Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Synthesis of Polycyclic Spirooxindoles via Asymmetric Catalytic One-pot Stepwise Aldol/ Chloroetherification/Aromatization Procedure

Yan Jiang, ^{a,b,*} Shuo-Wen Yu, ^b Yi Yang, ^a Ying-Le Liu, ^a Xiao-Ying Xu, ^b Xiao-Mei Zhang, ^b

Wei-Cheng Yuan^{b,*}

^a School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, 180
 Xueyuan Street, Huixing Lu, Zigong, Sichuan 643000, China

E-mail: jiangyan199@126.com

^b Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China

General information	S2
General procedure for the preparation of the substrates 1	S2
Experiment data for 1	S3
General procedure for the one-pot stepwise Aldol/Chloroetherification	Aromatization
reaction	S9
Experiment data for 2	S9
General procedure for the one-pot stepwise construction of 4	S17
Synthesis of bispirooxindole 5	S18
Synthesis of compound 6	S19
Synthesis of compound 1r a	S20
X-ray crystal structure of compound 6 and 1r a	S20
References	S22
Copies of NMR and HPLC spectra	S23

General Information.

All starting materials were of the highest commercially available grade and used without further purification. All solvents used in the reactions were distilled from appropriate drying agents prior to use. Reactions were monitored by thin layer chromatography using silica gel HSGF254 plates. Flash chromatography (FC) was performed using silica gel HG/T2354-2010. ¹H and ¹³C NMR (300 and 75 MHz or 400 and 100 MHz or 600 MHz and 151 MHz respectively) spectra were recorded in DMSO-*d*₆ and CDCl₃. ¹H NMR chemical shifts are reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard (CDCl₃, δ = 7.26 ppm; DMSO-*d*₆, δ = 2.50 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, br s = broad singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard (CDCl₃, δ = 77.16 ppm; DMSO-*d*₆, δ = 39.52 ppm). ESI HRMS spectra were recorded on BioTOF Q.

General procedure for preparation of the substrates $I^{[1, 2, 3, 4]}$

To a solution of POCl₃ (0.93 mL, 10 mmol) in DMF (15 mL) was added indole 7 (5 mmol) at 0°C, the reaction was performed at room temperature until indole 7 disappeared. Then the solution was cooled to 0°C, neutralized with aq NaOH to pH = 7, and the reaction mixture was stirred at 90°C for 2 h later. The resulting mixture was poured into ice water (150 mL) and solid precipitated, filtered, dried to get pure indole-3-carbaldehyde **8**.

Indole-3-carbaldehyde **8** (4 mmol), BnNH₂ (44 μ L, 0.4 mmol), HOAc (23 μ L, 0.4 mmol) and oxindole **9** (4 mmol) were reflux in EtOH (20 mL) for 5-12 h. The resulting mixture was cooled to 0 °C, NaBH₄ (0.76 g, 20 mmol) was added, and the mixture was stirred at room temperature overnight. The reaction was quenched with a saturated aqueous solution of NH₄Cl, and extracted with EtOAc for three times, washed with brine, dried over anhydrous Na₂SO₄, evaporated and the residue was purified by recrystallization or column chromatography (silica gel, hexane/EtOAc =

5/1 to 3/1) to afford **10**.

Boc

3-((1H-indol-3-yl)methyl)indolin-2-one **10** (3 mmol), (Boc)₂O (2.76 mL, 12 mmol) and Na₂CO₃ (2.54 g, 24 mmol) were stirred in THF at 30 °C for 5-12 h. The resulting mixture was filtrated, evaporated and purified by column chromatography (silica gel, hexane/EtOAc = 50/1 to 30/1) to afford **1**.

Experiment data for the substrates 1

Tert-butyl 3-((1H-indol-3-yl)methyl)-2-oxoindoline-1-carboxylate (1a): white solid, ¹H NMR (600 MHz, CDCl₃): δ 8.03 (br s, 1H), 7.74 (d, J = 8.1 Hz, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.35 (d, J = 8.1 Hz, 1H), 7.17-7.23 (m, 2H), 7.09-7.12 (m, 1H), 6.98 (t, J = 7.5 Hz, 1H), 6.89 (d, J = 2.2 Hz, 1H), 6.85 (d, J

= 7.4 Hz, 1H), 3.92 (dd, J = 8.8, 4.5 Hz, 1H), 3.62 (dd, J = 14.5, 4.5 Hz, 1H), 3.17 (dd, J = 14.5, 8.8 Hz, 1H), 1.61 (s, 9H). ¹³C NMR (151 MHz, CDCl₃): δ 176.08, 149.40, 140.25, 136.33, 128.16, 128.13, 127.28, 124.56, 124.00, 123.16, 122.31, 119.69, 119.05, 114.87, 111.89, 111.26, 84.32, 46.68, 28.21, 27.87. ESI HRMS exact mass calcd. for (C₂₂H₂₂N₂O₃ + Na)⁺ requires m/z 385.1523, found m/z 385.1520.

Tert-butyl 3-((4-fluoro-1H-indol-3-yl)methyl)-2-oxoindoline-1-carboxylate (**1b):** white solid, ¹H NMR (600 MHz, CDCl₃): δ 8.38 (br s, 1H), 7.77 (d, J = 8.1 Hz, 1H), 7.23 (t, J = 7.9 Hz, 1H), 7.14 (d, J = 8.1 Hz, 1H), 7.07 (td, J = 8.0,

Boc 5.0 Hz, 1H), 6.99 (td, J = 7.5, 0.7 Hz, 1H), 6.88 (dd, J = 11.7, 4.8 Hz, 2H), 6.75 (dd, J = 11.1, 7.8 Hz, 1H), 3.97 (dd, J = 8.1, 5.9 Hz, 1H), 3.67 (dd, J = 14.5, 5.8 Hz, 1H), 3.22 (dd, J = 14.5, 8.3 Hz, 1H), 1.64 (s, 9H). ¹³C NMR (151 MHz, CDCl₃): δ 176.10, 157.41 (d, J = 245.6 Hz), 149.53, 140.01, 139.24 (d, J = 11.7 Hz), 128.08, 128.05, 124.61, 124.04, 123.48, 122.70 (d, J = 7.7 Hz), 116.14 (d, J = 19.8 Hz), 114.79, 110.94, 107.58, 104.84 (d, J = 19.7 Hz), 84.39, 47.04, 28.90, 28.25. ESI HRMS exact mass calcd. for (C₂₂H₂₁FN₂O₃ + Na)⁺ requires m/z 403.1428, found m/z 403.1430.

Tert-butyl 3-((4-chloro-1H-indol-3-yl)methyl)-2-oxoindoline-1-carboxylate (1c): white solid, ¹H NMR (600 MHz, CDCl₃): δ 8.37 (br s, 1H), 7.83 (d, J = 8.1 Hz, 1H), 7.21-7.37 (m, 2H), 7.05-7.15 (m, 2H), 6.92-7.03 (m, 2H), 6.80 (d, J = 7.5 Hz, 1H), 4.09 (dd, J = 8.7, 6.1 Hz, 1H), 3.85 (dd, J = 14.6, 6.1 Hz, 1H), 3.25 (dd, J = 14.6, 8.9 Hz, 1H), 1.66 (s, 9H). ¹³C NMR (151 MHz, CDCl₃): δ

175.89, 149.63, 140.02, 138.10, 128.16, 128.08, 126.52, 125.19, 124.71, 124.16, 123.93, 122.82, 120.81, 114.88, 112.60, 110.31, 84.38, 47.32, 29.26, 28.28. ESI HRMS exact mass calcd. for (C₂₂H₂₁ClN₂O₃ + Na)⁺ requires m/z 419.1133, found m/z 419.1141.

Tert-butyl

3-((4-methoxy-1H-indol-3-yl)methyl)-2-oxoindoline-1-carboxylate (1d): white solid, ¹H NMR (600 MHz, CDCl₃): δ 8.01 (br s, 1H), 7.80 (d, J = 8.1 Hz,

Boc 1H), 7.22 (t, J = 7.7 Hz, 1H), 7.11 (t, J = 8.0 Hz, 1H), 7.00 (d, J = 8.0 Hz, 1H), 6.92 (t, J = 7.5 Hz, 1H), 6.80 (d, J = 1.9 Hz, 1H), 6.65 (d, J = 7.5 Hz, 1H), 6.51 (d, J = 7.8 Hz, 1H), 4.13 (dd, J = 9.6, 5.1 Hz, 1H), 3.93 (s, 3H), 3.83 (dd, J = 13.9, 5.1 Hz, 1H), 3.00 (dd, J = 13.9, 9.7 Hz, 1H), 1.65 (s, 9H). ¹³C NMR (151 MHz, CDCl₃): δ 176.29, 154.98, 149.71, 140.03, 138.41, 128.71, 127.79, 124.81, 123.68, 123.25, 122.09, 117.33, 114.70, 113.20, 104.68, 99.69, 84.18, 55.26, 47.23, 29.97, 28.29. ESI HRMS exact mass calcd. for (C₂₃H₂₄N₂O₄ + Na)⁺ requires m/z 415.1628, found m/z 415.1641.

Tert-butyl 3-((5-fluoro-1H-indol-3-yl)methyl)-2-oxoindoline-1-carboxylate (1e): white solid, ¹H NMR (600 MHz, CDCl₃): δ 8.01 (br s, 1H), 7.72 (d, J = 8.1 Hz, 1H), 7.21-7.24 (m, 3H), 7.03 (t, J = 7.5 Hz, 1H), 6.90-6.94 (m, 3H), 3.87 (dd, J = 7.9, 4.6 Hz, 1H), 3.51 (dd, J = 14.6, 4.5 Hz, 1H), 3.22 (dd, J = 14.6, 8.0 Hz, 1H), 1.59 (s, 9H). ¹³C NMR (151 MHz, CDCl₃): δ 175.83, 157.79

(d, J = 234.5 Hz), 149.21, 140.22, 132.56, 128.12, 127.80, 127.60 (d, J = 9.8 Hz), 124.86, 124.21, 123.96, 114.81, 111.71, 111.64, 110.54 (d, J = 26.4 Hz), 103.91 (d, J = 23.4 Hz), 84.22, 46.58, 28.04, 27.52. ESI HRMS exact mass calcd. for $(C_{22}H_{21}FN_2O_3 + Na)^+$ requires m/z 403.1428, found m/z 403.1421.

Tert-butyl 3-((5-bromo-1H-indol-3-yl)methyl)-2-oxoindoline-1-carboxylate (**1f):** yellow solid, ¹H NMR (600 MHz, CDCl₃): δ 8.11 (br s, 1H), 7.73 (d, J = 8.1 Hz, 1H), 7.68 (d, J = 1.5 Hz, 1H), 7.23-7.25 (m, 2H), 7.19-7.21 (m, 1H), 7.04 (t, J = 7.5 Hz, 1H), 6.92 (d, J = 7.5 Hz, 1H), 6.88 (d, J = 2.2 Hz, 1H), 3.88 (dd, J = 8.0, 4.6 Hz, 1H), 3.51 (dd, J = 14.6, 4.6 Hz, 1H), 3.21 (dd, J = 14.6,

8.1 Hz, 1H), 1.60 (s, 9H). ¹³C NMR (151 MHz, CDCl₃): δ 175.89, 149.33, 140.33, 134.85, 129.05, 128.33, 127.88, 125.14, 124.48, 124.38, 124.12, 121.68, 114.99, 112.98, 112.69, 111.41, 84.41, 46.68, 28.20, 27.59. ESI HRMS exact mass calcd. for $(C_{22}H_{21}BrN_2O_3 + Na)^+$ requires m/z 463.0628, found m/z 463.0632.

