*H*-1,2,3-triazol-4-yl)-5-methoxyphenyl)malonate (4c) Yellow oil (26.9 mg, 34 %); ¹H NMR (CDCl₃, 400 MHz) δ 7.58 (s, 1H), 7.42-7.37 (m, 4H), 7.33-7.31 (m, 2H), 7.10-7.09 (d, *J* = 1.2 Hz, 1H), 6.92-6.88 (d, *J* = 8.8 Hz, 2.8 Hz, 1H), 5.57 (s, 2H), 5.51 (s, 1H), 3.83 (s, 3H), 3.72 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 169.1, 159.6, 146.9, 130.8, 129.1, 128.8, 128.2, 121.7, 115.1, 114.1, 55.4, 54.3, 54.2, 52.8; HRMS (ESI+) calcd for C₂₁H₂₁N₃O₅ [M+Na]⁺418.1373, found 418.1360.

dimethyl 2-(2-(1-benzyl-1*H*-1,2,3-triazol-4-yl)-5-fluorophenyl)malonate (4d)

Pale yellow oil (24.5 mg, 32 %); ¹H NMR (CDCl₃, 400 MHz) δ 7.63 (s, 1H), 7.48-7.44 (m, 1H), 7.43-7.38 (m, 3H), 7.36-7.30 (m, 3H), 7.06 (td, *J* = 8.4, 2.8 Hz, 1H), 5.58 (s, 2H), 5.49 (s, 1H), 3.73 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 168.6, 162.4 (d, *J*_{C-F} = 246.6 Hz), 146.2, 134.4, 133.0 (d, *J*_{C-F} = 8.3 Hz), 131.4 (d, *J*_{C-F} = 8.3 Hz), 129.2, 128.9, 128.2, 126.6 (*J*_{C-F} = 3.2 Hz), 122.2, 117.0 (d, *J*_{C-F} = 22.9 Hz), 115.6 (d, *J*_{C-F} = 21.4 Hz), 54.3, 54.1, 53.0; ¹⁹F NMR (CDCl₃, 376 MHz) δ -112.1; HRMS (ESI+) calcd for C₂₀H₁₈FN₃O₄ [M+Na]⁺ 406.1179, found 406.1174.

dimethyl 2-(2-(1-benzyl-1*H*-1,2,3-triazol-4-yl)-5-chlorophenyl)malonate (4e) Pale yellow oil (31.9 mg, 40 %); ¹H NMR (CDCl₃, 400 MHz) δ 7.66 (s, 1H), 7.57-7.56 (d, *J* = 2.4 Hz, 1H), 7.44-7.38 (m, 4H), 7.34-7.32 (m, 3H), 5.58 (s, 2H), 5.53 (s, 1H), 3.74 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 168.6, 146.1, 134.5, 134.3, 132.4, 130.7, 130.1, 129.2, 129.0, 128.9, 128.6, 128.2, 122.3, 54.3, 54.0, 53.0; HRMS (ESI+) calcd for C₂₀H₁₈ClN₃O₄ [M+Na]⁺ 422.0884, found 422.0878.

dimethyl 2-(2-(1-benzyl-1H-1,2,3-triazol-4-yl)-4-methylphenyl)malonate (4f)

White solid (72.0 mg, 95 %); mp 112-114 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.66 (s, 1H), 7.45-7.37 (m, 4H), 7.33-7.32 (m, 3H), 7.20 (d, J = 8.0 Hz, 1H), 5.58 (s, 2H), 5.47 (s, 1H), 3.71 (s, 6H), 2.34 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 169.3, 147.1, 138.2, 134.5, 130.3, 129.7, 129.5, 129.2, 128.8, 128.2, 127.8, 122.2, 54.2, 53.9, 52.8, 21.0; HRMS (ESI+) calcd for C₂₁H₂₁N₃O₄ [M+Na]⁺ 402.1424, found 402.1399.

