Supporting Information

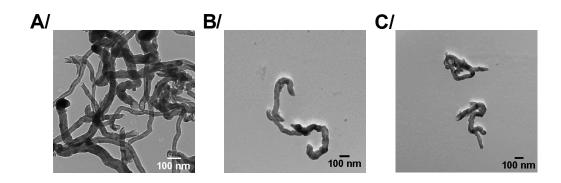
Conjugation of a GM3 lactone mimetic on carbon nanotubes enhances the related inhibition of melanoma-associated metastatic events

Paolo Arosio,^{1,¥} Giuseppina Comito,^{2,¥} Francesco Orsini,¹ Alessandro Lascialfari,¹ Paola Chiarugi,² Cécilia Ménard-Moyon,^{3,*} Cristina Nativi⁴ and Barbara Richichi.^{4,*}

¹ Department of Phisics and INSTM, University of Milano, Via Celoria 16, 20133 Milan, Italy.

² Department of Experimental and Clinical Biomedical Sciences, Biochemistry, Human Health Medical School, University of Florence, viale Morgagni 50, 50134 Firenze, Italy.

³ University of Strasbourg, CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France.


⁴ Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia, 13, 50019 Sesto F.no (FI) Italy.

E-mail: <u>barbara.richichi@unifi.it</u>, <u>c.menard@ibmc-cnrs.unistra.fr</u>

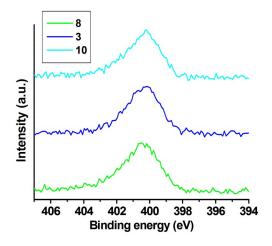

[¥]PA and GC equally contributed to the work

Table of content

Fig S1	S2
Fig S2	S2
Fig. S3	S3
Fig. S4	S3
Fig. S5	S4

Figure S1. Transmission electron microscopy images of pristine MWCNTs **4** (A), oxidized MWCNTs **5** (B), and amino-MWCNTs **8** (C).

Figure S2. N (1s) X-ray photoelectron spectroscopy peak of amino-MWCNTs **8**, GM3-lactone mimetic/MWCNTs **3**, and glucose/MWCNTs **10**.

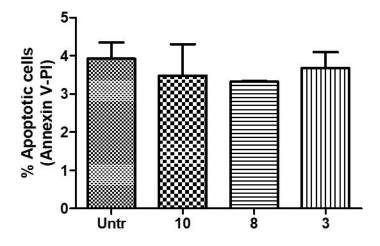
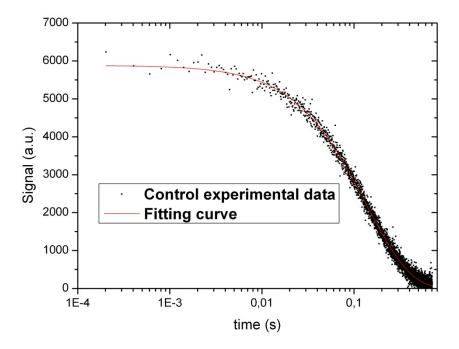
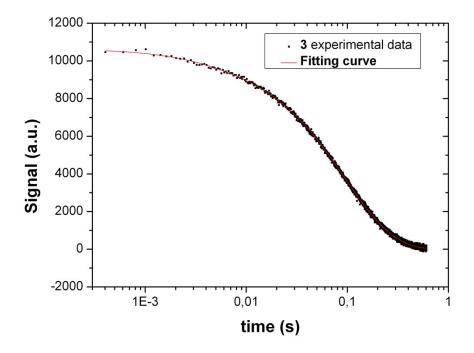




Figure S3. Cells were serum-starved, detached, and kept in suspension for 24 h in the presence of the MWCNT samples 3, 8, and 10 (50 μ M). The percentage of apoptotic cells was evaluated using the Annexin V-PI staining kit. Untr stands for untreated cells.

Figure S4. Nuclear transverse relaxation data (black squares) and fitting curve (red line) obtained by using function (1) for the control sample.

Figure S5. Nuclear transverse relaxation data (black squares) and fitting curve (red line) obtained by using function (2) for sample **3**.

In the Fig. S4 case the time dependence of the relaxing curve suggests that the nuclear magnetization relaxes through a sum of two decaying components (function (1)).

$$S(t) = W_{2,slow} \cdot \exp(-t/T_{2,slow}) + W_{2,fast} \cdot \exp(-t/T_{2,fast})$$
(1)

On the other hand, the curves obtained for the samples incubated with the MWCNTs could be fitted by the function (2) (see for instance Fig. S5):

$$S(t) = W_{2,slow} \cdot \exp(-t/T_{2,slow}) + W_{2,fast} \cdot \exp(-t/T_{2,fast}) + W_{2,veryfast} \cdot \exp(-t/T_{2,veryfast})$$
(2)