Methyl

MeO₂C

3-((1-(tert-butoxycarbonyl)-2-oxoindolin-3-yl)methyl)-1H-indole-5-carbox ylate (1g): white solid, ¹H NMR (600 MHz, CDCl₃): δ 8.34 (br s, 2H), 7.89 (d, J = 8.5 Hz, 1H), 7.72 (d, J = 8.1 Hz, 1H), 7.35 (d, J = 8.5 Hz, 1H), 7.22 (t, J = 7.9 Hz, 1H), 7.01 (t, J = 7.5 Hz, 1H), 6.96 (d, J = 1.5 Hz, 1H), 6.91 (d, J = 7.4

Hz, 1H), 3.95 (dd, J = 8.1, 4.8 Hz, 1H), 3.92 (s, 3H), 3.61 (dd, J = 14.7, 4.8 Hz, 1H), 3.27 (dd, J =

14.7, 8.3 Hz, 1H), 1.60 (s, 9H). ¹³C NMR (151 MHz, CDCl₃): δ 175.89, 168.22, 149.33, 140.24, 138.84, 128.30, 127.82, 126.95, 124.53, 124.44, 124.15, 123.74, 122.00, 121.81, 114.94, 113.21, 111.01, 84.42, 51.99, 46.65, 28.19, 27.45. ESI HRMS exact mass calcd. for (C₂₄H₂₄N₂O₅ + Na)⁺ requires m/z 443.1577, found m/z 443.1585.

Tert-butyl 3-((5-cyano-1H-indol-3-yl)methyl)-2-oxoindoline-1-carboxylate (**1h**): white solid, ¹H NMR (600 MHz, CDCl₃): δ 8.45 (br s, 1H), 7.84 (s, 1H), 7.68 (d, *J* = 8.1 Hz, 1H), 7.37 (s, 2H), 7.24-7.27 (m, 1H), 7.09-7.11 (m, 2H), 6.98 (d, *J* = 2.1 Hz, 1H), 3.88-3.90 (m, 1H), 3.49 (dd, *J* = 14.7, 4.8 Hz, 1H), 3.40 (dd, *J* = 14.7, 7.0 Hz, 1H), 1.57 (s, 9H). ¹³C NMR (151 MHz, CDCl₃): δ

175.78, 149.21, 140.42, 137.71, 128.56, 127.57, 127.25, 125.49, 125.11, 124.87, 124.33, 124.14, 120.77, 115.11, 112.39, 112.12, 102.82, 84.54, 46.87, 28.17, 27.12. ESI HRMS exact mass calcd. for (C₂₃H₂₁N₃O₃ + Na)⁺ requires m/z 410.1475, found m/z 410.1476.

Tert-butyl 3-((5-methyl-1H-indol-3-yl)methyl)-2-oxoindoline-1-carboxylate (1i): white solid, ¹H NMR (600 MHz, CDCl₃): δ 7.96 (br s, 1H), 7.76 (d, J = 8.1 Hz, 1H), 7.42 (s, 1H), 7.20-7.28 (m, 2H), 7.02 (dd, J = 8.2, 0.9 Hz, 1H), 6.98 (t, J = 7.5 Hz, 1H), 6.86 (d, J = 2.1 Hz, 1H), 6.81 (d, J = 7.5 Hz, 1H), 3.92 (dd, J = 9.2, 4.3 Hz, 1H), 3.58-3.65 (m, 1H), 3.09 (dd, J = 14.5, 9.3 Hz, 1H),

2.44 (s, 3H), 1.62 (s, 9H). ¹³C NMR (151 MHz, CDCl₃): δ 176.12, 149.43, 140.21, 134.74, 128.92, 128.29, 128.09, 127.43, 124.66, 123.94, 123.33, 118.67, 114.85, 111.42, 110.96, 84.30, 46.55, 28.22, 28.08, 21.62. ESI HRMS exact mass calcd. for (C₂₃H₂₄N₂O₃ + Na)⁺ requires m/z 399.1679, found m/z 399.1686.

Tert-butyl

MeO

3-((5-methoxy-1H-indol-3-yl)methyl)-2-oxoindoline-1-carboxylate (1j): white solid, ¹H NMR (600 MHz, CDCl₃): δ 7.93 (br s, 1H), 7.74 (d, *J* = 8.2 Hz, 1H), 7.23 (t, *J* = 7.4 Hz, 2H), 6.96 -7.06 (m, 2H), 6.85 (dt, *J* = 8.8, 4.9 Hz, 3H), 3.90 (dd, *J* = 8.8, 4.4 Hz, 1H), 3.84 (s, 3H), 3.58 (dd, *J* = 14.6, 4.4 Hz, 1H),

3.16 (dd, J = 14.6, 8.8 Hz, 1H), 1.61 (s, 9H). ¹³C NMR (151 MHz, CDCl₃): δ 176.13, 154.22, 149.37, 140.32, 131.41, 128.15, 127.65, 124.60, 124.01, 124.00, 114.91, 112.75, 111.99, 111.55, 111.54, 100.63, 84.32, 56.02, 46.65, 28.20, 27.95. ESI HRMS exact mass calcd. for (C₂₃H₂₄N₂O₄+ Na)⁺ requires m/z 415.1628, found m/z 415.1625.

Tert-butyl 3-((6-fluoro-1H-indol-3-yl)methyl)-2-oxoindoline-1-carboxylate (**1k):** white solid, ¹H NMR (600 MHz, CDCl₃): δ 8.02 (br s, 1H), 7.72 (d, J = 8.2 Hz, 1H), 7.50 (dd, J = 8.7, 5.3 Hz, 1H), 7.23 (t, J = 7.8 Hz, 1H), 6.98-7.06 (m, 2H), 6.90 (d, J = 7.4 Hz, 1H), 6.81-6.88 (m, 2H), 3.88 (dd, J = 8.2, 4.5 Hz, 1H), 3.56 (dd, J = 14.6, 4.5 Hz, 1H), 3.21 (dd, J = 14.6, 8.3 Hz, 1H), 1.60 (s, 9H). ¹³C NMR (151 MHz, CDCl₃): δ 176.00, 160.17 (d, J = 237.5 Hz), 149.32, 140.33, 136.16 (d, J = 12.4 Hz), 128.24, 127.98, 124.41, 124.07, 123.92, 123.38 (d, J = 3.3 Hz), 119.85 (d, J = 10.4 Hz), 114.94, 111.88, 108.45 (d, J = 24.5 Hz), 97.52 (d, J = 26.2 Hz), 84.37, 46.76, 28.20, 27.68. ESI HRMS exact mass calcd. for (C₂₂H₂₁FN₂O₃ + Na)⁺ requires m/z 403.1428, found m/z 403.1423.

C¹ Tert-butyl 3-((6-chloro-1H-indol-3-yl)methyl)-2-oxoindoline-1-carboxylate (11): white solid, ¹H NMR (600 MHz, CDCl₃): δ 8.05 (br s, 1H), 7.71 (d, J = 8.2 Hz, 1H), 7.48 (d, J = 8.5 Hz, 1H), 7.32 (d, J = 1.7 Hz, 1H), 7.23 (t, J = 7.8 Hz, 1H), 6.98-7.08 (m, 2H), 6.91 (d, J = 7.5 Hz, 1H), 6.85 (d, J = 2.3 Hz, 1H), 3.87 (dd, J = 8.1, 4.6 Hz, 1H), 3.54 (ddd, J = 14.6, 4.6, 0.7 Hz, 1H), 3.23 (dd, J

= 14.6, 8.2 Hz, 1H), 1.60 (s, 9H). ¹³C NMR (151 MHz, CDCl₃): δ 175.98, 149.28, 140.33, 136.56, 128.27, 128.21, 127.90, 125.94, 124.37, 124.10, 123.83, 120.42, 119.99, 114.96, 111.89, 111.17, 84.41, 46.78, 28.19, 27.57. ESI HRMS exact mass calcd. for (C₂₂H₂₁ClN₂O₃ + Na)⁺ requires m/z 419.1133, found m/z 419.1124.

^{OMe} Tert-butyl

3-((6-methoxy-1H-indol-3-yl)methyl)-2-oxoindoline-1-carboxylate (1m): white solid, ¹H NMR (600 MHz, CDCl₃): *δ* 7.89 (br s, 1H), 7.74 (d, *J* = 8.2 Hz, 1H), 7.48 (d, *J* = 8.7 Hz, 1H), 7.22 (t, *J* = 7.9 Hz, 1H), 6.99 (t, *J* = 7.5 Hz, 1H), 6.83-6.85 (m, 2H), 6.76-6.77 (m, 2H), 3.89 (dd, *J* = 8.8, 4.4 Hz, 1H),

3.83 (s, 3H), 3.58 (dd, J = 14.5, 4.4 Hz, 1H), 3.13 (dd, J = 14.6, 8.8 Hz, 1H), 1.61 (s, 9H). ¹³C NMR (151 MHz, CDCl₃): δ 176.08, 156.74, 149.40, 140.25, 137.11, 128.17, 128.11, 124.57, 123.99, 121.90, 121.71, 119.70, 114.85, 111.88, 109.62, 94.78, 84.30, 55.78, 46.72, 28.22, 27.94. ESI HRMS exact mass calcd. for (C₂₃H₂₄N₂O₄ + Na)⁺ requires m/z 415.1628, found m/z 415.1621.

Tert-butyl

3-((7-bromo-1H-indol-3-yl)methyl)-2-oxoindoline-1-carboxylate (1n): yellow solid, ¹H NMR (600 MHz, CDCl₃): δ 8.17 (br s, 1H), 7.73 (d, J = 8.2

B_{oc} Hz, 1H), 7.55 (d, J = 7.9 Hz, 1H), 7.33 (d, J = 7.6 Hz, 1H), 7.24 (t, J = 7.9 Hz, 1H), 7.02 (t, J = 7.5 Hz, 1H), 6.98 (t, J = 7.8 Hz, 1H), 6.93 (d, J = 2.0 Hz, 1H), 6.90 (d, J = 7.5 Hz, 1H), 3.89 (dd, J = 8.3, 4.5 Hz, 1H), 3.57 (dd, J = 14.6, 4.5 Hz, 1H), 3.22 (dd, J = 14.7, 8.3 Hz, 1H), 1.60 (s, 9H). ¹³C NMR (151 MHz, CDCl₃): δ 175.89, 149.28, 140.33, 134.93, 128.52, 128.29, 127.86, 124.65, 124.40, 124.10, 123.73, 120.89, 118.39, 114.98, 113.09, 104.84, 84.38, 46.70, 28.20, 27.79. ESI HRMS exact mass calcd. for (C₂₂H₂₁BrN₂O₃ + Na)⁺ requires m/z 463.0628, found m/z 463.0614.