dimethyl 2-(5-methyl-2-(1-octanoyl-1*H*-1,2,3-triazol-4-yl)phenyl)malonate (4g) Yellow oil (29.0 mg, 35 %); ¹H NMR (CDCl₃, 400 MHz) δ 7.67 (s, 1H), 7.47 (d, J =8.8 Hz), 7.13 (d, J = 2.8 Hz, 1H), 6.93 (dd, J = 8.8, 2.8 Hz, 1H), 5.50 (s, 1H), 4.39 (t, J =7.2 Hz), 3.84 (s, 3H), 3.74 (s, 6H), 1.96-1.91 (m, 2H), 1.35-1.25 (m, 10 H), 0.88 (t, J =6.4 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 169.0, 159.5, 146.4, 132.0, 130.9, 123.3, 121.7, 115.1, 114.2, 55.4, 54.2, 52.9, 50.4, 31.7, 30.3, 29.1, 29.0, 26.5, 22.6, 14.1; HRMS (ESI+) calcd for C₂₂H₃₁N₃O₅ [M+Na]⁺ 440.2156, found 440.2148.

dimethyl 2-(5-methyl-2-(1-phenethyl-1*H*-1,2,3-triazol-4-yl)phenyl)malonate (4h) Yellow oil (22.8 mg, 29 %); ¹H NMR (CDCl₃, 400 MHz) δ 7.34 (s, 1H), 7.37-7.28 (m, 4H), 7.25-7.23 (m, 1H), 7.18 (dd, *J* = 8, 0.8 Hz, 1H), 5.36 (s,1H), 4.65 (t, *J* = 6.8 Hz, 2H), 3.74 (s, 6H), 3.26 (t, *J* = 6.8 Hz, 2H), 2.38 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 169.2, 146.2, 138.5, 137.1, 130.2, 129.6, 129.3, 128.9, 128.8, 127.7, 127.1, 122.5, 53.9, 52.8, 51.8, 36.8, 21.4; HRMS (ESI+) calcd for C₂₂H₂₃N₃O₄ [M+Na]⁺ 416.1587, found 416.1581.

diethyl 2-(2-(1-benzyl-1H-1,2,3-triazol-4-yl)-5-methylphenyl)malonate (4i)

Yellow liquid (35.0 mg, 43 %); ¹H NMR (CDCl₃, 400 MHz) δ 7.64 (s, 1H), 7.41-7.36 (m, 5H), 7.33-7.30 (m, 2H), 5.57 (s, 2H), 5.40 (s, 1H), 4.20-4.12 (m, 4H), 2.37 (s, 3H), 1.22 (t, *J* = 7.2 Hz, 6H) ; ¹³C NMR (CDCl₃, 100 MHz) δ 168.7, 147.1, 138.5, 134.6, 130.7, 130.3, 129.5, 129.2, 129.1, 128.8, 127.6, 122.0, 61.7, 54.5, 54.2, 21.3, 14.0; HRMS (ESI+) calcd for C₂₃H₂₅N₃O₄ [M+Na]⁺ 430.1737, found 430.1743.

ethyl 2-(2-(1-benzyl-1*H*-1,2,3-triazol-4-yl)-5-methylphenyl)-2-(methylsulfonyl) acetate (4j)

Yellow oil (33.9 mg, 41 %); ¹H NMR (CDCl₃, 400 MHz) δ 7.78 (s, 1H), 7.73 (s, 1H), 7.41-7.32 (m, 6H), 7.24 (d, *J* = 8.0 Hz, 1H), 6.58 (d, 1H), 5.60 (d, *J* = 14.8 Hz, 1H), 5.57 (d, *J* = 14.8 Hz, 1H), 4.35-4.18 (m, 2H), 3.05 (s, 3H), 2.41 (s, 3H), 1.27 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 165.5, 147.2, 138.8, 134.4, 131.0, 130.6, 129.9, 129.2, 128.9, 128.7, 128.2, 125.8, 122.6, 68.6, 62.7, 54.4, 40.3, 21.4, 13.9; HRMS (ESI+) calcd for C₂₁H₂₃N₃O₄S [M+Na]⁺ 436.1307, found 436.1301.

ethyl 2-(2-(1-benzyl-1*H*-1,2,3-triazol-4-yl)-5-methylphenyl)-2-(dimethoxyphosphoryl) acetate (4k)

