Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Metal- and base-free synthesis of functionalized α , α -difluoroimines via electrophilic fluorination of *N*-substituted enamines

Fangyi Li, ^a Changfu Qiu, ^a Guangwei Yin, ^a Chunhua Wang^{a,*} and Zheng Li^{a,*}

^aCollege of Pharmaceutical Engineering of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China *E-mail: pharmwch@126.com, lizheng@tjutcm.edu.cn*

List of Contents

1. General Information	S2
2. Experimental Procedure	S3
3. Late-stage Modification	S17
4. NMR Spectra	S21
5. Determination of the configuration of the imine C=N bond	S69
6. HRMS spectrum of the reaction solution of Scheme 4b	S74

1. General Information

Unless otherwise stated, all commercial reagents were used as received. Reactions were conducted in dry glassware using anhydrous solvents (pass through activated alumina columns). Reaction temperatures were controlled using IKAmag temperature modulator, and unless stated otherwise, reactions were performed at room temperature (rt, approximately, 24 °C). Thin-layer chromatography (TLC) was conducted on plates (GF254) supplied by Yantai Chemicals (China) and visualized using a combination of UV, anisaldehyde, iodine, and potassium permanganate staining. Silica gel (200-300 mesh) supplied by Tsingdao Haiyang Chemicals (China) was used for flash column chromatography. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on Bruker spectrometers (400 MHz, 500 MHz). Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: proton (chloroform δ 7.26), carbon (chloroform δ 77.16) or tetramethylsilane (TMS δ 0.00) was used as a reference. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), bs (broad singlet). Coupling constants were reported in Hertz (Hz). All high resolution mass spectra were obtained from the Tianjin University Mass Spectrometry Facility.

2. Experimental procedure

(A) Materials

Substrates (Enamines) were prepared according to the known procedures.^[1]

(B) Experimental procedure for functionalized a-fluoroinime synthesis

The stirred solution of enamine **1** (0.5 mmol) in CH₃CN (5 mL) was cooled to 0 °C, and Selectfluor (443 mg, 1.25 mmol) was added in portions. The resulting mixture was stirred at 0 °C till **1** was completely consumed (1h, monitored by TLC). After that, the reaction mixture was diluted with Et₂O and filtered through a pad of Celite. The combined organic mixture was concentrated in vacuo and purified by silica gel column chromatography (Hexane/EtOAc) to afford the desired product **2**.

Ethyl (*E*)-2,2-difluoro-3-((4-methoxyphenyl)imino)-3-phenylpropanoate (2a): 158 mg, 95% yield; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.39 – 7.32 (m, 3H), 7.28 – 7.26 (m, 2H), 6.69 (s, 4H), 4.44 (q, *J* = 7 Hz, 2H), 3.73 (s, 3H), 1.40 (t, *J* = 7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 163.36 (t, *J* = 31 Hz), 159.81 (t, *J* = 30 Hz), 157.86, 140.02, 131.00, 130.04, 128.91, 128.72, 123.64, 114.01, 113.13 (t, *J* = 253 Hz), 63.07, 55.45, 14.19; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): – 105.11; HRMS (ESI) exact mass calculated for [M+H]⁺ (C₁₈H₁₈F₂NO₃) requires *m/z* 334.1255, found *m/z* 334.1260

Ethyl (*E*)-2,2-difluoro-3-(4-methoxyphenyl)-3-((4-methoxyphenyl)imino)propanoate (2b): 162 mg, 89% yield; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.23 (d, *J* = 9 Hz, 2H), 6.82 (d, *J* = 9 Hz, 2H), 6.71 (s, 4H), 4.43 (q, *J* = 7 Hz, 2H), 3.79 (s, 3H), 3.73 (s, 3H), 1.39 (t, *J* = 7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 163.45 (t, *J* = 31 Hz), 160.82, 159.45 (t, *J* = 30 Hz), 157.60, 140.42, 130.69, 123.28, 122.73, 114.11, 114.07, 113.35 (t, *J* = 253 Hz), 62.97, 55.41, 55.32, 14.14; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): – 104.80; HRMS (ESI) exact mass calculated for [M+H]⁺ (C₁₉H₂₀F₂NO₄) requires *m/z* 364.1360, found *m/z* 364.1364

Ethyl (*E*)-2,2-difluoro-3-((4-methoxyphenyl)imino)-3-(p-tolyl)propanoate (2c): 153 mg, 88% yield; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.17 (d, *J* = 8 Hz, 2H), 7.13 (d, *J* = 8 Hz, 2H), 6.70 (s, 4H), 4.43 (q, *J* = 7 Hz, 2H), 3.73 (s, 3H), 2.33 (s, 3H), 1.40 (t, *J* = 7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 163.45 (t, *J* = 31 Hz), 159.94 (t, *J* = 30 Hz), 157.72, 140.28, 140.26, 129.41, 128.87, 127.88, 123.48, 114.01, 113.23 (t, *J* = 253 Hz), 63.01, 55.44, 21.57, 14.18; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): – 105.05; HRMS (ESI) exact mass calculated for $[M+H]^+$ (C₁₉H₂₀F₂NO₃) requires *m/z* 348.1411, found *m/z* 348.11410

Ethyl (*E*)-2,2-difluoro-3-(4-fluorophenyl)-3-((4-methoxyphenyl)imino)propanoate (2d): 160 mg, 91% yield; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.32 – 7.29 (m, 2H), 7.07 – 7.02 (m, 2H), 6.75 – 6.69 (m, 4H), 4.47 (q, *J* = 7 Hz, 2H), 3.76 (s, 3H), 1.42 (t, *J* = 7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 163.39 (d, *J* = 250 Hz), 163.07 (t, *J* = 31 Hz), 158.67 (t, *J* = 30 Hz), 157.82, 139.72, 131.09 (d, *J* = 9 Hz), 126.71 (d, *J* = 4 Hz), 123.33, 115.93 (d, *J* = 22 Hz), 114.02, 112.95 (t, *J* = 253 Hz), 63.02, 55.34, 14.05; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): –104.99, –109.24; HRMS (ESI) exact mass calculated for [M+H]⁺ (C₁₈H₁₇F₃NO₃) requires *m/z* 352.1161, found *m/z* 352.1165;

