Supporting Information

Chemoselective synthesis of isolated and fused fluorenones and their photophysical and antiviral properties

Ismail Althagafi, Ranjay Shaw, Cheng-Run Tang, Rahul Kumar, Shally, Chanda Sinha, Amit Kumar, Yong-Tang Zheng, RamendraPratap

Table of content

,

Screening of reaction condition	2
Servering of reaction condition	2
Crystallographic Data	3 /
Crystanographic Data	5-4
Data for biological activity	5-8
Data for biological activity	5-0
Spectral Data of Products	9-56
Speedur Dum of Freducts	, 20
References	56
	- •

Screening of reaction condition (scheme-2)

		O Br	Base, Solve Temp.(ºC), Ti	nt me(h)	
Entry	Base	Solvent	Temp.(°C)	Time(h)	Yield(%) ^b
1	КОН	EtOH	78	6	C.M.
2	КОН	DMF	RT ^d	9	46
3	КОН	DMF	80	5	28°
4	КОН	DMSO	RT ^d	8	66
5	КОН	DMSO	80	5	37°
6	КОН	THF	RT ^d	9	44
7	NaNH ₂	DMF	RT ^d	9	47
8	NaNH ₂	DMSO	RT ^d	9	56
9	NaNH ₂	THF	RT ^d	9	33
10	NaH	DMF	RT ^d	9	60
11	NaH	DMF	60	6	53
12	NaH	DMSO	RT ^d	9	51

Table 1: Optimization of reaction condition for synthesis of teraryl.

•

^aThe reaction was conducted with 6-(4-methyl)-2-oxo-4-(piperidin-1-yl)2H-pyran-3-carbonitrile (0.5 mmol), 2-bromoacetophenone (0.6 mmol)and base (1.0 mmol) in solvent(3.5 mL); ^bYieldofisolatedproduct;^cAnother product was also formed in very low yield. ^dRoomtemperaturevaries

from 30-40°

X-ray Crystallography of 6d

Intensity data for the compound**6d** was collected at 298 K on an Agilent Xcalibur, Sapphire3 diffractometer using graphite monochromated Mo-K α radiation $\lambda = 0.71073$ Å. Unit cell determination, data collection were performed with Oxford Diffraction DiffractometerCrysAlisPro.¹ The structure was solved by SHELXT program² and refined on F2 using all data by full matrix least-squares procedures with SHELXL-2014/7^{3,4} and incorporated in OLEX2 crystallographic package.⁵ The hydrogen atoms were placed at the calculated positions and included in the last cycles of the refinement.⁶ The C-H, CH₂ and CH₃ hydrogen atoms were placed at their calculated positions (C-H = 0.93 Å, CH₂= 0.97 Å, CH₃= 0.96 Å) followed by their treatment using ariding model with U_{iso} (H, For CH and CH₂) = 1.2Ueq(C) and U_{iso} (For, CH₃) = 1.5Ueq(C). The graphics for publication was prepared by using Mercury software.⁷Crystallographic data collection and structure solution parameters are summarized in the Table S1. **CCDC**- contains the supplementary crystallographic data for this manuscript.

Fig. 1. ORTEP representation of 6d. Thermal ellipsoids are 50% probability level.

Fig.2. Crystal packing representation of **6d** along A-, B- and C-axis, respectively. Ellipsoids are shown at 50% probability level.

Empirical formula	$C_{25}H_{23}BrN_2$
ССРС	
Formula weight	431.36
Temperature/K	293(2)
Crystal system	monoclinic
Space group	$P2_1/n$
a/\AA	8.4375(6)
b/\AA	19.2059(12)
c/\AA	13.8112(10)
$\alpha/^{\circ}$	90
$\beta^{\prime \circ}$	105.900(7)
γ/°	90
Volume/Å ³	2152.5(3)
Ζ	40
$ ho_{calc}g/cm^3$	13.311
μ/mm^{-1}	19.217
F(000)	8880.0
Crystal size/mm ³	0.5 imes 0.5 imes 0.5
Radiation	<i>MoKa</i> ($\lambda = 0.71073$)
2Θ range for data collection/	6.492 to 50
Index ranges	$-10 \le h \le 10, -22 \le k \le 22, -16 \le l \le 16$
Reflections collected	25350
Independent reflections	$3732 [R_{int} = 0.0549, R_{sigma} = 0.0409]$
Data/restraints/parameters	3732/0/254
Goodness-of-fit on F^2	0.984
Final R indexes $[I \ge 2\sigma (I)]$	$R_1 = 0.0543, wR_2 = 0.1404$
Final R indexes [all data]	$R_1 = 0.0820, wR_2 = 0.1588$
Largest diff. peak/hole / e Å-3	0.37/-0.45

Table 2. Crystallographic data and structure refinement parameters for6d.