S21

Yellow solid (23.9 mg, 27 %); mp 134-136 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.75 (s, 1H), 7.71 (s, 1H), 7.40-7.31 (m, 6H), 7.15 (d, *J* = 8.0 Hz, 1H), 5.61, 5.56 (d, *J* = 14.8 Hz, both 1H), 5.30 (d, *J_{HP}* = 8.0 Hz, 2H), 4.23-4.41 (m, 2H), 3.69 (d, ³*J_{HP}* = 10.8 Hz, 3H), 3.56 (d, ³*J_{HP}* = 10.8 Hz, 3H), 2.38 (s, 3H), 1.20 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 167.8,146.9, 138.6 (d, *J_{CP}* = 3.0 Hz), 134.5, 131.1 (d, *J_{CP}* = 5.0 Hz), 130.0, 129.2, 129.1 (d, *J_{CP}* = 3.0 Hz), 128.9, 128.4 (d, *J_{CP}* = 8.0 Hz) 128.2, 127.5 (d, *J_{CP}* = 8.0 Hz), 122.5, 62.0, 58.4, 53.8(d, *J_{CP}* = 6.0 Hz), 53.7 (d, *J_{CP}* = 6.0 Hz), 46.7 (d, *J_{CP}* = 136.0 Hz), 21.4, 14.0; ³¹P NMR (CDCl₃, 162 MHz) δ 22.2; HRMS (ESI+) calcd for C₂₂H₂₆N₃O₅P [M+Na]⁺ 466.1502, found 466.1491.

diisopropyl 2-(2-(1-benzyl-1*H*-1,2,3-triazol-4-yl)-5-methylphenyl)malonate (4l) Yellow oil (22.6 mg, 26 %); ¹H NMR (CDCl₃, 600 MHz) δ 7.65 (s, 1H), 7.41 (d, *J* = 7.8 Hz, 1H), 7.40-7.39 (m, 4H), 7.31 (d, *J* = 6.6 Hz, 2H), 7.15 (d, *J* = 7.8 Hz, 1H), 5.57 (s, 2H), 5.27 (s, 1H), 5.08-5.02 (m, 2H), 2.37 (s, 3H), 1.23 (t, *J* = 6.0 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 168.7, 147.1, 138.5, 134.6, 130.7, 130.3, 129.5, 129.2, 129.1, 128.8, 127.6, 122.0, 61.7, 54.5, 54.2, 21.3, 14.0; HRMS (ESI+) calcd for C₂₅H₂₉N₃O₄ [M+Na]⁺ 458.2050, found 458.2045.

dimethyl 2-(2-(1-benzyl-1H-1,2,3-triazol-4-yl)-3-fluorophenyl)malonate (4m) White solid (40.6 mg, 53 %); mp 94-96 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.77 (s, *J* = 3.0 Hz, 1H), 7.39-7.30 (m, 7H), 7.12-7.09 (s, 1H), 5.77 (s, 1H), 5.59 (s, 2H), 3.73 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 171.6, 162.5 (d, *J*_{C-F} = 245.9 Hz), 142.5, 137.1, 136.4 (d, $J_{C-F} = 2.3$ Hz), 132.1 (d, $J_{C-F} = 9.3$ Hz), 131.8, 131.4, 130.7, 128.2 (d, $J_{C-F} = 3.2$ Hz), 127.3 (d, $J_{C-F} = 10.1$ Hz), 121.4 (d, $J_{C-F} = 14.4$ Hz), 118.0, (d, $J_{C-F} = 23.1$ Hz), 57.2 (d, $J_{C-F} = 2.3$ Hz), 56.9, 55.5; ¹⁹F NMR (CDCl₃, 376 MHz) δ -112.3; HRMS (ESI+) calcd for C₂₀H₁₈FN₃O₄ [M+Na]⁺ 406.1174, found 406.1169.

dimethyl 2-(2-(1-benzyl-1*H*-1,2,3-triazol-4-yl)-3-methylphenyl)malonate (4n) Pale yellow oil (54.6 mg, 72 %); ¹H NMR (CDCl₃, 400 MHz) δ 7.43 (s, 1H), 7.41-7.35 (m, 4H), 7.33-7.29 (m, 3H), 7.25-7.23 (s, 1H), 5.62 (s, 2H), 4.65 (s, 1H), 3.63 (s, 6H), 2.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 144.5, 138.5, 134.7, 132.8, 130.5, 130.0, 129.2, 128.9, 128.8, 127.9, 126.5, 123.5, 54.8, 54.2, 52.7, 21.0; HRMS (ESI+) calcd for C₂₁H₂₁N₃O₄ [M+Na]⁺ 402.1430, found 402.1424.