Ethyl (*E*)-3-(4-chlorophenyl)-2,2-difluoro-3-((4-methoxyphenyl)imino)propanoate (2e): 178 mg, 97% yield; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.31 (d, *J* = 8.5 Hz, 2H), 7.22 (d, *J* = 8.5 Hz, 2H), 6.72 – 6.67 (m, 4H), 4.44 (q, *J* = 7 Hz, 2H), 3.72 (s, 3H), 1.39 (t, *J* = 7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 163.04 (t, *J* = 31 Hz), 158.57 (t, *J* = 30 Hz), 158.00, 139.65, 136.30, 130.36, 129.21, 129.09, 123.44, 114.12, 112.96 (t, *J* = 253 Hz), 63.12, 55.39, 14.11; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): – 104.95; HRMS (ESI) exact mass calculated for [M+H]⁺ (C₁₈H₁₇ClF₂NO₃) requires *m*/*z* 368.0865, found *m*/*z* 368.0870

Ethyl (*E*)-3-(4-bromophenyl)-2,2-difluoro-3-((4-methoxyphenyl)imino)propanoate (2f): 196 mg, 95% yield; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.47 (d, J = 8.5 Hz, 2H), 7.22 (d, J = 8.5Hz, 2H), 6.73 – 6.67 (m, 4H), 4.44 (q, J = 7 Hz, 2H), 3.74 (s, 3H), 1.40 (t, J = 7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 163.09 (t, J = 31 Hz), 158.63 (t, J = 30 Hz), 158.05, 139.67, 132.09, 130.57, 129.72, 124.72, 123.50, 114.18, 112.95 (t, J = 253 Hz), 63.18, 55.47, 14.17; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): – 104.95; HRMS (ESI) exact mass calculated for [M+H]⁺ (C₁₈H₁₇BrF₂NO₃) requires *m/z* 412.0360, found *m/z* 412.0363

Ethyl (*E*)-3-(3-bromophenyl)-2,2-difluoro-3-((4-methoxyphenyl)imino)propanoate (2g): 190 mg, 92% yield; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.51 (dt, *J* = 7.5 Hz, 1.5 Hz, 1H), 7.47 (s, 1H), 7.21 – 7.16 (m, 2H), 6.70 (d, *J* = 2.5 Hz, 4H), 4.44 (q, *J* = 7 Hz, 2H), 3.72 (s, 3H), 1.40 (t, *J* = 7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 162.96 (t, *J* = 31 Hz), 158.17, 157.83 (t, *J* = 30 Hz), 139.35, 133.17, 132.90, 131.54, 130.29, 127.58, 123.68, 122.80, 114.12, 112.84 (t, *J* = 253 Hz), 63.15, 55.42, 14.12; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): – 104.98; HRMS (ESI) exact mass calculated for [M+H]⁺ (C₁₈H₁₇BrF₂NO₃) requires *m/z* 412.0360, found *m/z* 412.0362

Ethyl (*E*)-3-(2-bromophenyl)-2,2-difluoro-3-((4-methoxyphenyl)imino)propanoate (2h): 177 mg, 86% yield; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.56 (d, *J* = 8 Hz, 1H), 7.41 – 7.36 (m, 2H), 7.31 – 7.27 (m, 1H), 6.81 (d, *J* = 9 Hz, 2H), 6.71 (d, *J* = 9 Hz, 2H), 4.54 – 4.43 (m, 2H), 3.74 (s, 2H), 1.44 (t, *J* = 7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 163.09 (t, *J* = 31 Hz), 158.49, 157.49 (dd, *J* = 33 Hz, 29 Hz), 139.40, 133.33, 133.28, 131.27, 130.72, 127.47, 124.07, 121.61, 113.86, 112.44 (dd, *J* = 255 Hz, 251 Hz), 63.15, 55.40, 14.21; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): – 104.37 (d, *J* = 277 Hz), – 106.78, (d, *J* = 277 Hz) ; HRMS (ESI) exact mass calculated for [M+H]⁺ (C₁₈H₁₇BrF₂NO₃) requires *m/z* 412.0360, found *m/z* 412.0364

Ethyl (*E*)-2,2-difluoro-3-(4-iodophenyl)-3-((4-methoxyphenyl)imino)propanoate (4i): 220 mg, 96% yield; Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.68 (d, *J* = 8 Hz, 2H), 7.01 (d, *J* = 8 Hz, 2H), 6.73 – 6.67 (m, 4H), 4.44 (q, *J* = 7 Hz, 2H), 3.73 (s, 3H), 1.39 (t, *J* = 7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 163.04 (t, *J* = 31 Hz), 158.67 (t, *J* = 30 Hz), 158.01, 139.61, 137.96, 130.49, 130.25, 123.48, 114.14, 112.89 (t, *J* = 253 Hz), 96.77, 63.14, 55.42, 14.14; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): – 104.93; HRMS (ESI) exact mass calculated for [M+H]⁺ (C₁₈H₁₇F₂INO₃) requires *m*/*z* 460.0221, found *m*/*z* 460.0225

Ethyl (*E*)-2,2-difluoro-3-((4-methoxyphenyl)imino)-3-(4-(trifluoromethyl)phenyl)propanoate (2j): 199 mg, 99% yield; Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.61 (d, *J* = 8 Hz, 2H), 7.41 (d, *J* = 8 Hz, 2H), 6.89 (q, *J* = 9 Hz, 4H), 4.46 (q, *J* = 7 Hz, 2H), 3.74 (s, 3H), 1.41 (t, *J* = 7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 162.83 (t, *J* = 31 Hz), 158.12, 158.11 (t, *J* = 31 Hz), 139.22, 134.51, 131.85 (q, *J* = 33 Hz), 129.35, 125.65 (q, *J* = 4 Hz), 123.59 (q, *J* = 271 Hz), 123.50, 114.09, 112.77 (t, *J* = 253 Hz), 63.16, 55.35, 14.05; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): - 63.07, - 104.94; HRMS (ESI) exact mass calculated for [M+H]⁺ (C₁₉H₁₇F₅NO₃) requires *m*/*z* 402.1129, found *m*/*z* 402.1131