`

Table 3. Symmetry operator and derscription of the crystal structure of 6d.

S.No.	Symm. Op.	Description	
1	x,y,z	Identity	
2	1/2-x,1/2+y,1/2-z	Screw axis (2-fold)	
3	-x,-y,-z	Inversion centre	
4	1/2+x,1/2-y,1/2+z	Glide plane	

Biological Study

Sample and chemicals

All samples were dissolved in DMSO. AZT were purchased from USP and dissolved in serum-free RPMI-1640 medium.

Reagents

HEPES (N-2 (2-Hydroxyethyl)-piperazine-N'-(2-ethanesufonic acid), MTT (3,(4,5-dimethylthiazol-2-yl) -2,5diphenyl tetrazolium bromide), DMF (N, N'-Dimethyl formamide), Penicillin, Streptomycin sulfate, Glutamine were purchased from Sigma; 2-ME (2-Mercaptoethanol) was purchased from Bio-Rad. RPMI-1640 and fetal bovine serum (FBS) were purchased from Gibco.

Cells and viruses

C8166 cell and HIV-1_{IIIB} were kindly donated by Medical Research Council, AIDS Regent Project. The cells were maintained at 37°C in 5% CO₂ in RPMI-1640 medium supplemented with 10% heat-inactivating FBS (Gibco). HIV-1_{IIIB}was prepared from the supernatants of H9/HIV-1_{IIIB}cells. The 50% HIV-1 tissue culture infectious dose (TCID50) in C8166 cells was determined and calculated by Reed and Muench method. Virus stocks were stored in small aliquots at -70°C. The titre of virus stock was 1.0×10^8 TCID50 per ml.

Cytotoxicity assay

The cellular toxicity of compounds on C8166 was assessed by MTT colorimetric assay. Briefly, 100μ L of 4×10^5 cells were plated into 96-well plates, 100μ L of various concentrations of compounds was added and incubated at 37 °C in a humidified atmosphere of 5% CO₂ for 72 h. Discard 100 μ L supernatant, MTT reagent was added and incubated for 4 h, 100μ L 50% DMF-15% SDS was added. After the formazan was dissolved completely, the plates were analyzed by a Bio-TekELx 800 ELISA reader at 570 nm/630 nm. 50% cytotoxicity concentration (CC₅₀) was calculated.

Inhibition of syncytia formation

The inhibition effect of samples on acute HIV-1 infection was measured by the syncytia formation assay. In the presence or absence of various concentrations of samples, 4×10^4 C8166 cells were infected with HIV-1 at a multiplicity of infection (MOI) of 0.04, and cultured in 96-well plates at 37°C in 5% CO₂ for 3 days. AZT was used as a positive control. At 3 days post-infection, Cytopathic effect (CPE) was measured by counting the number of syncytia (multinucleated giant cell) in each well of 96-well plates under an inverted microscope (100×). The inhibitory percentage of syncytia formation was calculated by the percentage of syncytia number in treated

sample compared to that in infected control. 50% effective concentration (EC₅₀) was calculated.

Formula

•

According to the method described by Reed & Muench, 50% cytotoxic concentration (CC_{50}) and 50% effective concentration (EC_{50}) was determined from dose–response curve. Therapeutic index (TI) of anti-HIV activity is CC_{50}/EC_{50} .

Cell viability (% of control) = (OD test-OD blk)/(OD ctrl – OD blk)×100

CPE inhibition(%) = (1-CPEtest /CPE ctrl)×1

Sample code	Experiment	Method	СС ₅₀ (µМ)	EC ₅₀ (µМ)	Therapeutic index (TI)
6b	Cytotoxicity assay	MTT	46.26		
	Inhibition of syncytium Formation	СРЕ		20.95	2.21
	Cytotoxicity assay	MTT	>200	-	- >14.21
6d	Inhibition of syncytium Formation	СРЕ	_	14.07	
6e	Cytotoxicity assay	MTT	>200		>4.02
	Inhibition of syncytium Formation	СРЕ		49.76	
	Cytotoxicity assay	MTT	>200		- >46.19
6g	Inhibition of syncytium Formation	СРЕ	_	4.33	
6h	Cytotoxicity assay	MTT	>200		
	Inhibition of syncytium Formation	СРЕ		>200	-
6i	Cytotoxicity assay	MTT	>200		
	Inhibition of syncytium Formation	СРЕ	_	>200	-

