Support information for

Xylopsides A–D, four rare guaiane dimers with two unique bridged pentacyclic skeleton from *Xylopia vielana*

Yang-Guo Xie, ‡^a Yi-Gong Guo, ‡^a Guo-Jing Wu,^a Sheng-Lan Zhu,^a Tao-Fang Cheng,^a Yu Zhang,^a Shi-Kai Yan,^{a, *} Hui-Zi Jin, *^{a,c} and Wei-Dong Zhang^{* a, b, d}

^a Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China ^b Institute of Interdisciplinary Sciences, Shanghai University of Tradictional Chinese Medicine, Shanghai 201203, China ^c Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China

^d School of Pharmacy, Second Military Medical University, Shanghai, 200433, China

‡ These authors contributed equally.

Contents

Fig. S1 ¹H NMR spectrum (500 MHz, Chloroform-d) of compound 1 Fig. S2 ¹³C NMR spectrum (125 MHz, Chloroform-d) of compound 1 Fig. S3 DEPT spectrum (125 MHz, Chloroform-d) of compound 1 Fig. S4 ¹H-¹H COSY spectrum (500 MHz, Chloroform-d) of compound 1 Fig. S5 HSQC spectrum (500 MHz, Chloroform-d) of compound 1 Fig. S6 HMBC spectrum (500 MHz, Chloroform-d) of compound 1 Fig. S7 NOESY spectrum (500 MHz, Chloroform-d) of compound 1 Fig. S8 HR-ESI-MS spectrum of compound 1 Fig. S9 IR (KBr disc) spectrum of compound 1 Fig. S10 ¹H NMR spectrum (500 MHz, Chloroform-d) of compound 2 Fig. S11¹³C NMR spectrum (125 MHz, Chloroform-d) of compound 2 Fig. S12 DEPT spectrum (125 MHz, Chloroform-d) of compound 2 Fig. S13 ¹H-¹H COSY spectrum (500 MHz, Chloroform-d) of compound 2 Fig. S14 HSQC spectrum (500 MHz, Chloroform-d) of compound 2 Fig. S15 HMBC spectrum (500 MHz, Chloroform-d) of compound 2 Fig. S16 NOESY spectrum (500 MHz, Chloroform-d) of compound 2 Fig. S17 HR-ESI-MS spectrum of compound 2 Fig. S18 IR (KBr disc) spectrum of compound 2 Fig. S19 ¹H NMR spectrum (500 MHz, Chloroform-d) of compound 3 Fig. S20¹³C NMR spe20ctrum (125 MHz, Chloroform-d) of compound 3 Fig. S21 DEPT spectrum (125 MHz, Chloroform-d) of compound 3 Fig. S22 ¹H-¹H COSY spectrum (500 MHz, Chloroform-d) of compound 3 Fig. S23 HSQC spectrum (500 MHz, Chloroform-d) of compound 3 Fig. S24 HMBC spectrum (500 MHz, Chloroform-d) of compound 3 Fig. S25 NOESY spectrum (500 MHz, Chloroform-d) of compound 3 Fig. S26 HR-ESI-MS spectrum of compound 3 Fig. S27 IR (KBr disc) spectrum of compound 3 Fig. S28 ¹H NMR spectrum (500 MHz, Chloroform-d) of compound 4 Fig. S29¹³C NMR spectrum (125 MHz, Chloroform-d) of compound 4 Fig. S30 DEPT spectrum (125 MHz, Chloroform-d) of compound 4 Fig. S31 ¹H-¹H COSY spectrum (500 MHz, Chloroform-d) of compound 4 Fig. S32 HSQC spectrum (500 MHz, Chloroform-d) of compound 4 Fig. S33 HMBC spectrum (500 MHz, Chloroform-d) of compound 4 Fig. S34 NOESY spectrum (500 MHz, Chloroform-d) of compound4 Fig. S35 HR-ESI-MS spectrum of compound 4 Fig. S36 IR (KBr disc) spectrum of compound 4 Fig. S37 CD spectrum of compounds 1 and 2

Fig. S38 Key¹H-¹H COSY and NOESY correlations of 3

Fig. S39 CD spectrum of compounds 3 and 4

Fig. S40 The dose inhibition curve of NO produced by compound 4. The data were obtained from three independent experiments and expressed as the means \pm SEM.

