Iodine-Catalyzed Cross-Coupling of Isocyanides and Thiols for the synthesis of S-Thiocarbamates

Ramdas S. Pathare,^[a] Vikas Patil,^[b] Harpreet Kaur,^[c] Antim K. Maurya,^[d] Vijai K. Agnihotri,^[d] Shahnawaz Khan,^[e]* Nagaraju Devunuri,^[b] Ashoke Sharon,^[c] Devesh M. Sawant^[a]*

^[a]School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH8, Bandarsindri, Ajmer-305817, Rajasthan, India; ^[b] Vignans Foundation for Science, Technology & Research, Vadlamudi, Guntur - 522 213, Andhra Pradesh, India. ^[c] Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand-835215. ^[d] Natural Product Chemistry and Process Development division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh -176061. India; ^[e] Department of Chemistry, Bhupal Nobles' University, Udaipur-313001, India.

*dms@curaj.ac.in

S. No.	Content	Page No.
1	General Consideration	S2
2	Detailed Result of Screening	S 2
3	General Procedure for the synthesis of 3	S 4
4	Analytical data of compound 3a-3r	S5
5	Radical Trap Experiment	S 9
6	General procedure for the control experiments	S 10
7	Experimental procedure for gram scale synthesis	S 11
8	Crystal data	S 12
9	References	S 13
10	Copies of ¹ H and ¹³ C NMR	S 14

1. General Consideration:

Unless stated otherwise, all solvents and commercially available reagents were used as received. Hexane, which was used for column chromatography, was distilled prior to use. Non-commercial starting materials were prepared as described below or according to literature procedures. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Advance 500 MHz at ambient temperature using the deuterated solvent and TMS as internal standard (¹H: δ 2.50 ppm and ¹³C[¹H]: δ 39.52 ppm for DMSO-d₆, ¹H: δ 7.26 ppm and ${}^{13}C[{}^{1}H]$: δ 77.16 ppm for CDCl₃). Chemical shifts (δ) are given in ppm and coupling constants (J) are quoted in hertz (Hz). Multiplicities are described as s (singlet), d (doublet), t (triplet), q (quartet), hp (heptuplet), m (multiplet), br (broad) or com-binations thereof. ¹³C-NMR spectra were recorded with complete proton decoupling. For high resolution mass-spectrometric analysis, samples were dissolved in MeOH or CH₃CN and diluted to a concentration of approximately 10-5 mol/L. 2 µL was injected using a CapLC system and electrosprayed through the nanoelectrospray source. The nanoelectrospray source was operated in positive ion mode at an electrospray potential of 1.7 kV. Column chromatography was performed by manual on SiO₂ (particle size 100-200 mesh) using the indicated eluent and visualized by UV detection (254 nm).

2. Detailed results of Screening

SH SH	Η -+CΝ ^t Βιι	atalyst (mol%)		<mark>≺^s√^N≺</mark>
	DMS	O/ <mark>H₂O</mark> , 60 ^o C	,3h	Ö
1	2			3
S.	Catalyst	Temp.	Time	Yield
No.	(mol %)	(°C)	(h)	(%) ^b
1	CuI (20)	60	3 h	15 ^c
2	NaI (20)	60	3 h	20 ^c
3	KI (20)	60	3 h	25 ^c
4	TBAI (20)	60	3 h	60
5	-	60	3 h	nr ^c
6	Iodine (50)	60	3 h	75
7	Iodine (20)	60	3 h	87
8	Iodine (10)	60	3 h	87
9	Iodine (5)	60	3 h	85

н

2.1 Table S1: Screening of Catalyst^a:

^aReaction conditions: Thiophenol (**1a**, 30 mg, 0.27 mmol, 1.0 equiv), *tert*-butyl isocyanide (**2a**, 0.32 mmol, 27 mg, 1.2 equiv), DMSO/H₂O (99/1, 0.2 mL), temperature (60 °C), 3 h, ^b Yields are of isolated product after column chromatography. ^cstarting material recovered; nr: No Reaction

	+ CN ^t Bu Solvents, 60 °C, 3	$\frac{\%}{3 \text{ h}}$ \bigcirc $\overset{\text{S}}{\bigcirc}$	N K
1	2	3	
S.	Solvents	Conditions	Yield
No.			(%) ^b
1	DMF/H ₂ O (99/1)	60 °C, 3 h	nr ^c
2	THF/H ₂ O (99/1)	60 °C, 3 h	trace ^c
3	Acetonitrile/H ₂ O (99/1)	60 °C, 3 h	nr ^c
4	toluene/H ₂ O (99/1)	60 °C, 3 h	trace ^c
5	DCE/H ₂ O (99/1)	60 °C, 3 h	15 ^c
6	EtOH/H ₂ O (99/1)	60 °C, 3 h	65 ^c
7	DMSO/H ₂ O (99/1)	60 °C, 3 h	85
8	1,4-Dioxane/H ₂ O (99/1)	60 °C, 3 h	nr ^c
9	Methanol/H ₂ O (99/1)	60 °C 3 h	70 ^c
10	DMSO/H ₂ O (1/1)	60 °C 3 h	40
11	DMSO/H ₂ O (20/1)	60 °C 3 h	30
12	DMSO/H ₂ O (9/1)	60 °C 3 h	15
13	DMSO/H ₂ O (7/3)	60 °C 3 h	20
14	Water	60 °C 3 h	0