Ethyl (*E*)-3-(3-chloro-4-fluorophenyl)-2,2-difluoro-3-((4-methoxyphenyl)imino)propanoate (2k): 189 mg, 98% yield; Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.40 – 7.38 (m, 1H), 7.15 – 7.07 (m, 2H), 6.74 – 6.67 (m, 4H), 4.44 (q, *J* = 7 Hz, 2H), 3.75 (s, 3H), 1.40 (t, *J* = 7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 162.91 (t, *J* = 31 Hz), 158.96 (d, *J* = 252 Hz), 158.23, 157.17 (t, *J* = 30 Hz), 139.31, 131.37, 129.34 (d, *J* = 8 Hz), 127.86 (d, *J* = 4 Hz), 123.52, 121.98 (d, *J* = 18 Hz), 117.22 (d, *J* = 21 Hz), 114.26, 112.87 (t, *J* = 253 Hz), 63.25, 55.48, 14.16; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): – 104.90, – 111.49; HRMS (ESI) exact mass calculated for [M+H]⁺ (C₁₈H₁₆ClF₃NO₃) requires *m/z* 386.0771, found *m/z* 386.0773

Ethyl (*E*)-3-(benzo[d][1,3]dioxol-5-yl)-2,2-difluoro-3-((4-methoxyphenyl)imino)propanoate (21): 158 mg, 84% yield; Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 6.80 – 6.72 (m, 7H), 5.96 (s, 2H), 4.43 (q, *J* = 7 Hz, 2H), 3.74 (s, 3H), 1.39 (t, *J* = 7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 163.36 (t, *J* = 31 Hz), 158.99 (t, *J* = 30 Hz), 157.80, 149.08, 147.90, 140.09, 124.10, 123.69, 123.41, 114.11, 113.19 (t, *J* = 253 Hz), 109.21, 108.73, 101.59, 63.04, 55.45, 14.17; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): – 104.83; HRMS (ESI) exact mass calculated for [M+H]⁺ (C₁₉H₁₈F₂NO₅) requires *m/z* 378.1153, found *m/z* 378.1157

Ethyl (*Z*)-2,2-difluoro-3-((4-methoxyphenyl)imino)-3-(thiophen-2-yl)propanoate (2m): 132 mg, 78% yield; Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.57 – 7.56 (m, 1H), 7.42 (dd, *J* = 8 Hz, 1 Hz, 1H), 7.01 (dd, *J* = 5 Hz, 4 Hz, 1H), 6.88 (d, *J* = 9 Hz, 2H), 6.73 (d, *J* = 9 Hz, 2H), 4.41 (q, *J* = 7 Hz, 2H), 3.81 (s, 3H), 1.36 (t, *J* = 7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 163.01 (t, *J* = 31 Hz), 157.76, 153.44 (t, *J* = 30 Hz), 141.47, 133.12 (t, *J* = 4 Hz), 131.71, 129.47 (t, *J* = 3 Hz), 126.77, 120.71, 114.89, 113.74 (t, *J* = 256 Hz), 63.12, 55.58, 14.13; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): – 103.98; HRMS (ESI) exact mass calculated for [M+H]⁺ (C₁₆H₁₆F₂NO₃S) requires *m*/z 340.0819, found *m*/z 340.0821

Methyl (*E*)-2,2-difluoro-3-((4-methoxyphenyl)imino)-3-phenylpropanoate (2n): 150 mg, 94% yield; Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.42 – 7.29 (m, 5H), 6.72 (s, 4H), 3.99 (s, 3H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 163.88 (t, J = 31 Hz), 159.73 (t, J = 30 Hz), 157.88, 139.87, 130.86, 130.08, 128.87, 128.73, 123.70, 113.98, 113.43 (t, J = 253 Hz), 55.42, 53.55; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): –105.14; HRMS (ESI) exact mass calculated for [M+H]⁺ (C₁₇H₁₆F₂NO₃) requires *m*/*z* 320.1098, found *m*/*z* 320.1093

Isopropyl (*E***)-2,2-difluoro-3-((4-methoxyphenyl)imino)-3-phenylpropanoate (20):** 160 mg, 92% yield; Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.41 – 7.28 (m, 5H), 6.71 (s, 4H), 5.34 – 5.28 (m, 1H), 3.75 (s, 3H), 1.41 (s, 3H), 1.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 162.88 (t, J = 31 Hz), 159.83 (t, J = 30 Hz), 157.81, 140.06, 131.04, 130.01, 128.91, 128.70, 123.59, 114.00, 112.88 (t, J = 253 Hz), 71.32, 55.44, 21.70; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): -104.96; HRMS (ESI) exact mass calculated for [M+H]⁺ (C₁₉H₂₀F₂NO₃) requires *m/z* 348.1411, found *m/z* 348.1414

Benzyl (*E*)-2,2-difluoro-3-((4-methoxyphenyl)imino)-3-phenylpropanoate (2p): 178 mg, 90% yield; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.49 – 7.48 (m, 2H), 7.43 – 7.38 (m, 4H), 7.35 (t, J =8 Hz, 2H), 7.29 (d, J = 8 Hz, 2H), 6.71 (d, J = 9 Hz, 2H), 6.64 (d, J = 9 Hz, 2H), 5.45 (s, 2H), 3.75 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 163.27 (t, J = 32 Hz), 159.58 (t, J = 30 Hz), 157.86, 139.80, 134.76, 130.84, 130.04, 128.84, 128.74, 128.73, 128.70, 128.67, 123.68, 113.92, 113.28 (t, J = 254 Hz), 68.38, 55.38; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): – 104.67; HRMS (ESI) exact mass calculated for [M+H]⁺ (C₂₃H₂₀F₂NO₃) requires *m/z* 396.1411, found *m/z* 396.1408

