Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information for

Chemoselective N-H Functionalization of Indole Derivatives via Reissert-type Reaction Catalyzed by Chiral Phosphoric Acid

Yue Cai,^a Qing Gu^{b} and Shu-Li You^{*a,b}

^a School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road,

Shanghai 200237, China

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry,

Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China

E-mail: slyou@sioc.ac.cn

Table of Contents

Optimization of conditions	S2-S4
X-Ray of 4aa	S5-S6
Copies of NMR spectra and HPLC chromatographs	S7-S96

Optimization of conditions

 Table S-1 Screening of chiral phosphoric acids.

2a (1 equiv	+ NHCO ₂ Me + NHCO ₂ Me H H 3a (1 equiv)	(S)-1 (10 mol%) Boc ₂ O (1 equiv) <i>p</i> -xylene, 25 °C MeO ₂ CHN	cN N 4aa
(S)-1	1a : R = 1-naphthyl 1g : R = 4-NO ₂ -C ₆ H ₄ 1h : R = 9-(10-Br)-anthryl 1c : R = 9-phenanthryl 1d : R = 2,4,6-($^{\circ}$ Pr) ₃ -C ₆ H ₂ 1e : R = SiPh ₃ 1f : R = 2,4,6-(Cy) ₃ -C ₆ H ₂ 1i : R = PPh ₂	CF_3 CF_3	(S)-1j
entry ^a	(<i>S</i>)- 1	yield $(\%)^b$	$ee(\%)^c$
1	1 a	85	31
2	1b	87	46
3	1c	82	64
4	1d	89	64
5	1e	82	70
6	1f	89	76
7	1g	95	39
8	1h	85	44
9	1i	85	44
10	1j	57	11

^{*a*} Reaction condition: 10 mol% of (*S*)-**1**, 0.2 mmol of **2a**, 0.2 mmol of **3a**, 0.2 mmol of Boc₂O in 2 mL *p*-xylene, 25 $^{\circ}$ C, 3 d. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis.

Table S-2 Screening of solvents.

2	toluene	81	75
3	o-xylene	82	76
4	<i>m</i> -xylene	93	76
5	THF	14	68
6	Et ₂ O	69	76
7	DCM	37	59
8	PhCl	73	79
9	PhF	80	77

^{*a*} Reaction condition: 10 mol% of (*S*)-**1f**, 0.2 mmol of **2a**, 0.2 mmol of **3a**, 0.2 mmol of Boc₂O in 2 mL solvent, 25 $^{\circ}$ C, 3 d. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis.

Table S-3 Screening of activation reagent.

2a (1 equiv)	NHCO ₂ Me (S) acti H 3a (1 equiv))- 1f (10 mol%) ivator (1 equiv) ★ xylene, 25 °C MeO ₂ CH		Cy Cy Cy Cy Cy Cy Cy Cy Cy Cy Cy Cy Cy C
entry ^a	activator	R	yield $(\%)^b$	$ee(\%)^{c}$
1	Boc ₂ O	Boc	93	83
2	(CH ₃ CO) ₂ O	CH ₃ CO	0	
3	(CH ₃ OCO) ₂ O	CH ₃ OCO	0	
4	TrocCl	Troc	77	2
5	PhOCOCl	PhOCO	82	-2

^{*a*} Reaction condition: 10 mol% of (*S*)-**1f**, 0.2 mmol of **2a**, 0.2 mmol of **3a**, 0.2 mmol of activator in 2 mL *m*-xylene, 25 °C, 3 d. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis.

Table S-4 Screening of substrate ratio/additive/Ag salt.^a

1	-	1:1:1	93	76
2	-	1:1:1.5	91	78
3	-	1:1:2	92	77
4	3 Å MS	1:1:2	91	79
5	4 Å MS	1:1:2	93	82
6	5 Å MS	1:1:2	92	80
7	-	1.5:1:1.5	93	80
8	4 Å MS	1.5:1:1.5	93	83
9^d	4 Å MS	1.5:1:1.5	92	74
10^{e}	4 Å MS	1.5:1:1.5	99	8
11^f	4 Å MS	1.5:1:1.5	97	8

^{*a*} Reaction condition: 10 mol% of (*S*)-**1f**, 0.2 mmol of **3** in 2 mL *m*-xylene, 25 °C, 3 d. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis. ^{*d*} 10 mol% of (*S*)-**1d** was used. ^{*e*} 10 mol% of (*S*)-**1d**-Ag was used, t = 12 h.