Tert-butyl

3-((7-methyl-1H-indol-3-yl)methyl)-2-oxoindoline-1-carboxylate (10): white solid, ¹H NMR (600 MHz, CDCl₃): δ 7.94 (br s, 1H), 7.75 (d, J = 8.2 Hz, 1H), 7.49 (d, J = 7.8 Hz, 1H), 7.23 (t, J = 7.8 Hz, 1H), 7.04 (t, J = 7.4

Hz, 1H), 6.96-7.02 (m, 2H), 6.92 (d, J = 2.2 Hz, 1H), 6.84 (d, J = 7.5 Hz, 1H), 3.92 (dd, J = 9.0, 4.4 Hz, 1H), 3.60-3.69 (m, 1H), 3.14 (dd, J = 14.6, 9.0 Hz, 1H), 2.49 (s, 3H), 1.62 (s, 9H). ¹³C NMR (151 MHz, CDCl₃): δ 176.07, 149.43, 140.24, 135.96, 128.22, 128.12, 126.83, 124.61, 123.99, 122.88, 122.85, 120.40, 119.93, 116.79, 114.87, 112.51, 84.31, 46.65, 28.22, 28.02, 16.73. ESI HRMS exact mass calcd. for $(C_{23}H_{24}N_2O_3 + Na)^+$ requires m/z 399.1679, found m/z 399.1683.

> **3-((1H-indol-3-yl)methyl)-1-acetylindolin-2-one (1p):** white solid, ¹H NMR (600 MHz, CDCl₃): δ 8.13 (d, J = 8.2 Hz, 1H), 7.98 (s, 1H), 7.64 (d, J = 7.9 Hz, 1H), 7.33 (d, J = 8.1 Hz, 1H), 7.23-7.29 (m, 1H), 7.19 (t, J = 7.6 Hz, 1H), 7.06-7.15 (m, 2H), 7.00 (d, J = 7.5 Hz, 1H), 6.75 (d, J = 1.8 Hz, 1H), 3.98 (dd,

J = 7.8, 4.6 Hz, 1H), 3.56 (dd, *J* = 14.6, 4.5 Hz, 1H), 3.34 (dd, *J* = 14.6, 7.9 Hz, 1H), 2.55 (s, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 178.34, 171.07, 140.78, 136.16, 128.35, 127.19, 124.84, 124.20, 123.03, 122.38, 119.71, 118.97, 116.45, 111.29, 111.19, 46.88, 27.76, 26.69. ESI HRMS exact mass calcd. for $(C_{19}H_{16}N_2O_2 + N_a)^+$ requires m/z 327.1104, found m/z 327.1100.

1-acetyl-3-((4-chloro-1H-indol-3-yl)methyl)indolin-2-one (1q): white solid, ¹H NMR (600 MHz, CDCl₃): δ 8.22-8.24 (m, 2H), 7.27-7.33 (m, 2H), 7.08-7.15 (m, 2H), 7.05 (td, J = 7.5, 0.9 Hz, 1H), 6.92 (d, J = 2.3 Hz, 1H), 6.83 (d, *J* = 7.5 Hz, 1H), 4.15 (dd, *J* = 8.8, 6.1 Hz, 1H), 3.84 (ddd, *J* = 14.5, 6.0, 0.6

Hz, 1H), 3.29 (dd, J = 14.5, 8.8 Hz, 1H), 2.69 (s, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 178.06, 171.28, 140.40, 138.05, 128.36, 128.29, 126.50, 124.91, 124.72, 124.44, 124.10, 123.03, 121.00, 116.50, 112.48, 110.33, 47.41, 29.33, 26.91. ESI HRMS exact mass calcd. for (C₁₉H₁₅ClN₂O₂+ Na)⁺ requires m/z 361.0714, found m/z 361.0709.

(1r): white solid, ¹H NMR (600 MHz, CDCl₃): δ 7.85 (s, 1H), 7.56 (d, J = 7.9Hz, 1H), 7.47 (dd, *J* = 6.0, 3.0 Hz, 1H), 7.21 (d, *J* = 8.1 Hz, 1H), 7.10-7.15 (m,

J = 5.4, 3.9 Hz, 1H), 3.78 (dd, *J* = 14.7, 5.5 Hz, 1H), 3.70 (dd, *J* = 14.6, 3.8 Hz, 1H), 1.48 (s, 9H). ¹³C NMR (151 MHz, CDCl₃): δ 175.31, 148.82, 142.11, 135.77, 130.44, 129.39, 127.51, 125.69, 124.62, 123.29, 121.88, 119.53, 119.23, 113.32, 110.79, 110.11, 84.35, 47.78, 28.04, 25.20. ESI HRMS exact mass calcd. for $(C_{22}H_{21}CIN_2O_3 + Na)^+$ requires m/z 419.1133, found m/z 419.1128.

Tert-butyl

3-((1H-indol-3-yl)methyl)-5-fluoro-2-oxoindoline-1-carboxylate (1s): white solid, ¹H NMR (600 MHz, CDCl₃): δ 8.07 (s, 1H), 7.73 (dd, J = 8.9, 4.6 Hz, 1H), 7.64 (d, J = 7.9 Hz, 1H), 7.38 (d, J = 8.1 Hz, 1H), 7.18-7.24 (m, 1H), 7.15-7.10 (m, 1H), 6.88-6.96 (m, 2H), 6.53 (dd, J = 8.0, 2.6 Hz, 1H),

3.90 (dd, J = 9.1, 4.4 Hz, 1H), 3.64 (ddd, J = 14.5, 4.4, 0.8 Hz, 1H), 3.14 (dd, J = 14.6, 9.1 Hz, 1H), 1.61 (s, 9H). ¹³C NMR (151 MHz, CDCl₃): δ 175.54, 159.58 (d, J = 242.5 Hz), 149.33, 136.41, 136.21, 129.93 (d, J = 8.6 Hz), 127.05, 123.20, 122.50, 119.85, 118.93, 116.05 (d, J = 8.0 Hz), 114.54 (d, J = 23.0 Hz), 112.09 (d, J = 24.9 Hz), 111.46, 111.40, 84.52, 46.72, 28.20, 27.89. ESI HRMS exact mass calcd. for (C₂₂H₂₁FN₂O₃ + Na)⁺ requires m/z 403.1428, found m/z 403.1429.

Tert-butyl

3-((1H-indol-3-yl)methyl)-5-bromo-2-oxoindoline-1-carboxylate (1t): white solid, ¹H NMR (600 MHz, CDCl₃): δ 8.06 (s, 1H), 7.64 (t, J = 9.0 Hz,

Boc 2H), 7.33-7.40 (m, 2H), 7.21 (dd, J = 11.2, 3.9 Hz, 1H), 7.13 (dd, J = 11.0, 3.9 Hz, 1H), 6.96 (d, J = 0.7 Hz, 1H), 6.91 (d, J = 1.9 Hz, 1H), 3.88 (dd, J = 8.7, 4.4 Hz, 1H), 3.61 (dd, J = 14.5, 4.4 Hz, 1H), 3.16 (dd, J = 14.6, 8.8 Hz, 1H), 1.60 (s, 9H). ¹³C NMR (151 MHz, CDCl₃): δ 175.09, 149.18, 139.33, 136.37, 131.05, 130.26, 127.63, 127.04, 123.20, 122.49, 119.85, 118.94, 117.01, 116.51, 111.37, 84.69, 46.52, 28.18, 27.90. ESI HRMS exact mass calcd. for (C₂₂H₂₁BrN₂O₃ + Na)⁺ requires m/z 463.0628, found m/z 463.0620.

CI

3-((1H-indol-3-yl)methyl)-5-methyl-2-oxoindoline-1-carboxylate (1u): white solid, ¹H NMR (600 MHz, CDCl₃): δ 8.02 (s, 1H), 7.61 (t, *J* = 8.0 Hz,

3.59 (dd, J = 14.6, 4.5 Hz, 1H), 3.19 (dd, J = 14.6, 8.5 Hz, 1H), 2.21 (s, 3H), 1.60 (s, 9H). ¹³C NMR (151 MHz, CDCl₃): δ 176.25, 149.44, 137.86, 136.30, 133.58, 128.53, 128.17, 127.37, 125.22, 123.03, 122.27, 119.62, 119.08, 114.63, 112.05, 111.23, 84.13, 46.78, 28.22, 27.81, 21.14. ESI HRMS exact mass calcd. for (C₂₃H₂₄N₂O₃ + Na)⁺ requires m/z 399.1679, found m/z 399.1674.

Tert-butyl

 $\begin{array}{l} \textbf{3-((1H-indol-3-yl)methyl)-6-chloro-2-oxoindoline-1-carboxylate (1v):} \\ white solid, ¹H NMR (600 MHz, CDCl₃): <math>\delta$ 8.06 (s, 1H), 7.82 (d, *J* = 1.8 Hz, 1H), 7.62 (d, *J* = 7.9 Hz, 1H), 7.37 (d, *J* = 8.1 Hz, 1H), 7.20 (t, *J* = 7.6 Hz), 1H (t, J) (t

1H), 7.12 (t, J = 7.5 Hz, 1H), 6.96 (dd, J = 8.0, 1.8 Hz, 1H), 6.88 (d, J = 2.0 Hz, 1H), 6.71 (d, J =

8.0 Hz, 1H), 3.88 (dd, J = 8.9, 4.5 Hz, 1H), 3.61 (dd, J = 14.5, 4.5 Hz, 1H), 3.14 (dd, J = 14.5, 8.9 Hz, 1H), 1.61 (s, 9H). ¹³C NMR (151 MHz, CDCl₃): δ 175.53, 149.12, 141.15, 136.34, 133.90, 127.12, 126.43, 125.38, 124.01, 123.17, 122.45, 119.82, 118.96, 115.65, 111.50, 111.35, 84.85, 46.38, 28.16, 27.86. ESI HRMS exact mass calcd. for (C₂₂H₂₁ClN₂O₃ + Na)⁺ requires m/z 419.1133, found m/z 419.1127.

General procedure for the one-pot stepwise Aldol/Chloroetherification/Aromatization reaction

3-(3-indolomethyl)oxindole **1** (0.1 mmol), paraformaldehyde (18 mg, 0.6 mmol) and catalyst **3a** (3.2 mg, 0.01 mmol) were stirred in ClCH₂CH₂Cl at 0°C until the reaction finished. Then, DABCO (13.5 mg, 0.12 mmol) and NCS (16 mg, 0.12 mmol) were added and the reaction mixture was vigorously stirred at 0°C for 30 min. The crude reaction mixture was directly loaded on a silica-gel column and next chromatograph afforded the corresponding product **2**.