Table 4.Summary of cytotoxicity and anti-HIV-1 activities of compounds

6j	Cytotoxicity assay	MTT	>200		>3.49
	Inhibition of syncytium Formation	СРЕ	_	57.25	
6k	Cytotoxicity assay	MTT	>200		- >47.96
	Inhibition of syncytium Formation	СРЕ	_	4.17	
	Cytotoxicity assay	MTT	66		< 0.33
61	Inhibition of syncytium Formation	СРЕ	_	>200	
	Cytotoxicity assay	MTT	>200		>21 51
6m	Inhibition of syncytium Formation	CPE	_	9.30	
6n	Cytotoxicity assay	MTT	>200		- >5.74
	Inhibition of syncytium Formation	СРЕ	_	34.85	
	Cytotoxicity assay	MTT	>200		- >4.01
60	Inhibition of syncytium Formation	СРЕ	_	49.90	
	Cytotoxicity assay	MTT	>200		- >3.50
8b	Inhibition of syncytium Formation	СРЕ	_	57.09	
8d	Cytotoxicity assay	MTT	>200		- >10.10
	Inhibition of syncytium Formation	СРЕ	_	19.80	
8e	Cytotoxicity assay	MTT	61.50		- 3.73
	Inhibition of syncytium Formation	СРЕ	_	16.47	
8g	Cytotoxicity assay	MTT	>200		>8.18

、

	Inhibition of syncytium Formation	СРЕ		24.44	
8h	Cytotoxicity assay	MTT	>200		>4.19
	Inhibition of syncytium Formation	СРЕ	_	47.71	
8i	Cytotoxicity assay	MTT	57.30		
	Inhibition of syncytium Formation	СРЕ	_	17.54	3.27
	Cytotoxicity assay	MTT	>200		
8j	Inhibition of syncytium Formation	СРЕ	_	25.13	
8k	Cytotoxicity assay	MTT	>200		
	Inhibition of syncytium Formation	СРЕ	_	20.41	
81	Cytotoxicity assay	MTT	>200		
	Inhibition of syncytium Formation	СРЕ	_	76.79	>2.60
8m	Cytotoxicity assay	MTT	71.05		
	Inhibition of syncytium Formation	СРЕ	_	22.41	3.17
8n	Cytotoxicity assay	MTT	>200		
	Inhibition of syncytium Formation	СРЕ	_	14.56	>13.74

`

¹H and ¹³C NMR spectra

6a. 2''-bromo-5'-(piperidin-1-yl)-[1,1':3',1''-terphenyl]-4'-carbonitrile

`

Fig.3. ¹H,¹H of aromatic region &¹³C-NMR spectra of 6a.

6b. 2''-bromo-5'-(pyrrolidin-1-yl)-[1,1':3',1''-terphenyl]-4'-carbonitrile

Fig. 4.¹H & 13 C-NMR spectra of **6b**.

Fig.5. ¹H &¹³C-NMR spectra of 6c.

6d. 2''-bromo-4-methyl-5'-(piperidin-1-yl)-[1,1':3',1''-terphenyl]-4'-carbonitrile

Fig.6.¹H &¹³C-NMR spectra of 6d.

Fig.7. ¹H &¹³C-NMR spectra of 6e.

6f. 2"-bromo-4-methyl-5'-morpholino-[1,1':3',1"-terphenyl]-4'-carbonitrile

6g. 2''-bromo-4-methoxy-5'-(piperidin-1-yl)-[1,1':3',1''-terphenyl]-4'-carbonitrile

、

Fig.10.¹H &¹³C-NMR spectra of 6h.

6i. 2''-bromo-4-chloro-5'-morpholino-[1,1':3',1''-terphenyl]-4'-carbonitrile

Fig.11.¹H &¹³C-NMR spectra of 6i.

6j.2'-bromo-5-(naphthalen-2-yl)-3-(piperidin-1-yl)-[1,1'-biphenyl]-2-carbonitrile

Fig.12.¹H,¹H of aromatic region&¹³C-NMR spectra of 6j.

Fig.13.¹H, ¹H of aromatic region&¹³C-NMR spectra of **6**k.

6l. 2'-bromo-3-(pyrrolidin-1-yl)-5-(thiophen-2-yl)-[1,1'-biphenyl]-2-carbonitrile

Fig.14. ¹H, ¹H of aromatic region&¹³C-NMR spectra of 6l.

6m. 3-(2-bromophenyl)-1-(piperidin-1-yl)-9,10-dihydrophenanthrene-2-carbonitrile

Fig.15.¹H &¹³C-NMR spectra of 6m.

Fig.16.¹H &¹³C-NMR spectra of **6n**.

Fig.17.¹H &¹³C-NMR spectra of **60**.