2.2 Table S2: Effect of solvents^a

^aReaction conditions: Thiophenol (**1a**, 30 mg, 0.27 mmol, 1.0 equiv), *tert*-butyl isocyanide (**2a**, 0.32 mmol, 27 mg, 1.2 equiv), DMSO/H₂O (99/1, 0.2 mL), temperature (60 °C), 3 h, ^b Yields are of isolated product after column chromatography. ^cstarting material recovered.

2.3 Table S3: Effect of Temperature^a

S.	Condition	Temperature	Yield
No.	(99/1)		(%) ^b
1	DMSO/H ₂ O	rt, 3 h	30 ^c
2	DMSO/H ₂ O	40 °C, 3 h	50 ^d
3	DMSO/H ₂ O	60 °C, 3 h	85
4	DMSO/H ₂ O	80 °C, 3 h	75
5	DMSO/H ₂ O	100 °C, 3 h	70
6	DMSO/H ₂ O	60 °C, 8 h	55
7	DMSO/H ₂ O	60 °C 12 h	45

^aReaction conditions: Thiophenol (**1a**, 30 mg, 0.27 mmol, 1.0 equiv), *tert*-butyl isocyanide (**2a**, 0.32 mmol, 27 mg, 1.2 equiv), DMSO/H₂O (99/1, 0.2 mL), temperature (60 °C), 3 h, ^b Yields are of isolated product after column chromatography. ^cNR: No reaction, ^dstarting material recovered.

2.4 Table S4: Blank Experiment

	SH+	CN ^t Bu	I ₂ (5 mol%) SO, 60 °C, 3 h	S N N	~
	1a	2a		3a	
S. No.	1a	2a	Iodine (5 mol %)	DMSO:H2O (0.2 mL)	3a (%)
1	\checkmark	\checkmark	\checkmark	\checkmark	85
2	×	\checkmark	\checkmark	\checkmark	0
3	\checkmark	×	\checkmark	\checkmark	0
4	\checkmark	\checkmark	×	\checkmark	0
5	\checkmark	\checkmark	\checkmark	×	0

3. General procedure for the synthesis of 3:

A 10 mL schlenk tube equipped with a stir-bar was charged with thiophenol (0.03 g, 0.27 mmol), *tert*-butyl isocyanide (0.026 g, 0.32 mmol) in DMSO/H₂O (99/1, 0.2 mL) as a solvent. Then after 5-10 min. Iodine (0.003 g, 0.01 mmol) was added to the reaction mixture. The mixture was stirred it at 60 $^{\circ}$ C for 3 h. After completion of the reaction on TLC, the reaction mixture was diluted with water and extracted three times with EtOAc. Collected organic layers were washed with water, sodium thiosulphate solution and brine successively, dried over anhydrous sodium sulphate,

filtered, and concentrated in vacuo. Purification by silica gel (100-200 mesh) chromatography (EtOAc: Hexane) to yield the desired product **3**.

4. Analytical data of compound 3a-3n

3a: S-phenyl tert-butylcarbamothioate1

Off-White solid, Yield: 0.047 g (85%); m.p.: 114-115 °C; R_f 0.8 (1:9 EtOAc/hexane); ¹H NMR, (δ ppm): (500 MHz, CDCl₃): 7.54-7.41 (m, 5H, aromatic *C-H*), 5.19 (br s, 1H, N-*H*), 1.33 (s, 9H, Sp³ C-*H*). ¹³C NMR (δ ppm): (125 MHz, CDCl₃): 164.0, 135.4, 129.4, 129.3, 129.1, 53.5, 28.9.

HRMS (ESI): calcd for $C_{11}H_{16}NOS [M+H]^+ 210.0947$, found 210.0948.

3b: S-phenyl cyclohexylcarbamothioate¹

Off-White solid, Yield: 0.058 g (91%); m.p.: 112-113 °C; R_f 0.6 (1:9 EtOAc/hexane); ¹H NMR, (δ ppm): (500 MHz, CDCl₃): 7.56 (t, 2H, aromatic *C-H*, *J* = 3.0 Hz), 7.42-7.41 (m, 3H, aromatic *C-H*), 5.21 (br s, 1H, N-*H*), 3.74 (s, 1H, Sp³ C-*H*), 1.89 (d, 2H, Sp³ C-*H*, *J* = 9.4 Hz), 1.64-

1.55 (m, 3H, Sp³ C-*H*), 1.36-1.28 (m, 2H, Sp³ C-*H*), 1.17-1.07 (m, 3H, Sp³ C-*H*). ¹³C NMR (δ ppm): (125 MHz, CDCl₃): 164.9, 135.4, 129.6, 129.5, 129.4, 50.5, 32.9, 25.4, 24.6. HRMS (ESI): calcd for C₁₃H₁₈NOS [M+H]⁺ 236.1104, found 236.1085.