(*E*)-2,2-Difluoro-3-((4-methoxyphenyl)imino)-1,3-diphenylpropan-1-one (2q): 175 mg, 96% yield; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 8.07 (d, *J* = 8 Hz, 2H), 7.62 (t, *J* = 8 Hz, 1H), 7.50 (t, *J* = 8 Hz, 2H), 7.43 – 7.34 (m, 5H), 6.64 (d, *J* = 9 Hz, 2H), 6.54 (d, *J* = 9 Hz, 2H), 3.70 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 188.48 (t, *J* = 27 Hz), 161.30 (t, *J* = 29 Hz), 157.89, 139.91, 133.85, 133.24, 131.05, 130.24, 130.13, 128.95, 128.87, 128.63, 123.38, 114.74 (t, *J* = 254 Hz), 113.99, 55.42; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): – 100.73; HRMS (ESI) exact mass calculated for [M+H]⁺ (C₂₂H₁₈F₂NO₃) requires *m/z* 366.1306, found *m/z* 366.1310

(*E*)-2,2-Difluoro-3-((4-methoxyphenyl)imino)-3-phenylpropanenitrile (2r): 142 mg, 99% yield; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.47 (t, *J* = 8 Hz, 1H), 7.41 (t, *J* = 8 Hz, 2H), 7.28 (d, *J* = 7 Hz, 2H), 6.86 (d, *J* = 9 Hz, 2H), 6.76 (d, *J* = 9 Hz, 2H), 3.78 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 158.77, 156.06 (t, *J* = 30 Hz), 138.88, 130.74, 129.53, 129.17, 128.74, 124.62, 114.17, 111.52 (t, *J* = 44 Hz), 110.32 (t, *J* = 246 Hz), 55.48; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): - 87.19; HRMS (ESI) exact mass calculated for [M+H]⁺ (C₁₆H₁₃F₂N₂O) requires *m/z* 287.0996, found *m/z* 287.0996

Ethyl (*E*)-2,2-difluoro-3-((3-methoxyphenyl)imino)-3-phenylpropanoate (2s): 157 mg, 94% yield; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.37 – 7.27 (m, 5H), 7.05 (t, *J* = 9 Hz, 1H), 6.58 – 6.56 (m, 1H), 6.28 – 6.27 (m, 2H), 4.44 (q, *J* = 7 Hz, 2H), 3.79 (s, 3H), 3.65 (s, 3H), 1.39 (t, *J* = 7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 163.11 (t, *J* = 31 Hz), 161.62 (t, *J* = 30 Hz), 160.02, 148.62, 130.39, 130.20, 129.64, 128.92, 128.51, 113.18, 112.78 (t, *J* = 254 Hz), 111.20, 106.51, 63.20, 55.32, 14.16; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): – 105.30; HRMS (ESI) exact mass calculated for [M+H]⁺ (C₁₈H₁₈F₂NO₃) requires *m/z* 334.1255, found *m/z* 334.1250

Ethyl (*E*)-2,2-difluoro-3-((2-methoxyphenyl)imino)-3-phenylpropanoate (2t): 155 mg, 93% yield; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.35 – 7.26 (m, 5H), 7.01 (td, *J* = 8 Hz, 2 Hz, 1H), 6.79 (td, *J* = 8 Hz, 1 Hz, 1H), 6.76 (d, *J* = 8 Hz, 1H), 6.65 (dd, *J* = 8 Hz, 2 Hz, 1H), 4.46 (q, *J* = 7 Hz, 2H), 3.63 (s, 3H), 1.42 (t, *J* = 7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 163.14 (t, *J* = 31 Hz), 162.80 (t, *J* = 30 Hz), 148.87, 137.27, 131.22, 130.03, 128.20, 128.14, 126.02, 120.93, 120.64, 112.68 (t, *J* = 254 Hz), 111.79, 63.11, 55.44, 14.09; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): – 104.89; HRMS (ESI) exact mass calculated for [M+H]⁺ (C₁₈H₁₈F₂NO₃) requires *m*/z 334.1255, found *m*/z 334.1258

Ethyl (*E*)-2,2-difluoro-3-phenyl-3-(phenylimino)propanoate (2u): 141 mg, 93% yield; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.36 – 7.25 (m, 5H), 7.17 (t, *J* = 8 Hz, 2H), 7.02 (t, *J* = 7.5 Hz, 1H), 6.71 (d, *J* = 7.5 Hz, 2H), 4.45 (q, *J* = 7 Hz, 2H), 1.40 (t, *J* = 7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 163.14 (t, *J* = 31 Hz), 161.51 (t, *J* = 30 Hz), 147.39, 130.36, 130.15, 129.01, 128.80, 128.50, 125.33, 120.86, 112.82 (t, *J* = 254 Hz), 63.17, 14.16; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): -105.28; HRMS (ESI) exact mass calculated for $[M+H]^+$ (C₁₇H₁₆F₂NO₂) requires *m/z* 304.1149, found *m/z* 304.1150

Ethyl (*E*)-2,2-difluoro-3-((4-fluorophenyl)imino)-3-phenylpropanoate (2v): 133 mg, 83% yield; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.39 – 7.36 (m, 1H), 7.33 – 7.30 (m, 2H), 7.25 – 7.24 (m, 2H), 6.88 – 6.84 (m, 2H), 6.70 – 6.67 (m, 2H), 4.44 (q, *J* = 7 Hz, 2H), 1.40 (t, *J* = 7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 163.09 (t, *J* = 31 Hz), 161.88 (t, *J* = 31 Hz), 160.57 (d, *J* = 244 Hz), 143.26 (d, *J* = 3 Hz), 130.32, 128.92, 128.70, 122.95 (d, *J* = 8 Hz), 115.70 (d, *J* = 23 Hz), 112.76 (t, *J* = 254 Hz), 63.21, 14.17; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): – 105.31, – 117.18; HRMS (ESI) exact mass calculated for [M+H]⁺ (C₁₇H₁₅F₃NO₂) requires *m/z* 322.1055, found *m/z* 322.1059