6p. 2''-fluoro-4-methyl-5'-(piperidin-1-yl)-[1,1':3',1''-terphenyl]-4'-carbonitrile

Fig.18.¹H &¹³C-NMR spectra of 6p.

6q. 2''-chloro-4-methyl-5'-(piperidin-1-yl)-[1,1':3',1''-terphenyl]-4'-carbonitrile

、

Fig.19.¹H &¹³C-NMR spectra of 6q.

6r. 2'-fluoro-3-(piperidin-1-yl)-5-(thiophen-2-yl)-[1,1'-biphenyl]-2-carbonitrile

Fig.20.¹H &¹³C-NMR spectra of 6r.

6s. 2'-chloro-3-(piperidin-1-yl)-5-(thiophen-2-yl)-[1,1'-biphenyl]-2-carbonitrile

Fig.21.¹H,¹H of aromatic region&¹³C-NMR spectra of 6s.

8a. 3-phenyl-1-(piperidin-1-yl)-9H-fluoren-9-one

、

Fig.22.¹H, ¹H of aromatic region&¹³C-NMR spectra of 8a.

8b. 3-phenyl-1-(pyrrolidin-1-yl)-9H-fluoren-9-one

`

8c. 1-morpholino-3-phenyl-9H-fluoren-9-one

Fig.24.¹H & 13 C-NMR spectra of 8c.

8d. 1-(piperidin-1-yl)-3-(p-tolyl)-9H-fluoren-9-one

、

Fig.25.¹H &¹³C-NMR spectra of 8d.

8e. 1-(pyrrolidin-1-yl)-3-(p-tolyl)-9H-fluoren-9-one

Fig.26.¹H &¹³C-NMR spectra of 8e.

8f. 1-morpholino-3-(p-tolyl)-9H-fluoren-9-one

Fig.27.¹H &¹³C-NMR spectra of 8f.

8g. 3-(4-methoxyphenyl)-1-(piperidin-1-yl)-9H-fluoren-9-one

Fig.28.¹H,¹H of aromatic region&¹³C-NMR spectra of 8g.

8h. 3-(4-methoxyphenyl)-1-(pyrrolidin-1-yl)-9H-fluoren-9-one

Fig.29.¹H &¹³C-NMR spectra of 8h.

8i. 3-(4-chlorophenyl)-1-morpholino-9H-fluoren-9-one

Fig.30.¹H &¹³C-NMR spectra of 8i.

8j. 3-(naphthalen-2-yl)-1-(piperidin-1-yl)-9H-fluoren-9-one

、

45

Fig. 31.¹H, ¹H of aromatic region&¹³C-NMR spectra of 8j.

8k. 1-(piperidin-1-yl)-3-(thiophen-2-yl)-9H-fluoren-9-one

、

`

Fig.32.¹H, ¹H of aromatic region&¹³C-NMR spectra of 8k.

8l. 1-(pyrrolidin-1-yl)-3-(thiophen-2-yl)-9H-fluoren-9-one

Fig.33.¹H &¹³C-NMR spectra of 8l.

8m. 7-(piperidin-1-yl)-5H-indeno[2,1-b]phenanthren-8(6H)-one

、

Fig.34.¹H,¹H of aromatic region&¹³C-NMR spectra of **8m**.

Fig.35.¹H &¹³C-NMR spectra of 8n.

Fig. 36.¹H &¹³C-NMR spectra of **80**.

Fig. 37.¹H &¹³C-NMR spectra of **9**.

10. 3-(piperidin-1-yl)-5-(thiophen-2-yl)-[1,1'-biphenyl]-2-carbonitrile-2'-d

Fig. 38.¹H, ¹H of aromatic region &¹³C-NMR spectra of 10.

References:

- 1. CrysAlis CCD, RED version 1.711.13, copyright1995-2003, Oxford Diffraction Poland Sp.
- 2. A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, J. Appl. Crystallogr. 1993, 26, 343.
- 3. G. M. Sheldrick, F² SHELXL-2014/7: Program for the Solution of Crystal Structures; University of Göttingen: Göttingen, Germany,2014.
- 4. G. M. Sheldrick, Crystal structure refinement with SHELXL, Acta Cryst. 2015, C71, 3.
- 5. G. M. Sheldrick, A short history of SHELX2008, 64, 112.
- 6. L. Farrugia, WinGX, An Integrated System of Windows Program for Solution, Refinement and Analysis of Single-Crystal X-ray Diffraction Data, version 1.70. 01;2005.
- F. Macrae Clare, J. Bruno Ian, A. Chisholm James, R. Edgington Paul, McCabe Patrick; Pidcock Elna, e. a. *Mercury CSD 2.0e new features for the visualization and investigation of crystal structures*.2008, 41, 466.