3c: S-(4-chlorophenyl) tert-butylcarbamothioate¹

White solid, Yield: 0.037 g (75%); m.p.: 145-146 °C; R_f 0.6 (1:9 EtOAc/hexane); ¹H NMR, (δ ppm): (500 MHz, CDCl₃): 7.45 (d, 2H, aromatic *C-H*, *J* = 8.4 Hz), 7.36 (d, 2H, aromatic *C-H*, *J* = 8.4 Hz), 5.20 (br s, 1H, N-H), 1.35 (s, 9H, Sp³ C-H). ¹³C NMR (δ ppm): (125

MHz, CDCl₃): 163.2, 136.6, 135.7, 129.3, 127.4, 53.7, 28.9.

3d: S-(4-methoxyphenyl) tert-butylcarbamothioate¹

White solid, Yield: 0.043 g (85%); m.p.: 83-84 °C; R_f 0.7 (1:9 EtOAc/hexane); ¹H NMR, (δ ppm): (500 MHz, CDCl₃): 7.45 (d, 2H, aromatic *C-H*, *J* = 8.4 Hz), 6.93 (d, 2H, aromatic *C-H*, *J* = 8.4 Hz), 5.15 (br s, 1H, N-H), 3.83 (s, 3H, Sp³ C-H), 1.32 (s, 9H, Sp³ C-H). ¹³C

NMR (δ ppm): (125 MHz, CDCl₃): 164.9, 160.7, 137.2, 119.9, 114.9, 55.4, 53.4, 28.8. HRMS (ESI): calcd for C₁₂H₁₈NO₂S [M+H]⁺ 240.1053, found 240.1043

3e: S-(4-methoxyphenyl) cyclohexylcarbamothioate

White solid, Yield: 0.051 g (90%); m.p.: 148-150 °C; R_f 0.6 (1:9 EtOAc/hexane); ¹H NMR, (δ ppm): (500 MHz, CDCl₃): 7.47 (d, 2H, aromatic *C*-*H*, *J* = 8.5 Hz), 6.93 (d, 2H, aromatic *C*-*H*, *J* = 8.7 Hz), 5.21 (br s, 1H, N-*H*), 3.84 (s, 3H, Sp³ C-*H*), 3.73-3.69 (m, 1H,

Sp³ C-*H*), 1.87 (d, 2H, Sp³ C-*H*, *J* =9.6 Hz), 1.63-1.54 (m, 3H, Sp³ C-*H*), 1.32-1.29 (m, 2H, Sp³ C-*H*), 1.16-1.07 (m, 3H, Sp³ C-*H*). ¹³C NMR (δ ppm): (125 MHz, CDCl₃): 165.9, 160.9, 137.2, 119.5, 115.1, 55.4, 50.4, 29.7, 25.4, 24.6. HRMS (ESI): calcd for C₁₄H₂₀NO₂S [M+H]⁺ 266.1209, found 266.1208.

3f: S-(4-chlorophenyl) cyclohexylcarbamothioate²

White solid, Yield: 0.045 g (82%); m.p.: 140-142 °C; R_f 0.5 (1:9 EtOAc/hexane); ¹H NMR, (δ ppm): (500 MHz, CDCl₃): 7.39 (d, 2H, aromatic *C*-*H*, *J* = 8.3 Hz), 7.34-7.28 (m, 2H, aromatic *C*-*H*), 5.19 (br s, 1H, N-*H*), 3.66 (s, 1H, Sp³ C-*H*), 1.85 (d, 2H, Sp³ C-*H*, *J* = 8.5

Hz), 1.61-1.51 (m, 3H, Sp³ C-*H*), 1.27-1.18 (m, 2H, Sp³ C-*H*), 1.07 (t, 3H, Sp³ C-*H*, J = 6.6 Hz). ¹³C NMR (δ ppm): (125 MHz, CDCl₃): 164.1, 136.5, 135.8, 129.4, 127.2, 50.9, 29.7, 25.3, 24.7.

3g: *S*-(**2**-fluorophenyl) cyclohexylcarbamothioate

Off-White solid, Yield: 0.048g (81%); m.p.: 118-120 °C; R_f 0.8 (1:9 EtOAc/hexane); ¹H NMR, (δ ppm): (500 MHz, CDCl₃): 7.54 (t, 1H, aromatic *C*-*H*, *J* = 6.7 Hz), 7.45-7.41 (m, 1H, aromatic *C*-*H*), 7.17 (dd, 1H, aromatic *C*-*H*, *J* = 14.0, 6.9 Hz), 5.27 (br s, 1H, N-*H*), 3.74 (s, 1H,

Sp³ C-*H*), 1.94 (d, 2H, Sp³ C-*H*, J = 8.6 Hz), 1.69-1.58 (m, 3H, Sp³ C-*H*), 1.34-1.29 (m, 2H, Sp³ C-*H*), 1.19-1.15 (m, 3H, Sp³ C-*H*). ¹³C NMR (δ ppm): (125 MHz, CDCl₃): 163.4, 162.9, 161.5, 137.6, 132.0 (J *_{C-F}* = 35 Hz), 124.7, 116.2 (J *_{C-F}* = 90 Hz), 56.7, 32.8, 25.4, 24.6. HRMS (ESI): calcd for C₁₃H₁₇FNOS [M+H]⁺ 254.1010, found 254.1026.