Ethyl (*E*)-3-((4-chlorophenyl)imino)-2,2-difluoro-3-phenylpropanoate (2w): 145 mg, 86% yield; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.39 – 7.36 (m, 1H), 7.33 – 7.30 (m, 2H), 7.25 – 7.23 (m, 2H), 7.14 (d, J = 9 Hz, 2H), 6.65 (d, J = 9 Hz, 2H), 4.44 (q, J = 7 Hz, 2H), 1.39 (t, J = 7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 163.00 (t, J = 31 Hz), 162.30 (t, J = 30 Hz), 145.83, 130.99, 130.44, 130.05, 129.02, 128.93, 128.71, 122.41, 112.63 (t, J = 254 Hz), 63.27, 14.17; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): – 105.31; HRMS (ESI) exact mass calculated for [M+H]⁺ (C₁₇H₁₅ClF₂NO₂) requires *m/z* 338.0759, found *m/z* 338.0763

Ethyl (*E*)-2,2-difluoro-3-phenyl-3-((4-(trifluoromethyl)phenyl)imino)propanoate (2x). 167 mg, 90% yield; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.47 (d, *J* = 8 Hz, 2H), 7.40 – 7.38 (m, 1H), 7.34 – 7.32 (m, 2H), 7.28 – 7.26 (m, 2H), 6.82 (d, *J* = 8 Hz, 2H), 4.47 (q, *J* = 7 Hz, 2H), 1.41 (t, *J* = 7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 163.12 (t, *J* = 30 Hz), 162.82 (t, *J* = 31 Hz), 150.55, 130.64, 129.66, 128.90, 128.69, 127.21 (q, *J* = 33 Hz), 126.16 (q, *J* = 4 Hz), 124.14 (q, *J* = 270 Hz), 120.61, 112.40 (t, *J* = 254 Hz), 63.36, 14.11; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): – 62.25, – 105.37; HRMS (ESI) exact mass calculated for [M+H]⁺ (C₁₈H₁₅F₅NO2) requires *m*/z 372.1023, found *m*/z 372.1024

Ethyl (*E*)-2,2-difluoro-3-((4-nitrobenzyl)imino)-3-phenylpropanoate (2y): 125 mg, 69% yield; White solid; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 8.17 (d, J = 9 Hz, 2H), 7.53 – 7.47 (m, 3H), 7.39 (d, J = 9 Hz, 2H), 7.31 – 7.29 (m, 2H), 4.65 (s, 2H), 4.41 (q, J = 7 Hz, 2H), 1.35 (t, J = 7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 164.91 (t, J = 30 Hz), 163.17 (t, J = 31 Hz), 147.18, 146.03, 130.54, 129.95, 129.06, 128.03, 127.79, 123.77, 112.58 (t, J = 253 Hz), 63.18, 55.69, 14.13; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): – 105.92; HRMS (ESI) exact mass calculated for [M+H]⁺ (C₁₈H₁₇F₂N₂O₄)

requires *m/z* 363.1156, found *m/z* 363.1159

Ethyl (*E*)-3-(cyclopropylimino)-2,2-difluoro-3-phenylpropanoate (2z): 122 mg, 91% yield; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.48 – 7.44 (m, 3H), 7.41 – 7.39 (m, 2H), 4.35 (q, *J* = 7 Hz, 2H), 2.92 – 2.88 (m, 1H), 1.33 (t, *J* = 7 Hz, 3H), 0.97 – 0.86 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 163.40 (t, *J* = 31 Hz), 159.65 (t, *J* = 30 Hz), 130.85, 129.81, 128.70, 128.50, 113.15 (t, *J* = 251 Hz), 62.68, 35.07, 14.02, 10.65; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): – 105.63; HRMS (ESI) exact mass calculated for [M+H]⁺ (C₁₄H₁₆F₂NO₂) requires *m/z* 268.1149, found *m/z* 268.1150

Ethyl (*E*)-2-fluoro-3-phenyl-3-(phenylamino)acrylate (8): 109 mg, 44% yield; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 9.13 (brs, 1H), 7.45 – 7.43 (m, 2H), 7.36 – 7.32 (m, 3H), 7.05 (t, *J* = 8 Hz, 2H), 6.87 (t, *J* = 8 Hz, 1H), 6.62 (d, *J* = 8 Hz, 2H), 4.37 (q, *J* = 7 Hz, 2H), 1.40 (t, *J* = 7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 164.85 (d, *J* = 26 Hz), 143.56 (d, *J* = 24 Hz), 140.82, 132.34 (d, *J* = 230 Hz), 130.84, 129.79, 129.75, 128.84, 128.56, 122.59, 121.45, 60.93, 14.54; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): – 170.71; HRMS (ESI) exact mass calculated for [M+H]⁺ (C₁₄H₁₆F₂NO₂) requires *m*/*z* 286.1243, found *m*/*z* 286.1234

3. Late-stage Modification

a) Synthesis of compound 3^[2]

To a solution of **1a** (168 mg, 0.5 mmol) in THF (2 mL) was added 1 N HCl (2 mL) at 0 °C, and the resulting mixture was stirred at room temperature for 1h. Then the reaction mixture was extracted with Et₂O (3*5 mL), and the combined organic layer was washed with brine, dried with Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography (1:10, EA : Hexane) to afford **3** as colorless oil (95 mg, 83%). ¹H NMR (500 MHz, CDCl₃) δ (ppm): 8.07 (d, *J* = 7.5 Hz, 2H), 7.67 (t, *J* = 7.5 Hz, 1H), 7.51 (t, *J* = 7.5 Hz, 2H), 6.71 (s, 4H), 4.38 (q, *J* = 7 Hz, 2H), 1.31 (t, *J* = 7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 185.58 (t, *J* = 27 Hz), 161.92 (t, *J* = 30 Hz), 135.20, 131.20, 130.02 (t, *J* = 2.6 Hz), 129.08, 109.91 (t, *J* = 253 Hz), 63.86, 13.91; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): - 107.64

