Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

FeCl₃-promoted Tandem 1,4-Conjugate Addition/6-*endo-dig* Cyclyzation/Oxidation of Propargylamines and Benzoylacetonitriles/Malononitrile: Direct Access to Functionalized 2-Aryl-4*H*-chromenes

Xinwei He,* Hui Wang, Xiaoting Cai, Qianqian Li, Jiajia Tao, Yongjia Shang*

Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China

* Corresponging author: xinweihe@mail.ahnu.edu.cn, shyj@mail.ahnu.edu.cn

Table of Contents

Table S1. Optimization of the reaction conditions.	1
X-Ray Crystallography Structures of Compounds 4fa S	2
X-Ray Crystallography Structures of Compounds 5a S	2
Copies of ¹ H and ¹³ C NMR Spectra for Compounds 4aa-4ae S3-S3	6
Copies of ¹ H and ¹³ C NMR Spectra for Compounds 5a-5z S37-S6	2

		NC			
	`N´ ↓	NC CN Catal	lyst (0.5 equiv) 🥢		
		+ NC 3a	solvent		
	OH	Ĵ		5a	
Entry	Catalyst	Solvent	Temp. (°C)	Yield $(\%)^b$	
1		DMF	90	trace	
2	HCl	DMF	90	trace	
3	AlCl ₃	DMF	90	15	
4	Sc(OTf) ₃	DMF	90	35	
5	BF ₃ ·Et ₂ O	DMF	90	10	
6	FeCl ₃	DMF	90	70	
7^c	FeCl ₃	DMF	90	56	
8^d	FeCl ₃	DMF	90	72	
9	FeCl ₃	DMSO	90	23	
10	FeCl ₃	THF	90	31	
11	FeCl ₃	MeCN	80	55	
12	FeCl ₃	1, 4-dioxane	90	trace	
13	FeCl ₃	DCE	90	25	
14	FeCl ₃	toluene	90	60	
15	FeCl ₃	EtOH	90	trace	
16	FeCl ₃	DMF	r.t.	trace	
17	FeCl ₃	DMF	60	32	
18	FeCl ₃	DMF	80	58	
19	FeCl ₃	DMF	100	65	
20^{e}	FeCl ₃	DMF	90	41	

 Table S1. Optimization of the reaction conditions.^a

^{*a*} Reaction conditions: 2-(3-phenyl-1-(piperidin-1-yl)prop-2-yn-1-yl)-phenol **1a** (0.50 mmol), propanedinitrile **3a** (0.50 mmol), catalyst (0.25 mmol), solvent (10 mL), in open air for 24 h. ^{*b*}Isolated yields. ^{*c*}0.2 equiv of catalyst was used. ^{*d*}0.8 equiv of catalyst was used. ^{*e*} reaction time of 12 h. X-Ray Crystallography Structures of Compounds 4fa and 5a.

Figure S1. X-ray crystal structure of compound 4fa.

Crystal data for **4fa**: C₂₅H₁₇NO₂, Mr = 363.40, Triclinic, a = 8.4187 (14) Å, b = 9.0328 (14) Å, c = 13.363 (2) Å, $a = 104.129(2)^{\circ}$, $\beta = 99.655$ (2)^o, $\gamma = 103.737(2)^{\circ}$, V = 929.4 (3) Å³, T = 293(2) K, space group P-1, Z = 2, 9414 reflections collected, 3414 unique (R_{int} = 0.0233) which were used in all calculation. The ellipsoid contour probability level in the caption is 30%.

Crystallographic data for compound **4fa** reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. **CCDC-1841800**.

Figure S2. X-ray crystal structure of compound 5a.

Crystal data for **5a**: C₁₈H₁₀N₂O, Mr = 270.28, Triclinic, a = 7.4925 (4) Å, b = 9.5061 (5) Å, c = 10.1328 (6) Å, a = 76.219 (3)°, $\beta = 73.540$ (3)°, $\gamma = 83.242$ (3)°, V = 671.23 (6) Å³, T = 293(2) K, space group P-1, Z = 2, 12108 reflections collected, 3001 unique (R_{int} = 0.0349) which were used in all calculation. The ellipsoid contour probability level in the caption is 30%.

Crystallographic data for compound **5a** reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. **CCDC-1841801**.

¹H NMR and ¹³C NMR Spectra of Compound 4aa

¹H NMR and ¹³C NMR Spectra of Compound 4ca

¹H NMR and ¹³C NMR Spectra of Compound 4da

¹H NMR and ¹³C NMR Spectra of Compound 4fa

-2.517

¹H NMR and ¹³C NMR Spectra of Compound 4ga

¹H NMR and ¹³C NMR Spectra of Compound 4ia

¹H NMR and ¹³C NMR Spectra of Compound 4ka

¹H NMR and ¹³C NMR Spectra of Compound 4ab

9,230
 9,230
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204
 9,204

¹H NMR and ¹³C NMR Spectra of Compound 4cb

¹H NMR and ¹³C NMR Spectra of Compound 4db

¹H NMR and ¹³C NMR Spectra of Compound 4eb

¹H NMR and ¹³C NMR Spectra of Compound 4fb

¹H NMR and ¹³C NMR Spectra of Compound 4kb

¹H NMR and ¹³C NMR Spectra of Compound 4lb

¹H NMR and ¹³C NMR Spectra of Compound 4nb

¹H NMR and ¹³C NMR Spectra of Compound 4pb

¹H NMR and ¹³C NMR Spectra of Compound 4rb

-8.581 -8.302 -7.894 -7.884 -7.3375 -7.3375 -7.3354 -7.328 -7.328 -7.328 -7.328 -7.328

¹H NMR and ¹³C NMR Spectra of Compound 4sb

¹H NMR and ¹³C NMR Spectra of Compound 4tb

¹H NMR and ¹³C NMR Spectra of Compound 4ac

S35

¹H NMR and ¹³C NMR Spectra of Compound 4ae

¹H NMR and ¹³C NMR Spectra of Compound 5g

¹H NMR and ¹³C NMR Spectra of Compound 5x