3h: S-(2-chlorophenyl) cyclohexylcarbamothioate

Off-White solid, Yield: 0.041 g (74%); m.p.: 125-127 °C; R_f 0.6 (1:9 EtOAc/hexane); ¹H NMR, (δ ppm): (500 MHz, CDCl₃): 7.67 (d, 1H, aromatic *C-H*, *J* = 7.4 Hz), 7.52 (d, 1H, aromatic *C-H*, *J* = 7.9 Hz), 7.36 (td, 1H, aromatic *C-H*, *J* = 7.5, 1.2 Hz), 7.30 (t, 1H, aromatic *C-H*, *J* =

7.5 Hz), 5.30 (br s, 1H, N-*H*), 3.79 (s, 1H, Sp³ C-*H*), 1.94 (d, 2H, Sp³ C-*H*, J = 9.2 Hz), 1.69-1.58 (m, 3H, Sp³ C-*H*), 1.37-1.30 (m, 2H, Sp³ C-*H*), 1.19-1.12 (m, 3H, Sp³ C-*H*). ¹³C NMR (δ ppm): (125 MHz, CDCl₃): 162.9, 139.1, 137.7, 131.0, 130.3, 128.3, 127.4, 50.9, 32.9, 25.4, 24.6. HRMS (ESI): calcd for C₁₃H₁₇CINOS [M+H]⁺ 270.0714, found 270.0731.

3i: S-(2-chlorophenyl) tert-butylcarbamothioate

Colourless liquid, Yield: 0.038 g (76%); R_f 0.8 (1:9 EtOAc/hexane); ¹H NMR, (δ ppm): (500 MHz, CDCl₃): 7.65 (dd, 1H, aromatic *C-H*, *J* = 7.6, 1.4 Hz), 7.51 (d, 1H, aromatic *C-H*, *J* = 7.8 Hz), 7.35 (td, 1H, aromatic *C-H*, *J* = 7.3, 1.3 Hz), 7.30 (td, 1H, aromatic *C-H*, *J* = 7.6, 1.2 Hz), 5.27 (br

s, 1H, N-*H*), 1.36 (s, 9H, Sp³ C-*H*). ¹³C NMR (δ ppm): (125 MHz, CDCl₃): 162.0, 139.1, 137.7, 130.8, 130.2, 128.6, 127.3, 53.8, 28.8. HRMS (ESI): calcd for C₁₁H₁₅ClNOS [M+H]⁺ 244.0558, found 244.0562.

3j: S-(3-chlorophenyl) cyclohexylcarbamothioate

White solid, Yield: 0.049 g (88%); m.p.: 110-112 °C; R_f 0.6 (1:9 EtOAc/hexane); ¹H NMR, (δ ppm): (500 MHz, CDCl₃): 7.55 (s, 1H, aromatic *C-H*), 7.42 (d, 1H, aromatic *C-H*, *J* = 7.3 Hz), 7.38 (d, 1H, aromatic *C-H*, *J* = 7.6 Hz), 7.33 (t, 1H, aromatic *C-H*, *J* = 7.6 Hz),

5.26 (br s, 1H, N-*H*), 3.74 (s, 1H, Sp³ C-*H*), 1.93 (d, 2H, Sp³ C-*H*, *J* = 8.6 Hz), 1.69-1.61 (m, 3H, Sp³ C-*H*), 1.35-1.30 (m, 2H, Sp³ C-*H*), 1.16-1.14 (m, 3H, Sp³ C-*H*). ¹³C NMR (δ ppm): (125 MHz, CDCl₃): 163.7, 134.9, 134.7, 133.3, 130.5, 130.1, 125.5, 50.9, 29.7, 25.3, 24.7. HRMS (ESI): calcd for C₁₃H₁₇CINOS [M+H]⁺ 270.0714, found 270.0714.

3k: S-(naphthalen-2-yl) cyclohexylcarbamothioate

White solid, Yield: 0.047 g (88%); m. p.: 88-91 °C; R_f 0.8 (1:9 EtOAc/hexane). ¹H NMR, (δ ppm): (500 MHz, CDCl₃): 7.57-7.56 (m, 2H, aromatic *C-H*), 7.43-7.42 (m, 3H, aromatic *C-H*), 5.30 (br

s, 1H, N-*H*), 3.26 (q, 2H, Sp³ C-*H*, J = 6.6 & 13.0 Hz), 1.48-1.45 (m, 2H, Sp³ C-*H*), 1.29-1.25 (m, 4H, Sp³ C-*H*), 0.87 (t, 3H, Sp³ C-*H*, J = 6.9 Hz). ¹³C NMR (δ ppm): (125 MHz, CDCl₃): 164.9, 135.2, 133.6, 133.4, 131.6, 128.9, 128.0, 127.8, 127.2, 126.7, 126.2, 50.7, 32.9, 25.4, 24.6. HRMS (ESI): calcd for C₁₇H₂₀NOS [M+H]⁺ 286.1260, found 286.1261.