To a solution of **1a** (168 mg, 0.5 mmol) in EtOH (5 mL) was added NaBH₃CN (130 mg, 2 mmol) and AcOH (120 mg, 2 mmol), the resulting mixture was stirred at room temperature overnight. After the reaction was finished, sat. NaHCO₃ was added and the aqueous was extracted with EA (3*5 mL). The combined organic layer was washed with brine, dried with Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography (1: 20, EA : Hexane) to afford **4** as white solid (151 mg, 90%). White solid; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.42 – 7.32 (m, 5H), 6.73 – 6.70 (m, 2H), 6.62 – 6.60 (m, 2H), 5.03 (dd, *J* = 19.5 Hz, 7.5 Hz, 1H), 4.29 (q, *J* = 7 Hz, 2H), 4.17 (brs, 1H), 3.70 (s, 3H), 1.26 (t, *J* = 7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 163.75 (t, *J* = 31 Hz), S17

153.36, 139.43, 134.20, 128.89, 128.75, 128.47, 158.05, 139.67, 132.09, 130.57, 129.72, 124.72, 123.50, 114.18, 112.95 (t, J = 253 Hz), 63.18, 55.47, 14.17; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): – 108.84 (d, J = 257 Hz), – 119.81 (d, J = 257 Hz); HRMS (ESI) exact mass calculated for [M+Na]⁺ (C₁₅H₁₉FO₂Na) requires *m*/*z* 358.1231, found *m*/*z* 358.1233

c) Synthesis of compound 5^[4]

To a solution of **1a** (168 mg, 0.5 mmol) in MeOH/THF (v/v = 1/1, 4 mL) was added NaBH₄ (76 mg, 2 mmol) slowly at 0 °C, the reaction mixture was stirred at 0 °C for 1 h. TLC indicated the reaction was completion, sat. NH₄Cl was added to quench the reaction. The resulting mixture was extracted with EA (3*5 mL), the combined organic layers were washed with brine, dried with MgSO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography (1:2, EA : Hexane) to afford **5** as yellow solid (141 mg, 96%). ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.43 – 7.31 (m, 5H), 6.71 (d, J = 9 Hz, 2H), 6.60 (d, J = 9 Hz, 2H), 4.88 – 4.83 (m, 1H), 4.30 (brs, 1H), 3.99 – 3.91 (m, 1H), 3.83 – 3.76 (m, 1H), 3.70 (s, 3H), 2.54 (brs, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 153.17, 140.00, 135.98, 128.76, 128.54, 128.38, 121.57 (t, J = 247 Hz), 116.00, 114.98, 63.01 (t, J = 31 Hz), 60.94 (dd, J = 26 Hz, 3 Hz), 55.80; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): – 113.97 (d, J = 256 Hz), – 117.86 (d, J = 256 Hz); HRMS (ESI) exact mass calculated for [M+H]⁺ (C₁₆H₁₈F₂NO₂) requires *m*/z 294.1306, found *m*/z 294.1308

d) Synthesis of compound 6

To a Sclenk tube was added **1f** (85 mg, 0.2 mmol), CuI (2 mg), Pd(PPh₃)₂Cl₂ (14 mg), Et₃N(1 mL) and THF (1 mL). Then the tube was charged with N₂, and was stirred at room temperature for 15 h until complete consumption of starting material as monitored by TLC. After the reaction was finished, the mixture was filtered through a pad of Celite, washed with EA. The combined organic mixture was concentrated in vacuo and purified by silica gel column chromatography (1:20, EA:Hexane) to afford compound **6** as yellow oil (73 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.56 – 7.50 (m, 4H), 7.39 – 7.37 (m, 3H), 7.31 – 7.28 (m, 2H), 6.73 (s, 4H), 4.47 (q, *J* = 7 Hz, 2H), 3.76 (s, 3H), 1.43 (t, *J* = 7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 163.23 (t, *J* = 31 Hz), 159.07 (t, *J* = 30 Hz), 158.01, 139.85, 131.85, 131.82, 130.55, 129.04, 128.80, 128.55, 125.24, 123.61, 122.89, 114.13, 113.08 (t, *J* = 253 Hz), 91.54, 88.64, 63.16, 55.47, 14.20; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): – 104.86; HRMS (ESI) exact mass calculated for [M+H]⁺ (C₂₆H₂₂F₂NO₃) requires *m/z* 434.1568, found *m/z* 434.1571

Under N₂ atmosphere, to a solution of **1f** (103 mg, 0.25 mmol) and Pd(PPh₃)₄ (15 mg, 0.0125 mmol) in dry toluene (5 mL) was added K₂CO₃ (69 mg, 0.5 mmol), Ph(OH)₂ (61 mg, 0.5 mmol). The vigorously stirred mixture was heated to 90 °C for 1 h (monitored by TLC). After cooling, the mixture was filtered through a pad of Celite, the filter cake was washed with EA. The organic mixture was concentrated in vacuo and the residue was purified by column chromatography (1:20, EA : Hexane) to afford **7** as

yellow oil (81 mg, 79%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.59 – 7.56 (m, 4H), 7.44 (t, *J* = 8 Hz,

2H), 7.37 (d, J = 8 Hz, 3H), 6.78 - 6.71 (m, 4H), 4.47 (q, J = 7 Hz, 2H), 3.74 (s, 3H), 1.42 (t, J = 7 Hz,

3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 163.37 (t, J = 31 Hz), 159.48 (d, J = 30 Hz), 157.86,