dimethyl 2-(2-(1-benzyl-1H-1,2,3-triazol-4-yl)-3-formylphenyl)malonate (4o) Pale yellow oil (35.4 mg, 45 %); ¹H NMR (CDCl₃, 400 MHz) δ 9.73 (s, 1H), 8.00 (dd, J = 8.0, 1.2 Hz, 1H), 7.85 (dd, J = 8.0, 1.2 Hz, 1H), 7.61 (s, 1H), 7.44-7.38 (m, 4H), 7.35-7.31 (m, 2H), 5.66 (s, 2H), 4.79 (s, 1H), 3.67 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 191.2, 168.3, 141.1, 135.8, 134.9, 134.2, 133.6, 133.5, 129.5, 129.3, 129.0, 128.1, 128.0,125.2, 54.5, 53.7, 53.0; HRMS (ESI+) calcd for C₂₁H₁₉N₃O₅ [M+Na]⁺ 416.1228, found 416.1217.

dimethyl 2-(2-(1-benzyl-5-iodo-1*H*-1,2,3-triazol-4-yl)phenyl)malonate (4p) White solid (51.1 mg, 52 %); mp 159-162 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.62 (d, J = 8.0 Hz, 1H), 7.48-7.44 (m, 1H), 7.36-7.26 (m, 7H), 5.68 (s, 2H), 5.08 (s, 1H), 3.68 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 150.7, 134.2, 132.6, 130.7, 130.1, 129.7, 129.5, 129.0, 128.8, 128.6, 128.1, 127.8, 54.6, 54.1, 52.8; HRMS (ESI+) calcd for C₂₀H₁₈IN₃O₄ [M+Na]⁺ 514.0238, found 514.0234.

White solid (42.4 mg, 48 %); mp 131-133 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.46-7.44 (m, 1H), 7.31-7.18 (m, 7H), 7.07 (td, J = 8.0, 1.2 Hz, 1H), 7.02-6.94 (m, 5H), 5.44 (s, 2H), 5.37 (s, 1H), 3.58 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 144.2, 135.8, 135.4, 132.3, 130.8, 130.6, 129.8, 129.5, 129.4, 129.0, 128.8, 128.6, 128.2, 127.9, 127.4, 126.8, 54.2, 52.7, 52.2; HRMS (ESI+) calcd for C₂₆H₂₃N₃O₄ [M+Na]⁺ 464.1582, found 464.1581.

6. Mechanistic experiments

6.1 Synthesis of 1,2,3-triazole coordinated cyclometalated intermediate A

A mixture of $[Cp*RhCl_2]_2$ (0.05 mmol, 1.0 equiv.), **1a** (0.2 mmol, 2.0 equiv.), NaOAc (0.11 mmol, 2.2 equiv.) and 1,2-dichloroethane (2.0 mL) were added into an oven-dried 15 mL tube with a Teflon screw cap. The sealed tube was heated at 40 °C for 24 h. The reaction mixture was then cooled to room temperature and filtered through Celite pad. The solid residue was washed with DCM three times. The combined filtrate was concentrated under reduced pressure and the crude mixture was kept for recrystallization from DCM/Et₂O at room temperature to obtain a red orange crystal A identified by x-ray diffraction study.

6.2 H/D exchange experiment

1-benzyl-4-phenyl-1*H*-1,2,3-triazole **1b** (0.2 mmol, 1.0 equiv.), $[Cp*RhCl_2]_2$ (0.005 mmol, 2.5 mol %), AgSbF₆ (0.02 mmol, 10 mol %), 1,2-dichloroethane (2.0 mL) and D₂O (0.2 mL) were added into an oven-dried 15 mL tube with a Teflon screw cap. The sealed tube was heated at 40 °C for 12 h. The solvent was then removed under reduced pressure, and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate to afford a mixture of **1b** and *d*₂-**1b**. The deuterated ratio was calculated based on ¹H NMR analysis.