3l: *S*-phenyl pentylcarbamothioate¹

White solid, Yield: 0.048 g (80%); m.p.: 36-38 °C; R_f 0.7 (1:9 EtOAc/hexane); ¹H NMR, (δ ppm): (500 MHz, CDCl₃): 7.57-7.56 (m, 2H, aromatic *C-H*), 7.43-7.42 (m, 3H, aromatic *C-H*), 5.30 (br s, 1H, N-*H*), 3.26 (q, 2H, Sp³ C-*H*, *J* = 6.6 & 13.0 Hz), 1.48-1.45

(m, 2H, Sp³ C-*H*), 1.29-1.25 (m, 4H, Sp³ C-*H*), 0.87 (t, 3H, Sp³ C-*H*, J = 6.9 Hz). ¹³C NMR (δ ppm): (125 MHz, CDCl₃): 165.9, 135.5, 129.7, 129.5, 128.7, 41.5, 29.2, 28.8, 22.3, 13.9.

3m: S-(naphthalen-2-yl) pentylcarbamothioate

White solid, Yield: 0.044 g (87%); m.p.: 82-84 °C; R_f 0.5 (1:9 EtOAc/hexane); ¹H NMR, (δ ppm): (500 MHz, CDCl₃): 8.10 (s, 1H, aromatic *C-H*), 7.89-7.84 (m, 3H, aromatic *C-H*), 7.61-7.52 (m, 3H, aromatic *C-H*), 5.38 (br s, 1H, N-*H*), 3.26 (q, 2H,

Sp³ C-*H*, J = 6.5 & 12.9 Hz), 1.48-1.43 (m, 2H, Sp³ C-*H*), 1.30-1.23 (m, 4H, Sp³ C-*H*), 0.87 (t, 3H, Sp³ C-*H*, J = 6.7 Hz). ¹³C NMR (δ ppm): (125 MHz, CDCl₃): 165.9, 135.4, 135.3, 133.6, 133.4, 131.7, 129.1, 128.0, 127.8, 127.3, 126.8, 41.6, 28.8, 22.2, 13.9, 13.88. HRMS (ESI): calcd for C₁₆H₂₀NOS [M+H]⁺ 274.1260, found 274.1262.

3n: methyl ((phenylthio)carbonyl)glycinate¹

White solid, Yield: 0.046 g (79%); m.p.: 116-118 °C; R_f 0.25 (1:9 EtOAc/hexane); ¹H NMR, (δ ppm): (500 MHz, CDCl₃): 7.59-7.44 (m, 5H, aromatic *C-H*), 5.92 (br s, 1H, N-*H*), 4.09 (s, 2H, Sp³ C-*H*), 3.75 (s, 3H, Sp³ C-*H*). ¹³C NMR (δ ppm): (125 MHz, CDCl₃): 169.8, 166.9,

135.6, 130.0, 129.6, 127.9, 52.6, 42.5.

30: S-phenyl (2,4,4-trimethylpentan-2-yl)carbamothioate¹

White solid, Yield: 0.057 g (79%); m.p.: 85-86 °C; R_f 0.35 (1:9 EtOAc/hexane); ¹H NMR, (δ ppm): (500 MHz, CDCl₃): 7.54-7.41 (m, 5H, aromatic C-H), 5.16 (br s, 1H, N-H), 1.66 (s, 2H, Sp³ C-H), 1.37 (s, 6H, Sp³ C-H), 0.95 (s, 9H, Sp³ C-H). ¹³C NMR (δ ppm): (125 MHz, CDCl₃): 163.9, 135.6, 129.5, 129.4, 129.2, 57.3, 51.8, 31.4, 29.2.

3p: S-(2-hydroxyethyl) cyclohexylcarbamothioate

White solid, Yield: 0.09 g (74%); m.p.: 110-112 °C; Rf 0.25 (1:9 EtOAc/hexane); ¹H NMR, (δ ppm): (500 MHz, CDCl₃): 5.22 (br s, 1H, N-H), 3.75 (s, 1H, Sp³ C-H), 3.33 (s, 4H, Sp³ C-H), 1.94 (d, 2H, Sp³

C-H, J = 9.9 Hz), 1.71 (d, 3H, Sp³ C-H, J = 13.2 Hz), 1.36-1.30 (m, 2H, Sp³ C-H), 1.17 (t, 3H, Sp³ C-*H*, *J* = 9.3 Hz). ¹³C NMR (δ ppm): (125 MHz, CDCl₃): 164.3, 50.8, 33.1, 25.4, 24.7, 3.9.