Fig S41 The TIC and BPC spectrum of the crude extracts from the roots of *Xylopia vielana*.

Fig S42 The HRESIMS of compound 1

Fig S43 The HRESIMS of compound 2

Fig S44 The HRESIMS of compound 3

Fig S45 The HRESIMS of compound 4

Fig. S1 ¹H NMR spectrum (500 MHz, Chloroform-d) of compound 1

Fig. S2 ¹³C NMR spectrum (125 MHz, Chloroform-*d*) of compound 1

Fig. S3 DEPT spectrum (125 MHz, Chloroform-d) of compound 1

Fig. S4 ¹H-¹H COSY spectrum (500 MHz, Chloroform-d) of compound 1

Fig. S5 HSQC spectrum (500 MHz, Chloroform-d) of compound 1

Fig. S6 HMBC spectrum (500 MHz, Chloroform-d) of compound 1

Fig. S7 NOESY spectrum (500 MHz, Chloroform-d) of compound 1

Fig. S8 HR-ESI-MSspectrum of compound 1

Fig. S9 IR (KBr disc) spectrum of compound 1

Fig. S10 ¹H NMR spectrum (500 MHz, Chloroform-*d*) of compound 2

Fig. S11 ¹³C NMR spectrum (125 MHz, Chloroform-d) of compound 2

Fig. S12 DEPT spectrum (125 MHz, Chloroform-d) of compound 2

Fig. S13 ¹H-¹H COSY spectrum (500 MHz, Chloroform-*d*) of compound 2

Fig. S14 HSQC spectrum (500 MHz, Chloroform-d) of compound 2

Fig. S15 HMBC spectrum (500 MHz, Chloroform-d) of compound 2

Fig. S16 NOESY spectrum (500 MHz, Chloroform-d) of compound 2

Fig. S18 IR (KBr disc) spectrum of compound 2

Fig. S19 ¹H NMR spectrum (500 MHz, Chloroform-d) of compound 3

Fig. S20¹³C NMR spectrum (125 MHz, Chloroform-d) of compound 3

Fig. S21 DEPT spectrum (125 MHz, Chloroform-d) of compound 3

Fig. S22 ¹H-¹H COSY spectrum (500 MHz, Chloroform-*d*) of compound 3

Fig. S23 HSQC spectrum (500 MHz, Chloroform-d) of compound 3

Fig. S24 HMBC spectrum (500 MHz, Chloroform-d) of compound 3

Fig. S25 NOESY spectrum (500 MHz, Chloroform-d) of compound 3

Fig. S26 HR-ESI-MSspectrum of compound 3

Fig. S27 IR (KBr disc) spectrum of compound 3

Fig. S29 ¹³C NMR spectrum (125 MHz, Chloroform-d) of compound 4

Fig. S30 DEPT spectrum (125 MHz, Chloroform-d) of compound 4

Fig. S31 ¹H-¹H COSY spectrum (500 MHz, Chloroform-*d*) of compound 4

Fig. S32 HSQC spectrum (500 MHz, Chloroform-d) of compound 4

Fig. S33 HMBC spectrum (500 MHz, Chloroform-d) of compound 4

Fig. S34 NOESY spectrum (500 MHz, Chloroform-d) of compound 4

Fig. S35 HR-ESI-MSspectrum of compound 4

Fig. S36 IR (KBr disc) spectrum of compound 4

Fig. S37 CD spectrum of compounds 1 and 2

Fig. S38 Key ¹H-¹H COSY and NOESY correlations of 4

Fig. S39 CD spectrum of compounds 3 and 4

Fig. S40 The dose inhibition curve of NO produced by compound 4. The data were obtained from three independent experiments and expressed as the means \pm SEM.

(Method: 0-16 min 20-45ACN;16-42 min,45-60 ACN; 42-57 min, 60-80ACN; 57-67 min,80-100 ACN; 67-70 min, 100 ACN). We have controlled the temperature during the whole isolation process. (T < 55 °C).

Fig S41 The TIC and BPC spectrum of the crude extracts from the roots of Xylopia vielana.

Fig S42 The HRESIMS of compound 1

Fig S43 The HRESIMS of compound 2

Fig S44 The HRESIMS of compound 3

Fig S45 The HRESIMS of compound 4