¹H NMR Spectrum of 1b and *d*₂-1b in CDCl₃ at 400 MHz

1-benzyl-4-phenyl-1*H*-1,2,3-triazole **1a** (0.2 mmol, 1.0 equiv.), dimethyl 2-diazomalonate (0.3 mmol, 1.5 equiv.), $[Cp*RhCl_2]_2$ (0.005 mmol, 2.5 mol %), AgSbF₆ (0.02 mmol, 10 mol %), 1,2-dichloroethane (2.0 mL) and D₂O (0.2 mL) were added into an oven-dried 15 mL tube with a Teflon screw cap. The sealed tube was heated at 40 °C for 12 h. The solvent was then removed under reduced pressure, and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate to afford the isolated product d_2 -**1a**, d_1 -**4a** and d_n -**3a**. The deuterated ratio was calculated from ¹H NMR analysis.

¹H NMR Spectrum of *d*₂-1a in CDCl₃ at 400 MHz

¹H NMR Spectrum of d_1 -4a in CDCl₃ at 400 MHz

¹H NMR Spectrum of *d_n*-3a in CDCl₃ at 400 MHz

6.3 Intermolecular competition experiments between 1c and 1e

1-benzyl-4-(4-methoxyphenyl)-1*H*-1,2,3-triazole **1c** (0.1 mmol, 1.0 equiv.), 1-benzyl-4-(4-chlorophenyl)-1*H*-1,2,3-triazole **1e** (0.1 mmol, 1.0 equiv.), dimethyl 2diazomalonate (0.22 mmol, 2.2 equiv.), $[Cp*RhCl_2]_2(0.005 \text{ mmol}, 2.5 \text{ mol }\%)$, AgSbF₆ (0.02 mmol, 10 mol %), 1,2-dichloroethane (2.0 mL) were added into an oven-dried 15 mL tube with a Teflon screw cap. The sealed tube was heated at 40 °C for 12 h. The solvent was then removed under reduced pressure, and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate to afford a mixture of **3e** and **3c**. The ratio was calculated from ¹H NMR analysis.

¹H NMR Spectrum of 3c and 3e in CDCl₃ at 400 MHz

7. ¹H and ¹³C NMR Spectra of products

¹H NMR Spectrum of 3a in CDCl₃ at 400 MHz

¹³C NMR Spectrum of 3a in CDCl₃ at 100 MHz

¹H NMR Spectrum of 3b in CDCl₃ at 400 MHz

¹H NMR Spectrum of 3c in CDCl₃ at 400 MHz

¹³C NMR Spectrum of 3c in CDCl₃ at 100 MHz

¹³C NMR Spectrum of 3d in CDCl₃ at 100 MHz

¹⁹F NMR Spectrum of 3d in CDCl₃ at 376 MHz

¹H NMR Spectrum of 3e in CDCl₃ at 400 MHz

¹³C NMR Spectrum of 3e in CDCl₃ at 100 MHz

¹H NMR Spectrum of 3f in CDCl₃ at 500 MHz

¹³C NMR Spectrum of 3f in CDCl₃ at 125 MHz

¹H NMR Spectrum of 3g in CDCl₃ at 600 MHz

¹H NMR Spectrum of 3h in CDCl₃ at 600 MHz

¹³C NMR Spectrum of 3h in CDCl₃ at 150 MHz

¹³C NMR Spectrum of 3i in CDCl₃ at 100 MHz

¹H NMR Spectrum of 3j in CDCl₃ at 400 MHz

¹³C NMR Spectrum of 3j in CDCl₃ at 100 MHz

¹H NMR Spectrum of 3k in CDCl₃ at 400 MHz

¹³C NMR Spectrum of 3k in CDCl₃ at 100 MHz

¹H NMR Spectrum of 3l in CDCl₃ at 400 MHz

¹³C NMR Spectrum of 3l in CDCl₃ at 100 MHz

¹⁹F NMR Spectrum of 3l in CDCl₃ at 376 MHz

¹³C NMR Spectrum of 3m in CDCl₃ at 100 MHz

¹H NMR Spectrum of 3n in CDCl₃ at 400 MHz

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR Spectrum of 30 in CDCl₃ at 400 MHz