3r: S-decyl cyclohexylcarbamothioate

White solid, Yield: 0.06 g (71%); m.p.: 118-120 °C; R_f 0.2 (1:9 EtOAc/hexane); ¹H NMR, (δ ppm): (500 MHz, CDCl₃): 5.17 (br s, 1H, N-H), 3.75 (s, 1H, Sp³

C-*H*), 2.89 (d, 2H, Sp³ C-*H*, *J* = 2.3 Hz), 1.94 (d, 2H, Sp³ C-*H*, *J* = 10.3 Hz), 1.72-1.57 (m, 11H, $Sp^{3}C-H$, 1.39-1.28 (m, 10H, $Sp^{3}C-H$), 1.17-1.10 (m, 3H, $Sp^{3}C-H$), 0.88 (t, 3H, $Sp^{3}C-H$, J = 6.7Hz). ¹³C NMR (δ ppm): (125 MHz, CDCl₃):160.3, 50.5, 33.2, 31.9, 29.7, 29.65, 29.61, 29.5, 29.4, 29.2, 28.8, 25.4, 24.8, 22.7, 14.1.

5. Radical trap experiment:

A 10 mL schlenk tube equipped with a stir-bar was charged with thiophenol (0.03 g, 0.27 mmol), tert-butyl isocyanide (0.026 g, 0.32 mmol) in DMSO/H₂O (99/1, 0.2 mL) as a solvent. Then after 5-10 min. Iodine (0.003 g, 0.01 mmol) and radical scavengers [TEMPO/Galvinoxy (0.27 mmol)] was added to the reaction mixture. The mixture was stirred it at 60 °C for 3 h. After completion of the reaction on TLC, the reaction mixture was diluted with water and extracted three times with EtOAc. Collected organic layers were washed with water, sodium thiosulphate solution and brine successively, dried over anhydrous sodium sulphate, filtered, and concentrated in vacuo. Purification by silica gel (100-200 mesh) chromatography (EtOAc: Hexane) to yield the desired product **3**.

S. No.	Additive	Yield
1	None	85%
2	TEMPO	0%
3	Galvinoxyl	0%

 Table S5. Observation of radical trap experiment

6. General procedure for the control experiments:

6.1 Reaction under anhydrous conditions:

1) Reaction under inert atmosphere: A 10 mL schlenk tube equipped with a stir-bar was charged with thiophenol (0.05 g, 0.42 mmol), *tert*-butyl isocyanide (0.041 g, 0.50 mmol) in DMSO/H₂O (99/1, 0.5 mL) as a solvent under nitrogen atmosphere. Then after 5-10 min. Iodine (0.004 g, 0.021 mmol) was added to the reaction mixture and degased using nitrogen. The mixture was stirred at 60° C for 4 h under inert atmosphere. After completion of the reaction, the reaction mixture was passed through celite bed and washed with EtOAc. The reaction mixture was diluted with EtOAc, which was washed with water, sodium thiosulphate solution and brine successively, dried over anhydrous sodium sulphate, filtered, and concentrated in vacuo. Purification by silica gel (100-200 mesh) chromatography (EtOAc: Hexane) to yield the desired product **3**.

2) Reaction with anhydrous DMSO: A 10 mL schlenk tube equipped with a stir-bar was charged with thiophenol (0.05 g, 0.42 mmol), *tert*-butyl isocyanide (0.041 g, 0.50 mmol) in anhydrous DMSO (0.5 mL) as a solvent. Then after 5-10 min. Iodine (0.004 g, 0.021 mmol) was added to the reaction mixture. The mixture was stirred at 60° C for 4 h. After completion of the reaction, the reaction mixture was passed through celite bed and washed with EtOAc. The reaction mixture was

diluted with EtOAc, which was washed with water, sodium thiosulphate solution and brine successively, dried over anhydrous sodium sulphate, filtered, and concentrated in vacuo. Purification by silica gel (100-200 mesh) chromatography (EtOAc: Hexane) to yield the desired product **3**.

6.2 Reaction with diphenyl disulphide: A 10 mL schlenk tube equipped with a stir-bar was charged with thiophenol (0.05 g, 0.42 mmol), *tert*-butyl isocyanide (0.041 g, 0.50 mmol) in DMSO/H₂O (99/1, 0.5 mL) as a solvent. Then after 5-10 min. Iodine (0.004 g, 0.021 mmol) was added to the reaction mixture. The mixture was stirred it at 60° C for 4 h. After completion of the reaction, the reaction mixture was passed through celite bed and washed with EtOAc. The reaction mixture was diluted with EtOAc, which was washed with water, sodium thiosulphate solution and brine successively, dried over anhydrous sodium sulphate, filtered, and concentrated in vacuo. Purification by silica gel (100-200 mesh) chromatography (EtOAc: Hexane) to yield the desired product **3**.