Table S-5 Screening of mixed solvents

^{*a*} Reaction condition: 10 mol% of (S)-**1f**, 0.3 mmol of **2a**, 0.2 mmol of **3a**, 0.3 mmol of Boc₂O in 2 mL solvent, 25 °C. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis.

X-Ray structure of (*R*)-**4aa** (CCDC 1851528)

Table 1. Crystal data and structure refiner	nent for cu_d8v18305_0m.	
Identification code	cu_d8v18305_0m	
Empirical formula	C26 H29 N3 O4	
Formula weight	447.52	
Temperature	296(2) K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P 21	
Unit cell dimensions	a = 8.9053(2) Å	$\alpha = 90$ °.
	b = 29.8896(7) Å	β=
113.9210(10) °.		
	c = 10.0393(2) Å	$\gamma = 90$ °.
Volume	2442.69(9) Å ³	
Z	4	
Density (calculated)	1.217 Mg/m ³	
Absorption coefficient	0.670 mm ⁻¹	
F(000)	952	

Crystal size	0.180 x 0.150 x 0.120 mm ³
Theta range for data collection	2.957 to 66.468 °.
Index ranges	-10<=h<=10, -35<=k<=35, -11<=l<=11
Reflections collected	34541
Independent reflections	8568 [R(int) = 0.1106]
Completeness to theta = 67.679°	97.3 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7533 and 0.4553
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	8568 / 1 / 604
Goodness-of-fit on F ²	1.026
Final R indices [I>2sigma(I)]	R1 = 0.0698, $wR2 = 0.1763$
R indices (all data)	R1 = 0.0865, wR2 = 0.1981
Absolute structure parameter	0.0(2)
Extinction coefficient	0.0131(14)
Largest diff. peak and hole	0.258 and -0.225 e.Å ⁻³

NMR Spectra and HPLC Chromatographs of 4aa

¹³C NMR (151 MHz, d₆-DMSO, 80 °C)

¹³C NMR (100 MHz, d₆-DMSO)

NMR Spectra and HPLC Chromatographs of 4ab

NMR Spectra and HPLC Chromatographs of 4ac

NMR Spectra and HPLC Chromatographs of 4ad

S20

NMR Spectra and HPLC Chromatographs of 4ae

NMR Spectra and HPLC Chromatographs of 4af

NMR Spectra and HPLC Chromatographs of 4ag

NMR Spectra and HPLC Chromatographs of 4ah

NMR Spectra and HPLC Chromatographs of 4ai

NMR Spectra and HPLC Chromatographs of 4aj

NMR Spectra and HPLC Chromatographs of 4ak

 $^{\circ}$

NMR Spectra and HPLC Chromatographs of 4ba

NMR Spectra and HPLC Chromatographs of 4ca

NMR Spectra and HPLC Chromatographs of 4da

NMR Spectra and HPLC Chromatographs of 4ea

NMR Spectra and HPLC Chromatographs of 4fa

NMR Spectra and HPLC Chromatographs of 4ga

NMR Spectra and HPLC Chromatographs of 4ha

NMR Spectra and HPLC Chromatographs of 4ia

NMR Spectra and HPLC Chromatographs of 4ja

NMR Spectra and HPLC Chromatographs of 4ka

NMR Spectra and HPLC Chromatographs of 4la

NMR Spectra and HPLC Chromatographs of 4ma

NMR Spectra and HPLC Chromatographs of 4il

NMR Spectra and HPLC Chromatographs of 4im

NMR Spectra and HPLC Chromatographs of 4an

NMR Spectra and HPLC Chromatographs of 5aa

S91

NMR Spectra of 6aa

NMR Spectra and HPLC Chromatographs of 7aa

Ş

< < T

¢ c t

Ś

ć

č

ç

- 6

- 6

- 5

- ć