Experiment data for the products 2

(R)-tert-butyl

2-oxo-4',9'-dihydro-2'H-spiro[indoline-3,3'-pyrano[2,3-b]indole]-1-carboxylate (**2a**): white solid, 31 mg, 79% yield, 95% ee, mp 142.8-144.5 °C; ¹H NMR (300 MHz, DMSO-*d*₆): **δ** 11.20 (s, 1H), 7.85 (d, *J* = 8.1 Hz, 1H), 7.35 (t, *J* = 7.5 Hz, 1H), 7.21-7.24 (m, 2H), 7.06 (t, *J* = 7.5 Hz, 1H), 6.90-6.97 (m, 3H), 4.42 (d, *J* = 10.6 Hz,

1H), 4.30 (d, J = 10.6 Hz, 1H), 3.11 (d, J = 15.0 Hz, 1H), 2.82 (d, J = 15.0 Hz, 1H), 1.58 (s, 9H); ¹³C NMR (75 MHz, DMSO- d_6): δ 174.53, 148.61, 148.09, 138.69, 130.93, 130.06, 128.49, 126.87, 124.45, 123.50, 119.22, 118.95, 116.25, 114.50, 110.49, 84.07, 83.88, 71.06, 45.23, 28.06, 27.68; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak OD-H column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $t_{major} = 20.21$ min, $t_{minor} = 12.28$ min); [α]_D²⁰ = +33.3 (c = 1.25, CH₂Cl₂); ESI HRMS exact mass calcd. for (C₂₃H₂₂N₂O₄ + H)⁺ requires m/z 391.1652, found m/z 391.1649. (R)-tert-butyl

5'-fluoro-2-oxo-4',9'-dihydro-2'H-spiro[indoline-3,3'-pyrano[2,3-b]indole]-1-ca rboxylate (2b): white solid, 24.5 mg, 60% yield, 89% ee, mp 177.0-178.3 °C; ¹H NMR (300 MHz, DMSO-*d*₆): *δ* 11.49 (s, 1H), 7.82 (d, *J* = 8.1 Hz, 1H), 7.32 (t, *J* = 7.6 Hz, 1H), 7.02-7.08 (m, 2H), 6.94-6.96 (m, 1H), 6.87-6.89 (m, 1H), 6.63-6.70 (m,

1H), 4.40 (d, J = 10.7 Hz, 1H), 4.28 (d, J = 10.7 Hz, 1H), 3.21 (d, J = 15.2 Hz, 1H), 2.95 (d, J = 15.3 Hz, 1H), 1.54 (s, 9H); ¹³C NMR (75 MHz, DMSO- d_6): δ 174.25, 155.15 (d, J = 238 Hz), 148.63, 147.81, 138.84, 133.43 (d, J = 12.6 Hz), 129.81, 128.56, 124.47, 123.45, 119.47 (d, J = 7.8 Hz), 114.93 (d, J = 20.1 Hz), 114.58, 107.18, 104.34 (d, J = 18.0 Hz), 83.79, 82.09, 70.98, 45.10, 28.90, 27.67; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $t_{major} = 10.97$ min, $t_{minor} = 10.23$ min); $[\alpha]_D^{20} = +4.7$ (c = 1.0, CH₂Cl₂); ESI HRMS exact mass calcd. for (C₂₃H₂₁FN₂O₄ + H)⁺ requires m/z 409.1558, found m/z 409.1565.

(R)-tert-butyl

5'-chloro-2-oxo-4',9'-dihydro-2'H-spiro[indoline-3,3'-pyrano[2,3-b]indole]-1-c arboxylate (2c): white solid, 24.2 mg, 57% yield, 87% ee, mp 188.1-189.7 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ 11.59 (s, 1H), 7.85 (d, *J* = 8.1 Hz, 1H), 7.34-7.39 (m, 1H), 7.18-7.21 (m, 1H), 7.08-7.13 (m, 1H), 7.01 (d, *J* = 6.8 Hz, 1H),

6.92-6.94 (m, 2H), 4.45 (d, J = 10.7 Hz, 1H), 4.32 (d, J = 10.7 Hz, 1H), 3.36 (d, J = 15.4 Hz, 1H), 3.18 (d, J = 15.4 Hz, 1H), 1.57 (s, 9H); ¹³C NMR (75 MHz, DMSO-*d*₆): δ 174.27, 148.83, 148.62, 138.84, 132.02, 129.83, 128.60, 124.51, 124.12, 123.50, 122.49, 119.99, 119.26, 114.59, 109.63, 84.08, 83.81, 70.78, 45.07, 29.47, 27.68; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda =$ 254 nm; $t_{major} = 6.18$ min, $t_{minor} = 7.47$ min); [α]_D²⁰ = -9.3 (c = 0.9, CH₂Cl₂); ESI HRMS exact mass calcd. for (C₂₃H₂₁ClN₂O₄ + H)⁺ requires m/z 425.1263, found m/z 425.1245.

(R)-tert-butyl

5'-methoxy-2-oxo-4',9'-dihydro-2'H-spiro[indoline-3,3'-pyrano[2,3-b]indole]
-1-carboxylate (2d): white solid, 24.0 mg, 57% yield, 88% ee, mp 168.3-169.9
° C; ¹H NMR (300 MHz, DMSO-*d*₆): δ 11.17 (s, 1H), 7.83 (d, *J* = 8.1 Hz, 1H),
7.35 (t, *J* = 7.5 Hz, 1H), 7.08 (t, *J* = 7.5 Hz, 1H), 6.82-6.94 (m, 3H), 6.43-6.46 (m,

1H), 4.38 (d, J = 10.3 Hz, 1H), 4.25 (d, J = 10.5 Hz, 1H), 3.71 (s, 3H), 3.25 (d, J = 15.5 Hz, 1H), 2.99 (d, J = 15.2 Hz, 1H), 1.57 (s, 9H); ¹³C NMR (75 MHz, DMSO- d_6): δ 174.56, 152.51, 148.62, 146.39, 138.72, 131.77, 130.16, 128.45, 124.43, 123.51, 119.88, 116.27, 114.49, 104.34, 100.05, 83.81, 83.45, 70.71, 54.97, 45.31, 30.18, 27.69; The enantiomeric ratio was determined by HPLC

analysis using Daicel Chiralpak AD-H column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $t_{major} = 8.11$ min, $t_{minor} = 10.25$ min); $[\alpha]_D^{20} = +19.0$ (c = 1.0, CH₂Cl₂); ESI HRMS exact mass calcd. for (C₂₄H₂₄N₂O₅ + Na)⁺ requires m/z 443.1577, found m/z 443.1566.

(R)-tert-butyl

6'-fluoro-2-oxo-4',9'-dihydro-2'H-spiro[indoline-3,3'-pyrano[2,3-b]indole]-1-c arboxylate (2e): white solid, 28.1 mg, 69% yield, 95% ee, mp 180.3-181.3 °C; ¹H NMR (300 MHz, DMSO-*d*₆): **δ** 11.31 (s, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.35 (t,

J = 7.5 Hz, 1H), 7.18-7.22 (m, 1H), 7.05-7.09 (m, 1H), 7.01 (dd, J = 2.5 and 9.9 Hz, 1H), 6.92-6.95 (m, 1H), 6.77 (t, J = 7.8 Hz, 1H), 4.44 (d, J = 10.7 Hz, 1H), 4.32 (d, J = 10.7 Hz, 1H), 3.09 (d, J = 15.1 Hz, 1H), 2.82 (d, J = 15.1 Hz, 1H), 1.58 (s, 9H); ¹³C NMR (75 MHz, DMSO- d_6): δ 174.40, 157.25 (d, J = 229 Hz), 149.61, 148.63, 138.74, 129.89, 128.58, 127.47 (d, J = 6.6 Hz), 127.37, 124.50, 123.50, 114.56, 111.22 (d, J = 9.6 Hz), 106.39 (d, J = 25.1 Hz), 101.78 (d, J = 23.9 Hz), 84.92 (d, J = 4.0 Hz), 83.91, 71.11, 45.11, 27.96, 27.68; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak OD-H column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $t_{major} = 13.44$ min, $t_{minor} = 11.48$ min); $[\alpha]_D^{20} = +38.4$ (c = 1.2, CH₂Cl₂); ESI HRMS exact mass calcd. for (C₂₃H₂₁FN₂O₄ + H)⁺ requires m/z 409.1558, found m/z 409.1559.

(R)-tert-butyl

(R)-1-tert-butyl

6'-bromo-2-oxo-4',9'-dihydro-2'H-spiro[indoline-3,3'-pyrano[2,3-b]indole]-1
-carboxylate (2f): yellow solid, 33.8 mg, 72% yield, 95% ee, mp 163.4-165.4 °
C; ¹H NMR (300 MHz, DMSO-d₆): δ 11.44 (s, 1H), 7.84 (d, J = 8.1 Hz, 1H),
7.34-7.39 (m, 2H), 7.18 (d, J = 8.5 Hz, 1H), 7.06-7.11 (m, 2H), 6.91-6.93 (m,

1H), 4.45 (d, J = 10.5 Hz, 1H), 4.32 (d, J = 10.7 Hz, 1H), 3.08 (d, J = 15.3 Hz, 1H), 2.84 (d, 15.1 Hz, 1H), 1.57 (s, 9H); ¹³C NMR (75 MHz, DMSO- d_6): δ 174.31, 149.15, 148.59, 138.71, 129.80, 129.65, 128.78, 128.60, 124.52, 123.47, 121.46, 118.55, 114.54, 112.39, 111.59, 84.32, 83.92, 71.11, 44.99, 27.77, 27.68; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak OD-H column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $t_{major} = 14.55$ min, $t_{minor} = 12.81$ min); $[\alpha]_D^{20} = +48.5$ (c = 0.73, CH₂Cl₂); ESI HRMS exact mass calcd. for (C₂₃H₂₁BrN₂O₄ + H)⁺ requires m/z 469.0757, found m/z 469.0748.

MeO₂C NH

2-oxo-4',9'-dihydro-2'H-spiro[indoline-3,3'-pyrano[2,3-b]indole]-1,6'-dic arboxylate (2g): white solid, 22.8 mg, 51% yield, 90% ee, mp 187.8-189.5 ° C; ¹H NMR (300 MHz, DMSO-*d*₆): *δ* 11.71 (s, 1H), 7.93 (s, 1H), 7.85 (d, *J* = 8.1 Hz, 1H), 7.67 (d, *J* = 8.4 Hz, 1H), 7.31-7.38 (m, 2H), 7.09 (t, *J* = 7.5 Hz,

6'-methyl

1H), 6.95 (d, J = 7.4 Hz, 1H), 4.47 (d, J = 10.7 Hz, 1H), 4.35 (d, J = 10.7 Hz, 1H), 3.80 (s, 3H), 3.16 (d, J = 15.2 Hz, 1H), 2.93 (d, J = 15.2 Hz, 1H), 1.57 (s, 9H); ¹³C NMR (75 MHz, DMSO- d_6): δ 174.31, 167.33, 149.30, 148.63, 138.77, 133.99, 129.82, 128.58, 126.51, 124.51, 123.46, 120.73, 120.44, 118.32, 114.57, 110.33, 85.37, 83.89, 71.24, 51.59, 45.05, 27.67, 27.57; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak OD-H column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $t_{major} = 32.04$ min, $t_{minor} = 29.60$ min); $[\alpha]p^{20} =$ +41.3 (c = 0.35, CH₂Cl₂); ESI HRMS exact mass calcd. for (C₂₅H₂₄N₂O₆ + Na)⁺ requires m/z 471.1527, found m/z 471.1525.