6.3 Intermolecular competition Experiment: A 10 mL schlenk tube equipped with a stir-bar was charged with thiophenol (0.05 g, 0.42 mmol), *tert*-butyl isocyanide (0.041 g, 0.50 mmol) in anhydrous DMSO/H₂O (99/1, 0.5 mL) as a solvent. Then after 5-10 min. Iodine (0.004 g, 0.021 mmol) was added to the reaction mixture. The mixture was stirred it at 60° C for 4 h. After completion of the reaction, the reaction mixture was passed through celite bed and washed with EtOAc. The reaction mixture was diluted with EtOAc, which was washed with water, sodium thiosulphate solution and brine successively, dried over anhydrous sodium sulphate, filtered, and concentrated in vacuo. Purification by silica gel (100-200 mesh) chromatography (EtOAc: Hexane) to yield the desired product 3.

7. Experimental procedure for gram scale synthesis:

A 10 mL schlenk tube equipped with a stir-bar was charged with thiophenol (0.5 g, 4.55 mmol), cyclohexyl isocyanide (0.595 g, 5.46 mmol) in DMSO/H₂O (99/1, 1.0 mL) as a solvent. Then after 5-10 min. Iodine (0.058 g, 0.23 mmol) was added to the reaction mixture. The mixture was stirred

it at 60 $^{\circ}$ C for 3 h. After completion of the reaction on TLC, the reaction mixture was diluted with water and extracted three times with EtOAc. Collected organic layers were washed with water, sodium thiosulphate solution and brine successively, dried over anhydrous sodium sulphate, filtered, and concentrated in vacuo. Purification by silica gel (100-200 mesh) chromatography (EtOAc: Hexane) to yield the desired product **3** [Yield: 0.93 g (88%)]

8. Crystal Data:

Colourless plate crystals of compound **3b** was grown by evaporation of mixed solvents of petroleum ether and dichloromethane at room temperature. The determination of unit cell and intensity data collection was performed using a *Xcalibur, Atlas* diffractometer at 293(2) K. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm was performed with CrysAlisPro 1.171.38.46 (Rigaku Oxford Diffraction, 2015). Structure was solved with the SHELXT (Sheldrick, 2015) and refined with the SHELXL (Sheldrick, 2015).¹ Crystallographic data (excluding structure factors) for the structures in this manuscript have been deposited with the Cambridge Crystallographic Data Center as supplementary publication no. CCDC **1845513.** This data can be obtained free of charge from the Cambridge Crystallographic Data Centers *via* www.ccdc.cam.ac.uk/data_request/cif. 1: (a) Rigaku Oxford Diffraction. CrysAlisPro Software system, version 1.171.38.46. Rigaku

8.1: Crystal structure of 3b:

Figure S1 represents an ORTEP diagram with 50% probability displacement ellipsoids. X-ray crystallographic analysis of **3b** $[C_{12}H_{14}N_6]$ also confirmed the stereochemistry of the desired product.

Corporation Oxford, UK; 2015; (b) Sheldrick, G.M. Acta Cryst., 2015, A71, 3-8.

Figure S1: The X-ray crystal structure of compound **3b** showing with ORTEP diagram using 50% ellipsoidal plot.

Identification code	CCDC Number: 1845513
Empirical formula	C ₁₃ H ₁₇ NOS
Formula weight	235.34
Temperature/K	298.2
Crystal system	Monoclinic
Space group	$P2_1/n$
a/Å	6.3713 (3)
b/Å	23.7413 (12)
c/Å	8.8276 (4)
a/°	90.000 (0)
β/°	103.695 (5)
$\gamma/^{\circ}$	90.000 (0)
Volume/Å ³	1297.33 (11)
Z	4
μ/mm^{-1}	0.23
F(000)	500
Crystal size/mm ³	$0.31 \times 0.25 \times 0.20$
Reflections collected	6708
Independent reflections	3026
Data/restraints/parameters	2287/0/109
Goodness-of-fit on F ²	1.044
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0708, wR_2 = 0.1991$
Final R indexes [all data]	$R_1 = 0.1123, wR_2 = 0.2566$
Largest diff. peak/hole / e Å ⁻³	0.52/-0.31

9. References:

- [1] P. Mampuys, Y. Zhu, S. Sergeyev, E. Ruijter, R. V. A. Orru, S. V. Doorslaer, B. U. W. Maes, *Org. Lett.* 2016, 18, 2808-2811.
- [2] H.-K. Kim, A. Lee, Org. Biomol. Chem., 2016, 14, 7345-7353.