142.73, 140.09, 139.98, 129.60, 129.46, 129.01, 128.06, 127.29, 127.19, 123.57, 114.08, 113.24 (t, J =

253 Hz), 63.09, 55.43 14.19; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): -104.90; HRMS (ESI) exact mass

calculated for $[M+H]^+$ (C₂₄H₂₂F₂NO₃) requires *m*/*z* 410.1568, found *m*/*z* 410.1571;

Reference:

[1] (a) C. A. Brandt, A. C. Silva, C. G. Pancote, C. L. Brito and M. Solveira, *Synthesis*, 2004, 10, 1557. (b) W. Xie, J. Fang, J. Li and P. G. Wang, *Tetrahedron*, 1999, 55, 12929. (c) W. Yu, Y. Du and K. Zhao, *Org. Lett.*, 2009, 11, 2417. (d) A. V. Malkov, S. Stoncius, K. Vrankova, M. Arndt, *Chem, Eur. J.*, 2008, 14, 8082.

[2] (a) W. Peng and J. M. Shreeve, *J. Org. Chem.*, 2005, **70**, 5760. (b) J. Xie, T. Zhang, F. Chen, N. Mehrkens, F. Rominger, M. Rudolph, A. S. K. Hashmi, *Angew. Chem. Int. Ed.*, 2016, **55**, 2934.

[3] (a) M. Z. Szewczyk, M. Rapp, D. Virieux, J.-L. Pirat and H. Koroniak. New J. Chem., 2017, 41, 6322. (b) M. Ke and Q. Song, J. Org. Chem., 2016, 81, 3654.

[4] A. Honraedt, A. Van Der Lee, J.-M. Campagne and E. Leclerc, *Adv. Synth. Catal.*, 2017, **359**, 2815.
[5] F. Li, Z. Wu and J. Wang, *Angew. Chem. Int. Ed.*, 2015, 54, 656.

4. NMR Spectra

Ethyl (E)-2,2-difluoro-3-((4-methoxyphenyl)imino)-3-phenylpropanoate (2a)

Ethyl (E)-2,2-difluoro-3-(4-methoxyphenyl)-3-((4-methoxyphenyl)imino)propanoate (2b)

Ethyl (E)-2,2-difluoro-3-((4-methoxyphenyl)imino)-3-(p-tolyl)propanoate (2c)

Ethyl (E)-2,2-difluoro-3-(4-fluorophenyl)-3-((4-methoxyphenyl)imino)propanoate (2d)

Ethyl (E)-3-(4-chlorophenyl)-2,2-difluoro-3-((4-methoxyphenyl)imino)propanoate (2e)

Ethyl (E)-3-(4-bromophenyl)-2,2-difluoro-3-((4-methoxyphenyl)imino)propanoate (2f)

Ethyl (E)-3-(3-bromophenyl)-2,2-difluoro-3-((4-methoxyphenyl)imino)propanoate (2g)

Ethyl (E)-3-(2-bromophenyl)-2,2-difluoro-3-((4-methoxyphenyl)imino)propanoate (2h)

Ethyl (E)-2,2-difluoro-3-(4-iodophenyl)-3-((4-methoxyphenyl)imino)propanoate (2i)

Ethyl (E)-2,2-difluoro-3-((4-methoxyphenyl)imino)-3-(4-(trifluoromethyl)phenyl)propanoate (2j)

Ethyl (E)-3-(3-chloro-4-fluorophenyl)-2,2-difluoro-3-((4-methoxyphenyl)imino)propanoate (2k)

Ethyl (E)-3-(benzo[d][1,3]dioxol-5-yl)-2,2-difluoro-3-((4-methoxyphenyl)imino)propanoate (2l)

Ethyl (Z)-2,2-difluoro-3-((4-methoxyphenyl)imino)-3-(thiophen-2-yl)propanoate (2m)

Methyl (E)-2,2-difluoro-3-((4-methoxyphenyl)imino)-3-phenylpropanoate (2n)

Isopropyl (*E*)-2,2-difluoro-3-((4-methoxyphenyl)imino)-3-phenylpropanoate (20)

Benzyl (E)-2,2-difluoro-3-((4-methoxyphenyl)imino)-3-phenylpropanoate (2p)

(E)-2,2-difluoro-3-((4-methoxyphenyl)imino)-1,3-diphenylpropan-1-one (2q)

 $(E) \hbox{-} 2, 2 \hbox{-} difluoro \hbox{-} 3 \hbox{-} ((4 \hbox{-} methoxyphenyl) \hbox{imino}) \hbox{-} 3 \hbox{-} phenyl propanenitrile} (2r)$

Ethyl (E)-2,2-difluoro-3-((3-methoxyphenyl)imino)-3-phenylpropanoate (2s)

Ethyl (E)-2,2-difluoro-3-((2-methoxyphenyl)imino)-3-phenylpropanoate (2t)

Ethyl (E)-2,2-difluoro-3-phenyl-3-(phenylimino)propanoate (2u)

Ethyl (E)-2,2-difluoro-3-((4-fluorophenyl)imino)-3-phenylpropanoate (2v)

Ethyl (E)-3-((4-chlorophenyl)imino)-2,2-difluoro-3-phenylpropanoate (2w)

Ethyl (E)-2,2-difluoro-3-phenyl-3-((4-(trifluoromethyl)phenyl)imino)propanoate (2x)

Ethyl (E)-2,2-difluoro-3-((4-nitrobenzyl)imino)-3-phenylpropanoate (2y)

Ethyl (E)-3-(cyclopropylimino)-2,2-difluoro-3-phenylpropanoate (2z)

Ethyl 2,2-difluoro-3-oxo-3-phenylpropanoate (3)

Ethyl 2,2-difluoro-3-((4-methoxyphenyl)amino)-3-phenylpropanoate (4)

ppm (f1)

2,2-Difluoro-3-((4-methoxyphenyl)amino)-3-phenylpropan-1-ol (5)