(R)-tert-butyl NH 6'-cyano-2-oxo

NC

6'-cyano-2-oxo-4',9'-dihydro-2'H-spiro[indoline-3,3'-pyrano[2,3-b]indole]-1carboxylate (2h): white solid, 24.9 mg, 60% yield, 95% ee, mp 188.5-190.2 °C; ¹H NMR (300 MHz, DMSO-*d*₆): **δ** 11.90 (s, 1H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.74 (s, 1H), 7.32-7.40 (m, 3H), 7.10 (t, *J* = 7.4 Hz, 1H), 6.96 (d, *J* = 7.4 Hz, 1H),

4.50 (d, J = 10.7 Hz, 1H), 4.36 (d, J = 10.8 Hz, 1H), 3.11 (d, J = 15.3 Hz, 1H), 2.90 (d, J = 15.3 Hz, 1H), 1.57 (s, 9H); ¹³C NMR (75 MHz, DMSO- d_6): δ 174.20, 149.89, 148.59, 138.79, 133.15, 129.59, 128.70, 126.85, 124.58, 123.47, 122.55, 121.05, 120.93, 114.59, 111.50, 100.95, 85.27, 83.95, 71.22, 44.80, 27.68, 27.60; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak OD-H column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $t_{major} = 26.02$ min, $t_{minor} = 22.55$ min); $[\alpha]_D^{20} = +45.7$ (c = 0.5, CH₂Cl₂); ESI HRMS exact mass calcd. for (C₂₄H₂₁N₃O₄ + Na)⁺ requires m/z 438.1424, found m/z 438.1407.

(R)-tert-butyl

6'-methyl-2-oxo-4',9'-dihydro-2'H-spiro[indoline-3,3'-pyrano[2,3-b]indole]-1-carboxylate (2i): white solid, 29.1 mg, 72% yield, 96% ee, mp 176.9-179.2 ° C; ¹H NMR (300 MHz, DMSO-*d*₆): **δ** 10.99 (s, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.31 (t, *J* = 7.5 Hz, 1H), 6.96-7.07 (m, 3H), 6.84 (d, *J* = 7.7 Hz, 1H), 6.74 (d, *J* =

8.0 Hz, 1H), 4.21-4.34 (m, 2H), 3.04 (d, J = 15.2 Hz, 1H), 2.74 (d, J = 15.3 Hz, 1H), 2.27 (s, 3H), 1.54 (s, 9H); ¹³C NMR (75 MHz, DMSO- d_6): δ 174.59, 148.61, 148.20, 138.67, 130.12, 129.13, 128.49, 127.39, 127.08, 124.46, 123.50, 120.49, 116.28, 114.51, 110.22, 83.91, 83.67, 71.05, 45.30, 28.05, 27.70, 21.34; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $t_{major} = 7.45$ min, $t_{minor} = 13.54$ min); $[\alpha]_D^{20} = +56.2$ (c = 0.9, CH₂Cl₂); ESI HRMS exact mass calcd. for (C₂₄H₂₄N₂O₄ + Na)⁺ requires m/z 427.1628, found m/z 427.1610.

(R)-tert-butyl

6'-methoxy-2-oxo-4',9'-dihydro-2'H-spiro[indoline-3,3'-pyrano[2,3-b]indol
e]-1-carboxylate (2j): white solid, 26 mg, 62% yield, 94% ee, mp 180.5-182.3
°C; ¹H NMR (300 MHz, DMSO-*d*₆): δ 10.99 (s, 1H), 7.84 (d, *J* = 8.1 Hz, 1H),
7.36 (t, *J* = 7.8 Hz, 1H), 7.05-7.33 (m, 2H), 6.91 (d, *J* = 7.5 Hz, 1H), 6.77 (d, *J*

= 2.3 Hz, 1H), 6.59 (dd, J = 8.6 and 2.4 Hz, 1H), 4.41 (d, J = 10.7 Hz, 1H), 4.28 (d, J = 10.7 Hz, 1H), 3.69 (s, 3H), 3.09 (d, J = 15.0 Hz, 1H), 2.80 (d, J = 15.0 Hz, 1H), 1.58 (s, 3H); ¹³C NMR (75 MHz, DMSO- d_6): δ 174.56, 153.54, 148.69, 148.62, 138.69, 130.07, 128.51, 127.46, 125.68, 124.47, 123.53, 114.51, 111.06, 107.76, 99.89, 84.29, 83.91, 71.02, 55.32, 45.27, 28.20, 27.70; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; t_{major} = 12.43 min, t_{minor} = 19.61 min); $[\alpha]_D^{20}$ = +56.6 (c = 1.25, CH₂Cl₂); ESI HRMS exact mass calcd. for (C₂₄H₂₄N₂O₅ + Na)⁺ requires m/z 443.1577, found m/z 443.1572.

(R)-tert-butyl

7'-fluoro-2-oxo-4',9'-dihydro-2'H-spiro[indoline-3,3'-pyrano[2,3-b]indole]-1-ca rboxylate (2k): white solid, 25.7 mg, 63% yield, 95% ee, mp 185.4-186.3 °C; ¹H NMR (300 MHz, DMSO- d_6): δ 11.34 (s, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.35 (t, J =

Boc 6.9 Hz, 1H), 7.17-7.21 (m, 1H), 7.00-7.08 (m, 2H), 6.93 (d, J = 6.7 Hz, 1H), 6.77-6.81 (m, 1H), 4.41 (d, J = 10.6 Hz, 1H), 4.28 (d, J = 10.6 Hz, 1H), 3.08 (d, J = 15.1 Hz, 1H), 2.82 (d, J = 15.0 Hz, 1H), 1.57 (s, 9H); ¹³C NMR (75 MHz, DMSO- d_6): δ 174.46, 157.70 (d, J =230 Hz), 148.61, 148.27 (d, J = 2.7 Hz), 138.72, 130.82 (d, J = 12.4 Hz), 129.97, 128.56, 124.51, 123.56, 123.50, 116.91 (d, J = 9.6 Hz), 114.53, 106.62 (d, J = 23.3 Hz), 97.32 (d, J = 26.0 Hz), 84.08, 83.90, 70.98, 45.12, 27.94, 27.69; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda =$ 254 nm; $t_{major} = 8.66$ min, $t_{minor} = 13.37$ min); $[\alpha]_D^{20} = -15.2$ (c = 0.65, CH₂Cl₂); ESI HRMS exact mass calcd. for (C₂₃H₂₁FN₂O₄ + Na)⁺ requires m/z 431.1378, found m/z 431.1365.

(R)-tert-butyl

7'-chloro-2-oxo-4',9'-dihydro-2'H-spiro[indoline-3,3'-pyrano[2,3-b]indole]-1-ca rboxylate (2l): white solid, 29.3 mg, 69% yield, 93% ee, mp 128.0-130.2 °C; ¹H NMR (300 MHz, DMSO- d_6): δ 11.42 (s, 1H), 7.83 (d, J = 8.2 Hz, 1H), 7.36 (t, J =7.6 Hz, 1H), 7.21-7.24 (m, 2H), 7.09 (t, J = 7.6 Hz, 1H), 6.91-6.97 (m, 2H), 4.44 (d,

J = 10.6 Hz, 1H), 4.31 (d, J = 10.8 Hz, 1H), 3.08 (d, J = 15.1 Hz, 1H), 2.85 (d, J = 15.0 Hz, 1H), 1.57 (s, 1H); ¹³C NMR (75 MHz, DMSO- d_6): δ 174.37, 148.76, 148.61, 138.75, 131.40, 129.84, 128.61, 125.69, 124.52, 123.50, 119.10, 117.52, 114.55, 110.23, 84.50, 83.91, 71.06, 45.01, 27.83,

27.69; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $t_{major} = 9.15$ min, $t_{minor} = 13.78$ min); $[\alpha]_D^{20} = +0.9$ (c = 1.0, CH₂Cl₂); ESI HRMS exact mass calcd. for (C₂₃H₂₁ClN₂O₄ + Na)⁺ requires m/z 447.1082, found m/z 447.1070.

(R)-tert-butyl

MeQ

7'-methoxy-2-oxo-4',9'-dihydro-2'H-spiro[indoline-3,3'-pyrano[2,3-b]indole]-1 -carboxylate (2m): white solid, 6.3 mg, 15% yield, 95% ee, mp 261.9-263.4 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, J = 6.4 Hz, 1H), 7.79 (s, 1H), 7.30 (t, J = 6.4 Hz, 1H), 7.16 (d, J = 6.8 Hz, 1H), 6.99 (t, J = 6.0 Hz, 1H), 6.93-6.94 (m, 1H), 6.84 (s, 1H), 6.75 (d, J = 6.4 Hz, 1H), 4.40 (d, J = 8.4 Hz, 1H), 4.12 (d, J = 8.4 Hz,

1H), 3.83 (s, 3H), 3.35 (d, J = 12 Hz, 1H), 2.76 (d, J = 12 Hz, 1H), 1.66 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 175.65, 155.30, 149.09, 146.59, 138.61, 131.58, 130.32, 128.60, 124.85, 124.07, 121.62, 117.40, 114.86, 108.50, 95.99, 85.30, 84.86, 72.00, 55.94, 46.40, 28.32, 28.13; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak OD-H column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $t_{major} = 14.49$ min, $t_{minor} = 13.10$ min); $[\alpha]_D^{20} = +23.1$ (c = 0.55, CH₂Cl₂); ESI HRMS exact mass calcd. for (C₂₄H₂₄N₂O₅ + H)⁺ requires m/z 421.1758, found m/z 421.1755.

(R)-tert-butyl

Br

8'-bromo-2-oxo-4',9'-dihydro-2'H-spiro[indoline-3,3'-pyrano[2,3-b]indole]-1-ca rboxylate (2n): white solid, 17.8 mg, 38% yield, 93% ee, mp 178.8-180.5 °C; ¹H NMR (300 MHz, DMSO- d_6): δ 11.52 (s, 1H), 7.84 (d, J = 8.1 Hz, 1H), 7.37 (t, J =

Boc 7.8 Hz, 1H), 7.24 (d, J = 7.6 Hz, 1H), 7.07-7.17 (m, 2H), 6.86-6.96 (m, 2H), 4.47 (d, J = 10.5 Hz, 1H), 4.33 (d, J = 10.7 Hz, 1H), 3.10 (d, J = 15.1 Hz, 1H), 2.86 (d, J = 15.3 Hz, 1H), 1.57 (s, 9H); ¹³C NMR (75 MHz, DMSO- d_6): δ 174.32, 149.10, 148.60, 138.75, 129.79, 129.46, 128.58, 124.53, 123.49, 121.79, 120.53, 115.67, 114.53, 103.28, 85.62, 83.89, 71.12, 44.93, 27.92, 27.68; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $t_{major} = 7.56$ min, $t_{minor} = 9.66$ min); $[\alpha]_D^{20} = -14.7$ (c = 0.85, CH₂Cl₂); ESI HRMS exact mass calcd. for (C₂₃H₂₁BrN₂O₄ + Na)⁺ requires m/z 491.0577, found m/z 491.0573.