10. Copies of ¹H and ¹³C NMR data:

---5.1915

—164.02

----53.53

upartury, day shakes to be a be a second so the second second second second second second second second second		

+ +			- I - I	1	· · · ·			1	· · ·			· · · ·		· · · ·	1		· · ·	· · · ·		
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

USER NAME: BHAGWAN

3A 24 (0.423) AM (Cen,4, 80.00, Ht,10000.0,0.00,0.00); Cm (21:26)

06-Jun-2018 11:30:22

---5.2120

----3.7476

Mar05-2018 DMS-MCR-A143-015

----5.2018

----5.1560

J J S

ö

Mar06 DMS-1	5-2018 MCR-A143	8-013		— 164.94 — 160.73											55.39 53.37					S_	N N
						ľ		ľ									ľ		040	3d	[``
															1						
17.050 U.V.		ala ^t nay na niy	ni an Angelan an An	<u> </u>		and an algorithm star				*****								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ugtysthaesesia		ula ula constanta
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

----5.2087

S28

Feb27-2018 MCR-A143-016

--5.1876

1.9526 1.6948 1.6948 1.6714 1.5839 1.3479 1.12996 1.1727 1.1944

Н

S

0

3g

----3.7409

----5.2743

「7.5599 「7.5465 「7.5465 「7.5329 「7.5329 「7.4526 ~7.4375 ~7.4375 ~7.4375 ~7.4375 ~7.4375 ~7.4375 ~7.4375 ~7.4113 ~7.4375 ~7.4113 ~7.42184 七7.1727 上7.1727

-91 -92 -93 -94 -95 -96 -97 -98 -99 -101 -103 -105 -107 -109 -111 -113 -115 -117 -119

S33

3h

 $\begin{array}{c} 1.9515 \\ 1.9331 \\ 1.6643 \\ 1.6643 \\ 1.6643 \\ 1.5868 \\ 1.1663 \\ 1.1297 \\ 1.297 \\ 1.1297 \\ 1.1298 \\ 1.1243 \\ 1.1243 \end{array}$

----3.7503

--5.2595

Mar03-2018 MCR-A143-019

Mar03-2018 MCR-A143-019	 \sim 137.75 \sim 137.75 \sim 137.02 \sim 130.30 \sim 128.29 \sim 127.39		

S38

-----5.9480

----3.7435

 $\int_{1.1,022}^{1.9457} \int_{1.09284}^{1.0950} \int_{1.6063}^{1.6063} \int_{1.3533}^{1.3533} \int_{1.13294}^{1.3036} \int_{1.1476}^{1.1476} \int$ C 0 3j

Mar01-2018 MCR-A143-024	— 163.68	134.86 133.27 133.27 130.15 129.51	₹77.30 77.05 76.79	 	
				3j	\sim
Madan (19. 1997)				 	

-10

XEV	D-G2SQTOF#NotSet	06	-Jun-2018 11:22:08
USEI	R NAME: BHAGWAN 0 118) AM (Cen 4, 80 00, Ht 10000 0 0 00 0 00); Cm (4:8)	тс)F MS ES+
100-	2	270.0714	2.60e5
-		274.2739	
_			
%			
_		272.0686	
_	256.2630	30)2.3056
	247.0570 240.1372 245.0427 247.2055 256.1110 262.6524	290.1000 300.289 275.2771 279.0935 284.2946 292.0536 284.1638 280.0961 287.1469 294.0507 295.1953	99
0-	240 245 250 255 260 265	270 275 280 285 290 295 300	ι <u> </u>

Apr03-2018 DMS-MCR-A143-059

--5.3092

31

Apr03-2018 DMS-MCR-A143-059	— 165.97		41.54	29.21 28.84 28.84 -22.27 -22.27 -22.27 -23.27 -23.27 -23.27

1.4867 1.4740 1.4740 1.4740 1.47414 1.47394 1.2750 1.2537 1.2537 1.2537 1.2537 0.8836 -0.8702

S49

May23-2018 DMS-MCR-A143-111	 135.37 135.35 133.65 133.65 133.65 133.69 131.69 120.11 127.73 126.76	41.60	-28.85 -22.23 <13.90 <13.88
			S S N S M 3 m

XEV	O-G2SQTOF#NotSet								06-Jun-2018 11·26·11
USE	R NAME: BHAGWAN								
100-	(0.116) AM (Cen,4, 80.00, Fit, 10000.0,0.00,0.00), Cin (4.9)	274	.1262						1.91e5
~									
		273.9785							
			275.	1290			284.1419		
									290.1129
	262.0087	272.8665			278.9429	284	.0110 28	4.9566	
	272.112 260.9894 262.0965 265.9857 266.9938 268.9911 272.112	0		275.97	59	280.9471		286.1557	289.9443 291.1160
0- 2	لن مار مار السياس السياس من مار السياس السياس السياس المستعمر المستعمر المستعمر المستعمر المستعمر المستعمر المستعمر ال 258 260 262 264 266 268 270 2	72 27	իններ 74	276	278 2	80 282	284	286 28	¹ m/z 38 290

Jun30-2018 DMS-MCR-A143-120	 -135.62 $\times 130.01$ $\times 127.92$		 42.54	
		1		
ye ya na na wa wa na mala wa				, goga ben hannen an it operande menske operande av

-10

-5.1646

Jul15-2018 DMS-MCR-A143-058	 -135.61 -129.50 -129.16	77.30 77.05 76.79	 30 30	\prec
an a			an III an an in a same tan an a	j en an a

-10