Ethyl (E)-2,2-difluoro-3-((4-methoxyphenyl)imino)-3-(4-(phenylethynyl)phenyl)propanoate (6)

Ethyl (E)-3-([1,1'-biphenyl]-4-yl)-2,2-difluoro-3-((4-methoxyphenyl)imino)propanoate (7)

Ethyl (E)-2-fluoro-3-((4-methoxyphenyl)amino)-3-phenylacrylate (8)

5. Determination of the configuration of the imine C=N bond

NOESY experiment of 2a

NOESY experiment of compound 6

NOESY experiment of compound 7

6. HRMS spectrum of the reaction solution of Scheme 4b

V	ass	Spectri	Im Sma	artForm	ula	Rer	ort
v	1400	opcour			uiu	I VOP	

Analysis Info							Acq	uisition D	ate	8/30/2018	8 3:23:42	PM
Analysis Name Method Sample Name Comment	D:\Data\YSY\DATA\20180830\ZHONGYIYAO-LI-27_P1-A-4_ 20180427_test_sm-20180628-pos.m ZHONGYIYAO-LI-27						01_ Ope Inst	9536.d erator l rument i	bruker microtof Q II		228888.10387	
Acquisition Para	ame	ter										
Source Type Focus Scan Begin Scan End	ESI Active 100 m/z 1700 m/z		Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF		Positive 4500 ∨ -500 ∨ 150.0 ∨pp		Set Ne Set Dr Set Dr Set Di		∍bulizer y Heater y Gas vert Valve		0.8 Bar 180 °C 4.0 I/min Source	
Intens								+MS	, 0.6m	in #33, Bao	ckground S	ubtracted
x10 ⁵] 1.5-		1+										
1.0-	30	084028										
-		304.1126										
0.5-	2	290.1133										
0.0	-		1+ 593.2220									
0.0 , 200	Ш.)	400	600	800	' 1	000	,	1200	ц.	14 <mark>0</mark> 0	16	00 m/z
Meas m/	7 #	Ion Formula	Score	m/z	err [mDa]	err (p	pml	mSigma	rdb	e ⁻ Conf	N-Rule	Adduct
286.12236	6 1	C17H17FNO2	100.00	286.123783	-1.4		-5.0	1.3	9.5	even	ok	M
	2	C13H13FN7	89.73	286.121098	-1.3		-4.4	12.7	10.5	even	ok	М
	3	C12H17FN3O4	25.16	286.119761	2.6		9.1	25.4	5.5	even	ok	M
	1	C17H17FNO2	100.00	286.123783	-1.4		-5.0	1.3	9.5	even	ok	M+H
	2	C13H13FN7	89.73	286.121098	-1.3		-4.4	12.7	10.5	even	ok	M+H
	3	C12H1/FN3O4	25.16	286.119761	2.6		9.1	25.4	5.5	even	ok	M+H
	1	C15H18FNNaO2	100.00	286.121378	1.0		3.5	11.4	6.5	even	ok	M+Na
004 44000	2	C11H14FN/Na	8.01	286.118692	-3.7	-	12.8	25.1	1.5	even	OK	M+Na
304.11263	(1	C13H12F2N7	100.00	304.111676	1.0		3.2	4.4	10.5	even	OK	IVI NA
	2	C17H10F2N02	21.44	304.114302	-1.7		-0.7	9.8	9.5	even	OK	IVI N4
	3	C12H10F2N304	100.00	304.110339	2.3		2.0	10.9	0.0 40.5	even	OK	NALL
	2	C17H16E2NO2	55.03	304.111070	1.0		5.7	4.4	0.5	even	OK	
	2	C12H16E2N3O4	31.41	304 110330	-1.7		7.6	16.0	5.5	ovon	ok	M+H
	1	C15H17E2NNaO2	100.00	304 111956	0.7		22	2.8	6.5	even	ok	M+Na
	2	C11H13E2N7Na	9.77	304 109271	34		11.1	16.5	7.5	even	ok	M+Na
308 102809	9 1	C17H16ENNaO2	17.05	308 105728	-29		-9.5	5.0	95	even	ok	M
	2	C13H12FN7Na	100.00	308,103042	-0.2		-0.8	8.8	10.5	even	ok	М
	3	C12H16FN3NaO4	49.20	308.101705	-1.1		-3.6	21.9	5.5	even	ok	M
	1	C17H16FNNaO2	17.05	308.105728	-2.9		-9.5	5.0	9.5	even	ok	M+H
	2	C13H12FN7Na	100.00	308.103042	-0.2		-0.8	8.8	10.5	even	ok	M+H
	3	C12H16FN3NaO4	49.20	308.101705	-1.1		-3.6	21.9	5.5	even	ok	M+H
	1	C15H17FNNa2O2	100.00	308.103322	0.5		1.7	7.8	6.5	even	ok	M+Na
	2	C11H13FN7Na2	26.58	308.100637	2.2		7.1	21.3	7.5	even	ok	M+Na
326.094800	0 1	C17H15F2NNaO2	100.00	326.096306	1.5		4.6	7.5	9.5	even	ok	M
	2	C13H11F2N7Na	93.76	326.093621	1.2		3.6	21.2	10.5	even	ok	M
	3	C12H15F2N3NaO4	1 25.91	326.092283	-2.5		-7.7	34.1	5.5	even	ok	M
	1	C1/H15F2NNaO2	100.00	326.096306	1.5		4.6	7.5	9.5	even	ok	M+H
	2	C13H11F2N/Na	93.76	326.093621	1.2		3.6	21.2	10.5	even	ok	IVI+H
	3	C12H15F2N3NaO4	+ 25.91	326.092283	-2.5		-1.1	34.1	5.5	even	ok	M+H
	1	U15H10F2NNa2O2	/ 100.00	3/0 093900	0.9		18	20.1	0.5	even	OK	IVI+Na

Bruker Compass DataAnalysis 4.1

printed: 8/30/2018 3:49:06 PM

by: bruker

Page 1 of 1

S75