(R)-tert-butyl

Me

8'-methyl-2-oxo-4',9'-dihydro-2'H-spiro[indoline-3,3'-pyrano[2,3-b]indole]-1-c arboxylate (20): white solid, 27 mg, 67% yield, 95% ee, mp 161.9-163.5 °C; ¹H NMR (300 MHz, DMSO-*d*₆): *δ* 11.10 (s, 1H), 7.84 (d, *J* = 8.1 Hz, 1H), 7.35 (t, *J* = 7.5 Hz, 1H), 7.03-7.32 (m, 2H), 6.75-6.92 (m, 3H), 4.42 (d, *J* = 10.6 Hz, 1H), 4.29 (d, J = 10.6 Hz, 1H), 3.10 (d, J = 15.0 Hz, 1H), 2.80 (d, J = 15.0 Hz, 1H), 2.42 (s, 3H), 1.58 (s, 9H); ¹³C NMR (75 MHz, DMSO- d_6): δ 174.61, 148.62, 148.20, 138.69, 130.21, 130.14, 128.50, 126.53, 124.47, 123.52, 120.28, 119.64, 119.16, 114.52, 113.95, 84.44, 83.90, 71.07, 45.29, 28.19, 27.70, 16.85; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $t_{major} = 6.44$ min, $t_{minor} = 9.83$ min); $[\alpha]_D^{20} = +7.0$ (c = 1.0, CH₂Cl₂); ESI HRMS exact mass calcd. for (C₂₄H₂₄N₂O₄ + Na)⁺ requires m/z 427.1628, found m/z 427.1623.

(R)-1-acetyl-4',9'-dihydro-2'H-spiro[indoline-3,3'-pyrano[2,3-b]indol]-2-one (2p): white solid, 21.9 mg, 66% yield, 81% ee, mp 196.8-198.3 °C; ¹H NMR (300 MHz, DMSO- d_6): δ 11.16 (s, 1H), 8.15 (d, J = 7.9 Hz, 1H), 7.30-7.33 (m, 1H), 7.17-7.20 (m, 2H), 7.06-7.09 (m, 1H), 6.89-6.93 (m, 3H), 4.41 (d, J = 10.5 Hz, 1H), 4.30 (d, J = 10.6 Hz, 1H), 3.11 (d, J = 15.0 Hz, 1H), 2.83 (d, J = 15.3 Hz, 1H), 2.46

(s, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆): δ 177.19, 170.72, 148.13, 139.39, 130.92, 130.47, 128.47, 126.85, 125.06, 123.38, 119.25, 118.98, 116.24, 115.71, 110.50, 84.08, 71.03, 45.37, 28.05, 26.52; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak OD-H column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; t_{major} = 26.92 min, t_{minor} = 22.25 min); $[\alpha]_D^{20}$ = +60.7 (c = 0.75, CH₂Cl₂); ESI HRMS exact mass calcd. for (C₂₀H₁₆N₂O₃ + H)⁺ requires m/z 333.1234, found m/z 333.1243.

(R)-1-acetyl-5'-chloro-4',9'-dihydro-2'H-spiro[indoline-3,3'-pyrano[2,3-b]indo
I]-2-one (2q): white solid, 31 mg, 84% yield, 76% ee, mp 223.8-225.1 °C; ¹H
NMR (400 MHz, CDCl₃): δ 8.30 (d, J = 6.4 Hz, 1H), 7.92 (s, 1H), 7.35 (t, J = 6.0 Hz, 1H), 7.16 (d, J = 6.0 Hz, 1H), 7.10 (t, J = 5.6 Hz, 1H), 6.99-7.02 (m, 3H), 4.41
(d, J = 8.0 Hz, 1H), 4.21 (d, J = 8.4 Hz, 1H), 3.60 (d, J = 12.4 Hz, 1H), 3.30 (d, J = 12.4 Hz, 1H), 3.30 (d, J = 12.4 Hz, 1H), 3.30 (d, J = 12.4 Hz, 1H), 3.31 (d, J = 12.4

12.4 Hz, 1H), 2.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 177.66, 170.82, 147.82, 139.14, 131.67, 130.17, 128.99, 125.62, 124.96, 124.55, 123.63, 121.01, 120.76, 116.57, 109.09, 85.90, 71.75, 46.27, 29.85, 26.85; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak OD-H column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $t_{major} = 5.25$ min, $t_{minor} = 6.17$ min); $[\alpha]_D^{20} = +27.3$ (c = 1.0, CH₂Cl₂); ESI HRMS exact mass calcd. for (C₂₀H₁₅ClN₂O₃ + Na)⁺ requires m/z 389.0663, found m/z 389.0648;

(R)-tert-butyl

4-chloro-2-oxo-4',9'-dihydro-2'H-spiro[indoline-3,3'-pyrano[2,3-b]indole]-1-ca rboxylate (2r): white solid, 34 mg, 80% yield, 94% ee, mp 173.2-175.1 °C; ¹H NMR (300 MHz, DMSO-*d*₆): *δ* 11.05 (s, 1H), 7.86 (d, *J* = 8.2 Hz, 1H), 7.45 (t, *J* = 8.2 Hz, 1H), 7.29 (d, *J* = 8.2 Hz, 1H), 7.17-7.23 (m, 2H), 6.92-6.95 (m, 2H), 4.81 (d, J = 11.1 Hz, 1H), 4.53 (d, J = 11.1 Hz, 1H), 3.58 (d, J = 15.8 Hz, 1H), 2.92 (d, J = 15.8 Hz, 1H), 1.52 (s, 9H); ¹³C NMR (75 MHz, DMSO- d_6): δ 172.32, 148.60, 148.37, 141.55, 130.78, 130.73, 129.43, 126.85, 125.71, 124.59, 118.98, 118.80, 116.10, 113.70, 110.32, 84.07, 83.03, 66.74, 45.62, 27.63, 22.94; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak OD-H column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $t_{major} = 12.66$ min, $t_{minor} = 8.47$ min); $[\alpha]_D^{20} = +25.6$ (c = 1.0, CH₂Cl₂); ESI HRMS exact mass calcd. for (C₂₃H₂₁ClN₂O₄ + H)⁺ requires m/z 425.1263, found m/z 425.1254.

(R)-tert-butyl

5-fluoro-2-oxo-4',9'-dihydro-2'H-spiro[indoline-3,3'-pyrano[2,3-b]indole]-1carboxylate (2s): white solid, 24 mg, 59% yield, 92% ee, mp 187.3-189.7 °C; ¹H NMR (300 MHz, DMSO- d_6): δ 11.20 (s, 1H), 7.86 (dd, J = 8.8 and 4.7 Hz, 1H), 7.18-7.25 (m, 3H), 6.91-7.00 (m, 2H), 6.72 (dd, J = 8.1 and 2.7 Hz, 1H), 4.46 (d,

J = 10.7 Hz, 1H), 4.31 (d, J = 10.8 Hz, 1H), 3.10 (d, J = 15.1 Hz, 1H), 2.88 (d, J = 15.1 Hz, 1H), 1.57 (s, 9H); ¹³C NMR (75 MHz, DMSO- d_6): δ 174.05, 159.05 (d, J = 238.8 Hz), 148.58, 147.97, 135.14, 131.88 (d, J = 8.5 Hz), 130.91, 126.76, 119.33, 119.02, 116.30, 116.07 (d, J = 8.2 Hz), 114.88 (d, J = 22.4 Hz), 110.84 (d, J = 24.6 Hz), 110.53, 83.99, 83.90, 70.65, 45.37, 27.85, 27.67; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $t_{major} = 7.69$ min, $t_{minor} = 12.11$ min); $[\alpha]_D^{20} = +34.9$ (c = 0.88, CH₂Cl₂); ESI HRMS exact mass calcd. for (C₂₃H₂₁FN₂O₄ + Na)⁺ requires m/z 431.1378, found m/z 431.1367.

(R)-tert-butyl

5-bromo-2-oxo-4',9'-dihydro-2'H-spiro[indoline-3,3'-pyrano[2,3-b]indole]-1 -carboxylate (2t): white solid, 22 mg, 47% yield, 92% ee, mp 262.0-264.4 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ 11.21 (s, 1H), 7.81 (d, *J* = 8.7 Hz, 1H), 7.55-7.58 (m, 1H), 7.23 (d, *J* = 7.1 Hz, 2H), 6.94-7.03 (m, 3H), 4.47 (d, *J* = 10.6

Hz, 1H), 4.30 (d, J = 10.6 Hz, 1H), 3.10 (d, J = 15.1 Hz, 1H), 2.88 (d, J = 15.3 Hz, 1H), 1.57 (s, 9H); ¹³C NMR (75 MHz, DMSO- d_6): δ 173.69, 148.47, 147.93, 138.26, 132.44, 131.25, 130.89, 126.73, 126.06, 119.38, 119.04, 116.64, 116.39, 116.34, 110.56, 84.17, 83.95, 70.69, 45.28, 27.85, 27.66; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $t_{major} = 8.91$ min, $t_{minor} = 12.63$ min); $[\alpha]_D^{20} = +110.8$ (c = 0.65, CH₂Cl₂); ESI HRMS exact mass calcd. for (C₂₃H₂₁BrN₂O₄ + Na)⁺ requires m/z 491.0577, found m/z 491.0571.

(R)-tert-butyl

5-methyl-2-oxo-4',9'-dihydro-2'H-spiro[indoline-3,3'-pyrano[2,3-b]indole]-1-carboxylate (2u): white solid, 29 mg, 72% yield, 94% ee, mp 152.7-154.8 °C; ¹H NMR (300 MHz, DMSO-*d*₆): *δ* 11.17 (s, 1H), 7.72 (d, *J* = 8.2 Hz, 1H), 7.15-7.23 (m, 3H), 6.91-6.99 (m, 2H), 6.77 (s, 1H), 4.39 (d, *J* = 10.6 Hz, 1H),

4.26 (d, J = 10.6 Hz, 1H), 3.08 (d, J = 15.1 Hz, 1H), 2.82 (d, J = 15.1 Hz, 1H), 2.16 (s, 3H), 1.56 (s, 9H); ¹³C NMR (75 MHz, DMSO- d_6): δ 174.57, 148.66, 148.12, 136.37, 133.47, 130.89, 130.14, 128.89, 126.86, 123.95, 119.24, 118.96, 116.31, 114.36, 110.53, 84.17, 83.77, 71.11, 45.29, 27.97, 27.70, 20.75; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $t_{major} = 7.99$ min, $t_{minor} = 10.20$ min); $[\alpha]_D^{20} = +51.9$ (c = 0.9, CH₂Cl₂); ESI HRMS exact mass calcd. for (C₂₄H₂₄N₂O₄ + Na)⁺ requires m/z 427.1628, found m/z 427.1628.

(R)-tert-butyl

6-chloro-2-oxo-4',9'-dihydro-2'H-spiro[indoline-3,3'-pyrano[2,3-b]indole]-1 -carboxylate (2v): white solid, 21 mg, 59% yield, 93% ee, mp 185.0-186.1 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ 11.21 (s, 1H), 7.87 (d, *J* = 1.9 Hz, 1H), 7.15-7.22 (m, 3H), 6.93-6.99 (m, 2H), 6.89 (d, *J* = 8.1 Hz, 1H), 4.44 (d, *J* = 10.5

Hz, 1H), 4.29 (d, J = 10.5 Hz, 1H), 3.10 (d, J = 15.1 Hz, 1H), 2.83 (d, J = 15.0 Hz, 1H), 1.58 (s, 9H); ¹³C NMR (75 MHz, DMSO- d_6): δ 174.09, 148.49, 147.98, 140.09, 132.73, 130.91, 129.00, 126.77, 124.88, 124.22, 119.31, 119.00, 116.27, 114.72, 110.52, 84.32, 83.92, 70.80, 45.14, 27.94, 27.64; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak OD-H column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $t_{major} = 22.02$ min, $t_{minor} = 13.05$ min); $[\alpha]_D^{20} = +49.4$ (c = 0.85, CH₂Cl₂); ESI HRMS exact mass calcd. for (C₂₃H₂₁ClN₂O₄ + Na)⁺ requires m/z 447.1082, found m/z 447.1080.

