A Dual Modality ^{99m}Tc/Re(I)-Labelled T140 Analogue for Imaging of CXCR4 Expression

William L. Turnbull, Lihai Yu, Emily Murrell, Mark Milne, Carlie Charron, Leonard G. Luyt

Table of Contents

Figure S1 – ¹ H NMR spectrum (400 MHz; CDCl ₃) of compound 5 (DPA-Naph-OH)	52
Figure S2 – ¹³ C NMR spectrum (100 MHz; CDCl ₃) of compound 5 (DPA-Naph-OH)	53
Figure S3 – HPLC chromatogram (10-70% CH ₃ CN/H ₂ O + 0.1% TFA) of peptide 6 (T140)	54
Figure S4 – HPLC chromatogram (20-80% CH ₃ CN/H ₂ O + 0.1% TFA) of peptide 7 (DPA-	
Naph-T140)	54
Figure S5 – HPLC chromatogram (20-80% CH ₃ CN/H ₂ O + 0.1% TFA) of peptide Re-7	
(Re(CO)3-DPA-Naph-T140)	55
Table S1 – Ex vivo biodistribution data for [^{99m} Tc]Tc-7 in NOD/SCID mice two hours post-	
injection	35
Figure S6 – Serum stability of 7 (left) and Re-7 (right)	36

Figure S1 – ¹H NMR spectrum (400 MHz; CDCl₃) of compound 5 (DPA-Naph-OH).

Figure S2 – ¹³C NMR spectrum (100 MHz; CDCl₃) of compound 5 (DPA-Naph-OH).

Figure S4 – HPLC chromatogram (20-80% $CH_3CN/H_2O + 0.1\%$ TFA) of peptide 7 (DPA-Naph-T140).

Figure S5 – HPLC chromatogram (20-80% CH₃CN/H₂O + 0.1% TFA) of peptide Re-7 (Re(CO)₃-DPA-Naph-T140).

Table S1 – Ex vivo biodistribution data for $[^{99m}Tc]Tc-7$ in NOD/SCID mice two hours post-injection

Tissue	Uptake (% ID/g ± SD)
blood	1.91 ± 0.16
heart	0.93 ± 0.04
lung	2.80 ± 0.63
liver	22.67 ± 5.02
spleen	2.05 ± 1.37
pancreas	1.15 ± 0.54
stomach	4.67 ± 0.99
intestine	2.36 ± 1.40
kidney	25.69 ± 15.19
tumor	0.51 ± 0.09
muscle	0.26 ± 0.07
brain	0.10 ± 0.02

Figure S6 – Serum stability of 7 (left) and Re-7 (right).

Serum Stability Procedure

Peptides were dissolved to a 1 mM final concentration in 25% human serum in PBS (pH 7.4, 450 μ L final volume, DMSO final concentration 0.5%) and incubated at 37 °C. At 0, 1, 2, 4, 6, and 24 hours, 15 μ L aliquots of peptide solution was removed and mixed with 40 μ L of 4% ammonium hydroxide (pH 11-13) to dissociate peptide interactions with components of human serum. Peptides were isolated from human serum by column separation on Oasis® HLB sorbent 96-well μ Elution plate and eluted using 20% methanol in water. The extracted peptide was quantified on an Acquity UHPLC-MS system (Waters Co.). Intact peptide was quantified by measuring the peak area of a peptide specific [M]³⁺ ion peak (average of 3 replicates). Percent abundance of peptide peak abundance at T₀ was calculated and plotted as a function of time.