¹⁹F NMR Spectrum of 30 in CDCl₃ at 376 MHz

¹³C NMR Spectrum of 3p in CDCl₃ at 100 MHz

¹³C NMR Spectrum of 3q in CDCl₃ at 100 MHz

¹H NMR Spectrum of 3r in CDCl₃ at 400 MHz

¹³C NMR Spectrum of 3r in CDCl₃ at 100 MHz

¹H NMR Spectrum of 3r' in CDCl₃ at 400 MHz

¹H NMR Spectrum of 3s in CDCl₃ at 400 MHz

¹³C NMR Spectrum of 3s in CDCl₃ at 100 MHz

¹H NMR Spectrum of 3t in CDCl₃ at 400 MHz

¹H NMR Spectrum of 3u in CDCl₃ at 400 MHz

¹H NMR Spectrum of 3v in CDCl₃ at 400 MHz

¹H NMR Spectrum of 3w in CDCl₃ at 400 MHz

¹H NMR Spectrum of 3x in CDCl₃ at 400 MHz

¹³C NMR Spectrum of 3x in CDCl₃ at 100 MHz

¹H NMR Spectrum of 4a in CDCl₃ at 400 MHz

¹³C NMR Spectrum of 4a in CDCl₃ at 100 MHz

¹³C NMR Spectrum of 4b in CDCl₃ at 100 MHz

¹H NMR Spectrum of 4c in CDCl₃ at 400 MHz

¹³C NMR Spectrum of 4c in CDCl₃ at 100 MHz

¹H NMR Spectrum of 4d in CDCl₃ at 400 MHz

¹³C NMR Spectrum of 4d in CDCl₃ at 100 MHz

¹⁹F NMR Spectrum of 4d in CDCl₃ at 376 MHz

¹H NMR Spectrum of 4e in CDCl₃ at 400 MHz

¹³C NMR Spectrum of 4e in CDCl₃ at 100 MHz

¹H NMR Spectrum of 4f in CDCl₃ at 400 MHz

¹³C NMR Spectrum of 4f in CDCl₃ at 100 MHz

¹H NMR Spectrum of 4g in CDCl₃ at 400 MHz

669 476 454 2560 949 949 927 927 927	498	407 389 371	842 744	984 966 949 931 913 314 249	891 875 857
	-2.	444	ri ri		000

¹³C NMR Spectrum of 4g in CDCl₃ at 100 MHz

¹H NMR Spectrum of 4h in CDCl₃ at 400 MHz

¹H NMR Spectrum of 4i in CDCl₃ at 400 MHz

¹³C NMR Spectrum of 4i in CDCl₃ at 100 MHz

¹H NMR Spectrum of 4j in CDCl₃ at 400 MHz

¹³C NMR Spectrum of 4j in CDCl₃ at 100 MHz

¹H NMR Spectrum of 4k in CDCl₃ at 400 MHz

¹³C NMR Spectrum of 4k in CDCl₃ at 100 MHz

³¹P NMR Spectrum of 4k in CDCl₃ at 162 MHz

¹H NMR Spectrum of 4l in CDCl₃ at 400 MHz

¹H NMR Spectrum of 4m in CDCl₃ at 600 MHz

¹³C NMR Spectrum of 4m in CDCl₃ at 150 MHz

638	.301	538	.405	.699	356 260 034 880	909 597	252 237 558 558
-	7 00	N	9	ON	A 00 7 7	0,0,4	1414004
~	00	4	3	n n	7700	ດດດ	NN05
-		<u>-</u>	-			N N N	ດດດດ
1	52		1		1-	\checkmark	V

¹⁹F NMR Spectrum of 4m in CDCl₃ at 376 MHz

¹H NMR Spectrum of 4n in CDCl₃ at 400 MHz

¹³C NMR Spectrum of 4n in CDCl₃ at 100 MHz

¹H NMR Spectrum of 40 in CDCl₃ at 400 MHz

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹³C NMR Spectrum of 4p in CDCl₃ at 100 MHz

¹³C NMR Spectrum of 4q in CDCl₃ at 100 MHz

¹H NMR Spectrum of 4q in CDCl₃ at 400 MHz