General procedure for the one-pot stepwise construction of 4

3-(3-indolomethyl)oxindole **1r** (0.1 mmol, 39.7 mg), paraformaldehyde (18 mg, 0.6 mmol) and catalyst **3a** (3.2 mg, 0.01 mmol) were stirred in ClCH₂CH₂Cl at 0°C for 42 h. Then, DABCO (13.5 mg, 0.12 mmol) and NCS (40 mg, 0.3 mmol) were added and the reaction mixture was

vigorously stirred at 0°C for 30 min. The crude reaction mixture was directly loaded on a silica-gel column and next chromatograph (PE:EA = 5:1) afforded the corresponding product **4** (white solid, 35 mg) with 76% yield and 94% ee.

(3R,4a'S)-tert-butyl

4,4a'-dichloro-2-oxo-4',4a'-dihydro-2'H-spiro[indoline-3,3'-pyrano[2,3-b]indol e]-1-carboxylate (4): white solid, mp 171.4-172.9 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, J = 6.8 Hz, 1H), 7.42 (d, J = 6.4 Hz, 1H), 7.32-7.37 (m, 3H),

7.21 (d, J = 6.4 Hz, 1H), 7.11 (t, J = 5.6 Hz, 1H), 5.87 (d, J = 9.2 Hz, 1H), 4.24 (d, J = 9.6 Hz, 1H), 3.84 (d, J = 12.8 Hz, 1H), 2.69 (d, J = 12.8 Hz, 1H), 1.57 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 175.66, 173.99, 151.76, 148.76, 141.61, 138.86, 131.19, 130.72, 130.57, 126.33, 124.56, 122.07, 121.85, 120.35, 114.06, 85.69, 67.13, 61.96, 45.96, 36.16, 27.98; $[\alpha]_D^{20} = -86.4$ (c = 1.5, CH₂Cl₂); ESI HRMS exact mass calcd. for (C₂₃H₂₀Cl₂N₂O₄ + H)⁺ requires m/z 459.0873, found m/z 459.0878.

The enantiomeric ratio was determined by HPLC analysis of **4** after deprotection of Boc using Daicel Chiralpak OD-H column (70/30 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $t_{major} = 7.40$ min, $t_{minor} = 10.63$ min).

Synthesis of bispirooxindole 5

To the solution of **2a** (0.077 mmol, 30 mg) in THF (2 mL), H₂O (1 mL) and HOAc (1 mL) was added NBS (0.092 mmol, 16.4 mg) at 0°C, The resulting mixture was warmed to room temperature and vigorously stirred until the slightly red fade away. The mixture was extracted with CH₂Cl₂ three times, and the combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. After filtration, the solution was concentrated under reduced pressure and the resulting crude mixture was purified by silica gel column chromatography (PE:EA = 3:1) to afford compound **5** (white solid, 15 mg) with 48% yield.

Tert-buty(4'R)-2,2''-dioxo-3'H,5'H-dispiro[indoline-3,2'-furan-4'3''-indoline]-1 ''-carboxylate (5): white solid, ¹H NMR (400 MHz, CDCl₃): δ 8.18 (s, 0.4H), 8.03 (d, *J* = 10.0 Hz, 1H), 7.92 (d, *J* = 5.6 Hz, 0.7H), 7.78-7.85 (m, 2H), 7.41 (d, *J* = 6.8 Hz, 0.4H), 7.34 (m, 1H), 7.24-7.30 (m, 2H), 7.11-7.14 (m, 0.7H), 6.88 (d, J = 6.4 Hz, 0.7H), 6.78 (d, J = 6.4 Hz, 0.4H), 4.57-4.60 (m, 1H), 4.48-4.51 (m, 1H), 2.86-2.91 (m, 1H), 2.76-2.79 (m, 1H), 1.68 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 179.11, 178.74, 178.38, 178.34, 149.11, 149.06, 140.81, 139.91, 139.43, 139.35, 133.22, 131.13, 130.29, 129.40, 129.35, 129.31, 128.98, 128.85, 126.32, 125.39, 124.17, 124.08, 123.74, 116.30, 114.96, 114.87, 111.59, 110.01, 84.94, 84.79, 84.33, 84.17, 78.78, 78.32, 55.54, 55.43, 46.70, 46.57, 28.16; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IC column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; t = 10.79, 12.15, 15.68, 18.41); [α]_D²⁰ = -16.2 (c = 0.75, CH₂Cl₂); ESI HRMS exact mass calcd. for (C₂₃H₂₂N₂O₅ + Na)⁺ requires m/z 429.1421, found m/z 429.1410. *Synthesis of compound 6*

To the solution of 2q (31 mg, 0.084 mmol) in CH₂Cl₂ (4 mL) were added Et₃N (70 µL, 0.5 mmol) and DMAP (2 mg, 0.2 eq), then *p*-nitrobenzene sulfonyl chloride (93 mg, 0.42 mmol) was added to the solution by portion under stirration at 0°C. The resulting mixture was warmed to room temperature and vigorously stirred until the reaction finished. The reaction was quenched with a saturated NH₄Cl solution, extracted with CH₂Cl₂ three times, and the combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. After filtration, the solution was concentrated under reduced pressure and the resulting crude mixture was purified by silica gel column chromatography (PE:EA = 8:1) to afford compound **6** (yellow solid, 37 mg) with 80% yield.

(R)-1-acetyl-5'-chloro-9'-((4-nitrophenyl)sulfonyl)-4',9'-dihydro-2'H
-spiro[indoline-3,3'-pyrano[2,3-b]indol]-2-one (6): yellow solid, mp
171.5-173.0 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.28-8.32 (m, 3H),
8.14 (d, J = 6.4 Hz, 2H), 8.07 (d, J = 5.6 Hz, 1H), 7.37 (t, J = 6.4 Hz,
1H), 7.17-7.19 (m, 2H), 7.02 (t, J = 6.0 Hz, 1H), 6.77 (d, J = 7.2 Hz,
1H), 4.31-4.37 (m, 2H), 3.44 (d, J = 13.2 Hz, 1H), 3.20 (d, J = 13.2 Hz,

1H), 2.66 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 176.68, 170.55, 150.99, 146.58, 143.33, 139.30, 132.33, 129.59, 128.88, 128.66, 126.11, 125.59, 125.41, 125.27, 124.60, 124.06, 122.98, 116.92, 112.61, 93.04, 72.41, 45.26, 29.52, 26.75; ESI HRMS exact mass calcd. for (C₂₆H₁₈ClN₃O₇S +

Na)⁺ requires m/z 574.0446, found m/z 574.0462.

synthesis of 1r a

3-(3-indolomethyl)oxindole **1r** (0.1 mmol, 39.7 mg), paraformaldehyde (18 mg, 0.6 mmol) and catalyst **3a** (3.2 mg, 0.01 mmol) were stirred in DCE (2 mL) at 0°C for 42 h. Purification of the crude product by flash column chromatography afforded the Aldol product **1r a** (petroleum ether/ethyl acetate as eluent (3:1)).

(R)-tert-butyl

3-((1H-indol-3-yl)methyl)-4-chloro-3-(hydroxymethyl)-2-oxoindoline-1-carbo xylate (1r a): white solid, 95% yield, 92% ee; ¹H NMR (600 MHz, CDCl₃): δ 7.83 (s, 1H), 7.52 (dd, *J* = 8.6, 5.3 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 1H), 7.12 (d, *J* = 4.2 Hz, 2H), 7.06 (t, *J* = 7.4 Hz, 1H), 6.99 (t, *J* = 7.4 Hz, 1H), 6.66 (d, *J* = 1.6 Hz,

1H), 4.45 (dd, J = 10.9, 3.1 Hz, 1H), 4.30-4.40 (m, 1H), 3.63 (d, J = 14.3 Hz, 1H), 3.49 (d, J = 14.3 Hz, 1H), 2.04-2.05 (m, 1H), 1.44 (s, 9H). ¹³C NMR (151 MHz, CDCl₃): δ 177.68, 148.53, 142.70, 135.63, 130.29, 129.78, 127.33, 125.60, 125.46, 123.28, 121.88, 119.54, 119.21, 113.57, 110.75, 109.11, 84.50, 64.82, 59.15, 27.97, 27.50. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak OD-H column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $t_{minor} = 20.71$ min, $t_{major} = 29.21$ min); $[\alpha]_D^{20} = +97.4$ (c = 1.0, CH₂Cl₂); ESI HRMS exact mass calcd. for (C₂₃H₂₃ClN₂O₄ + Na)⁺ requires m/z 449.1239, found m/z 449.1243.

X-ray crystal structure of compound 6 and 1r a

The chemical structure of pentacyclic spirooxindoles **2** has been confirmed by a single crystal X-ray analysis of **6**. And the absolute configuration of the chiral quaternary carbon has been confirmed by a single crystal X-ray analysis of **1ra** (the product of the first Aldol reaction of **1r**).

Formula weight	569.96	
Temperature	296(2) K	
Wavelength	0.71073A	
Crystal system, space group	Triclinic, P-1	
Unit cell dimensions	a = 5.6165(18) A alpha = $65.52(3) deg.$	
	b = 13.983(2) A beta =88.60(3) deg.	
	c = 16.7686(17) A gamma = 86.77(3) deg.	
Volume	1196.6(4) A^3	
Z, Calculated density	2, 1.582 Mg/m^3	
Absorption coefficient	0.308 mm^-1	
F(000)	588	
Crystal size	0.26 x 0.21 x 0.17 mm	
Theta range for data collection	1.60 to 25.00 deg.	
Limiting indices	-6<=h<=6, -16<=k<=16, -19<=l<=11	
Reflections collected / unique	6021 / 4185 [R(int) = 0.0828]	
Completeness to theta $= 25.00$	99.2 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9496 and 0.9243	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	4185 / 3 / 359	
Goodness-of-fit on F^2	0.898	
Final R indices [I>2sigma(I)]	R1 = 0.0706, $wR2 = 0.1010$	
R indices (all data)	R1 = 0.2192, wR2 = 0.1237	
Extinction coefficient	0.0039(8)	
Largest diff. peak and hole	0.239 and -0.311 e.A^-3	

Table 2. Crystal data and structure refinement for 1ra.Identification code1raEmpirical formulaC23H23ClN2O4Formula weight426.88Temperature/K293(2)

Crystal system

monoclinic

Space group	P21
a/Å	8.8442(2)
b/Å	10.8918(2)
c/Å	11.5077(3)
α/°	90
β/°	90.266(3)
γ/°	90
Volume/Å ³	1108.51(5)
Z	2
$\rho_{calc}g/cm^3$	1.279
µ/mm⁻¹	1.783
F(000)	448.0
Crystal size/mm ³	$0.2\times0.15\times0.12$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	7.682 to 134.056
Index ranges	$\textbf{-10} \leq h \leq 6, \textbf{-13} \leq k \leq 13, \textbf{-13} \leq l \leq 13$
Reflections collected	7923
Independent reflections	3966 [$R_{int} = 0.0272$, $R_{sigma} = 0.0378$]
Data/restraints/parameters	3966/1/275
Goodness-of-fit on F ²	1.024
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0401, wR_2 = 0.0909$
Final R indexes [all data]	$R_1 = 0.0535, wR_2 = 0.0997$
Largest diff. peak/hole / e Å ⁻³	0.13/-0.16
Flack parameter	0.019(11)

Reference

- [1] V. Lanke, K. R. Prabhu, Org. Lett. 2013, 15, 6262–6265.
- [2] W. Zhang, M.-L. Go, Bioogan. Med. Chem. 2009, 17, 2077–2090.
- [3] L. Cheng, L. Liu, D. Wang, Y.-J. Chen, Org. Lett. 2009, 11, 3874–3877.
- [4] W. G. Rajeswaran, L. A. Cohen, *Tetrahedron* 1998, 54, 11375-11380.

Copies of NMR and HPLC spectra

S27

2a: Racemic

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	12.370	2252472	103354	50.121	63.417				
2	20.780	2241623	59622	49.879	36.583				
Total		4494095	162976	100.000	100.000				

2a: Chiral

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	12.289	756008	33856	2.436	4.333				
2	20.217	30274276	747487	97.564	95.667				
Total		31030283	781343	100.000	100.000				

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	10.265	583403	26595	50.837	53.084				
2	11.051	564185	23505	49.163	46.916				
Total		1147588	50100	100.000	100.000				

2b: Chiral

1 Det.A Ch1 / 254nm

D . .

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	10.234	943058	46744	5.549	6.352				
2	10.978	16052791	689142	94.451	93.648				
Total		16995849	735887	100.000	100.000				

Γ	Detector A Ch1 254nm									
	Peak#	Ret. Time	Area	Height	Area %	Height %				
	1	6.191	1793175	106138	50.571	52.430				
	2	7.473	1752707	96300	49.429	47.570				
	Total		3545882	202438	100.000	100.000				

2c: Chiral

1 Det.A Ch1 / 254mm

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	6.185	12272943	697819	93.683	93.767				
2	7.470	827618	46389	6.317	6.233				
Total		13100561	744208	100.000	100.000				

2d: Racemic

1 Det.A Ch1 / 254mm

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	8.135	1216168	63640	50.575	56.447				
2	10.277	1188520	49103	49.425	43.553				
Total		2404688	112743	100.000	100.000				

1 Det.A Ch1 / 254mm

-

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	8.113	2901862	148628	93.877	94.770				
2	10.254	189283	8202	6.123	5.230				
Total		3091145	156830	100.000	100.000				

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	11.502	801927	34285	50.871	54.073				
2	13.503	774458	29121	49.129	45.927				
Total		1576385	63406	100.000	100.000				

2e: Chiral

Detector A	.Ch1	254nm	
------------	------	-------	--

Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.484	138159	5474	2.299	2.460
2	13.440	5870080	217000	97.701	97.540
Total		6008239	222474	100.000	100.000

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	13.015	3708730	158892	49.822	53.104				
2	14.741	3735170	140316	50.178	46.896				
Total		7443900	299209	100.000	100.000				

2f: Chiral

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	12.810	138135	5111	2.340	2.434				
2	14.552	5764087	204880	97.660	97.566				
Total		5902222	209991	100.000	100.000				

D	Detector A Ch1 254nm									
	Peak#	Ret. Time	Area	Height	Area %	Height %				
Γ	1	29.643	1658835	28572	50.457	52.987				
	2	32.149	1628783	25350	49.543	47.013				
	Total		3287618	53922	100.000	100.000				

2g: Chiral

1 Det.A Ch1 / 254nm

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	29.604	653155	11174	4.716	4.975				
2	32.045	13195861	213434	95.284	95.025				
Total		13849016	224608	100.000	100.000				

2h: Racemic

1 Det.A Ch1 / 254mm

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	23.144	2071714	45208	50.814	53.080				
2	26.785	2005366	39961	49.186	46.920				
Total		4077080	85169	100.000	100.000				

2h: Chiral

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	22.555	153002	3360	2.566	2.922				
2	26.022	5810450	111624	97.434	97.078				
Total		5963452	114984	100.000	100.000				

2i: Racemic

1 Det.A Ch1 / 254nm

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	7.466	15855168	920666	49.656	65.309				
2	13.515	16075112	489041	50.344	34.691				
Total		31930280	1409708	100.000	100.000				

2i: Chiral

1	Detector A	Ch1 254nm				
	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	7.454	3402720	195444	98.189	98.962
ĺ	2	13.549	62766	2049	1.811	1.038
	Total		3465486	197493	100.000	100.000

2j: Racemic

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	12.454	2261388	77022	49.293	61.998				
2	19.641	2326243	47210	50.707	38.002				
Total		4587632	124232	100.000	100.000				

2j: Chiral

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	12.433	7872148	263600	96.937	98.019				
2	19.617	248704	5328	3.063	1.981				
Total		8120852	268928	100.000	100.000				

2k: Racemic

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	8.656	3613396	176537	50.180	60.923				
2	13.357	3587439	113232	49.820	39.077				
Total		7200835	289769	100.000	100.000				

2k: Chiral

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %				
1	8.661	8299995	407951	97.322	98.254				
2	13.372	228353	7251	2.678	1.746				
Total		8528348	415202	100.000	100.000				

21: Racemic

1 Det.A Ch1 / 254mm

Detector A Ch1 254nm									
Peak	#	Ret. Time	Area	Height	Area %	Height %			
	1	8.740	2631616	131131	49.801	60.400			
	2	13.136	2652663	85972	50.199	39.600			
1	otal		5284279	217103	100.000	100.000			

2l: Chiral

Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	9.154	9925194	464145	96.259	97.476		
2	13.785	385746	12019	3.741	2.524		
Total		10310940	476164	100.000	100.000		

2m: Racemic

1 Det.A Ch1 / 254mm

Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	12.885	1887428	69486	49.760	51.826		
2	14.385	1905668	64589	50.240	48.174		
Total		3793096	134075	100.000	100.000		

2m: Chiral

Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	13.102	76980	2925	2.504	2.804		
2	14.499	2997909	101379	97.496	97.196		
Total		3074889	104304	100.000	100.000		

2n: Racemic

1 Det.A Ch1 / 254mm

Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	7.575	3882755	233855	49.586	57.395		
2	9.683	3947621	173595	50.414	42.605		
Total		7830376	407450	100.000	100.000		

2n: Chiral

Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	7.567	4491032	270323	96.700	97.217		
2	9.667	153269	7739	3.300	2.783		
Total		4644301	278062	100.000	100.000		

S73

20: Racemic

1 Det.A Ch1 / 254mm

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	6.287	2391233	163018	46.555	57.785				
2	9.459	2745164	119092	53.445	42.215				
Total		5136397	282110	100.000	100.000				

20: Chiral

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	6.449	9532034	497230	97.502	97.974				
2	9.835	244244	10281	2.498	2.026				
Total		9776278	507511	100.000	100.000				

2p: Racemic

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	21.556	3199847	79897	50.025	54.776				
2	26.271	3196685	65963	49.975	45.224				
Total		6396532	145859	100.000	100.000				

2p: Chiral

1 Det.A Ch1 / 254nm

E	Detector A Ch1 254nm									
Γ	Peak#	Ret. Time	Area	Height	Area %	Height %				
Γ	1	22.258	1117662	28657	9.450	11.829				
Γ	2	26.928	10709754	213613	90.550	88.171				
	Total		11827415	242270	100.000	100.000				

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	5.290	1629156	144821	50.379	53.761				
2	6.219	1604623	124557	49.621	46.239				
Total		3233779	269378	100.000	100.000				

2q: Chiral

D	Detector A Ch1 254nm									
	Peak#	Ret. Time	Area	Height	Area %	Height %				
Г	1	5.253	6754407	558641	87.871	89.106				
	2	6.177	932344	68301	12.129	10.894				
	Total		7686750	626942	100.000	100.000				

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	8.335	1459981	94001	50.315	60.448				
2	12.532	1441692	61505	49.685	39.552				
Total		2901673	155506	100.000	100.000				

2r: Chiral

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	8.479	79715	5101	2.815	4.218				
2	12.663	2751807	115822	97.185	95.782				
Total		2831522	120923	100.000	100.000				

2s: Racemic

1 Det.A Ch1 / 254mm

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	7.709	853343	49944	50.088	62.165				
2	12.140	850348	30397	49.912	37.835				
Total		1703691	80341	100.000	100.000				

2s: Chiral

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	7.698	17886645	1029860	95.922	97.470				
2	12.114	760448	26732	4.078	2.530				
Total		18647093	1056591	100.000	100.000				

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	8.922	2563643	123684	50.312	59.564				
2	12.750	2531820	83966	49.688	40.436				
Total		5095463	207650	100.000	100.000				

2t: Chiral

1 Det.A Ch1 / 254nm

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	8.912	9410314	397038	95.819	96.836				
2	12.630	410588	12974	4.181	3.164				
Total		9820902	410012	100.000	100.000				

2u: Racemic

1 Det.A Ch1 / 254nm

Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	7.962	1296102	67681	50.161	56.606		
2	10.171	1287764	51884	49.839	43.394		
Total		2583866	119565	100.000	100.000		

2u: Chiral

1 Det.A Ch1 / 254nm

D	Detector A Ch1 254nm							
Γ	Peak#	Ret. Time	Area	Height	Area %	Height %		
Г	1	7.991	5173853	273210	97.226	97.813		
	2	10.207	147595	6109	2.774	2.187		
	Total		5321449	279319	100.000	100.000		

Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	13.000	1588612	68633	49.593	63.123		
2	21.983	1614674	40096	50.407	36.877		
Total		3203287	108729	100.000	100.000		

2v: Chiral

1 Della Chi / 204hili

1	Detector A Ch1 254nm							
	Peak#	Ret. Time	Area	Height	Area %	Height %		
	1	13.057	113758	5074	3.514	6.112		
	2	22.029	3123665	77937	96.486	93.888		
	Total		3237423	83011	100.000	100.000		

Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	7.341	5425213	343513	50.624	59.960		
2	10.418	5291504	229395	49.376	40.040		
Total		10716717	572908	100.000	100.000		

Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	7.400	1252039	81166	97.657	98.361		
2	10.634	30041	1352	2.343	1.639		
Total		1282079	82519	100.000	100.000		

1 Det.A Ch1 / 254nm

Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	11.037	768259	24996	4.038	5.739		
2	12.561	617506	18309	3.246	4.204		
3	15.942	8848889	219183	46.515	50.323		
4	18.921	8789014	173067	46.200	39.735		
Total		19023668	435556	100.000	100.000		

Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	10.796	126404	5143	1.110	1.756		
2	12.152	5855419	171959	51.416	58.719		
3	15.685	167361	4483	1.470	1.531		
4	18.411	5239105	111267	46.004	37.994		
Total		11388288	292852	100.000	100.000		

Racemic: 1r a

-

Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	19.761	593726	11976	49.544	59.055		
2	28.250	604654	8303	50.456	40.945		
Total		1198380	20279	100.000	100.000		

Chiral

Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	20.710	272238	5155	4.209	5.682		
2	29.213	6196414	85574	95.791	94.318		
Total		6468651	90729	100.000	100.000		