# Supplementary data

for

Induction of Effective Immune Responses against Lewis Y Tumor-Associated Carbohydrate Antigen by Its Densely Displaying System of the Self-Assembling Nanocarriers

Yuji Yamazaki<sup>a</sup>, Yukiko Nanbu<sup>b</sup>, Masashi Ohmae<sup>a</sup>, Manabu Sugai<sup>b</sup> and Shunsaku Kimura<sup>a</sup>\*

<sup>a</sup> Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

<sup>b</sup> Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, School

of Medicine, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan



b)



**Fig. S1** a) <sup>1</sup>H NMR and b) MALDI-TOF mass spectra of 2(LY-S)-L.



b)



Fig. S2 a) <sup>1</sup>H NMR and b) MALDI-TOF mass spectra of 2(LY-S)-D.



# NANOSIGHT

#### control 2018-05-07 11-53-04



**Fig. S3** The data sheets obtained by nanoparticle tracking analysis (NTA) of a) G0, b) G1, c) G2, d) G3 and e) G4 using NANOSIGHT LM10.



#### ley1-2 2018-05-07 12-07-51

500

Averaged FTLA Concentration / Size for Experiment:

Size (nm)

800

700





#### Included Files ley1-2 2018-05-07 12-11-03

ley1-2 2018-05-07 12-12-13 ley1-2 2018-05-07 12-13-23

#### Details

NTA Version NTA 3.2 Dev Build 3.2.16 Script Used: SOP Standard Measurement 12-07-51PM 07~ 12:07:51 07/05/2018 Time Captured: Operator: yamazaki Pre-treatment: Sample Name: ley1-2 Diluent: 1/200 Remarks: Capture Settings Camera Type SCMOS Laser Type: Blue405 Camera Level: 11 Slider Shutter: 890 Slider Gain: 146 FPS 25.0 Number of Frames: 1498 22.3 - 22.3 °C Temperature: Viscosity: (Water) 0.945 - 0.947 cP Dilution not recorded Dilution factor: Analysis Settings

Detect Threshold: Blur Size: Max Jump Distance: 7 Auto

Auto: 9.7 - 10.1 pix



#### Fig. S3 continued.

0

200

ley1-2 2018-05-07 12-07-51



#### ley2-2 2018-05-07 12-23-54



Fig. S3 continued.



# NANOSIGHT

#### ley3 2018-04-10 19-20-32



Fig. S3 continued.



Fig. S3 continued.



**Fig. S4** (a) The AFM image of the G0 assemblies on an APTES-modified Si-wafer in water, and (b) the height traces along the red and blue lines in (a).





**Fig. S5** The height histograms of the assemblies (a) G0, (b) G1, (c) G2, and (d) G4 determined by the AFM measurements on an APTES-modified Si-wafer in water. n=100.





**Fig. S6** The size distribution of the assemblies of (a) G1, (b) G2, and (c) G4 at day 1 (red) and day 7 (blue) stored at 4 °C after preparation.



**Fig. S7** The time dependence of (a) the concentration and (b) the size of the assemblies in G1 ( $\bullet$ ), G2 ( $\bullet$ ), and G4 ( $\blacktriangle$ ). The colored dashed lines represent the corresponding linear approximations.



**Fig. S8** IgM amounts after the twice administrations of the assemblies (G0–G2, and G4) determined by ELISA on the plates of (a) PEG-(LLeuAib)<sub>6</sub>-OMe- and (b) Boc-(LLeuAib)<sub>6</sub>-OMe-coatings.



**Fig. S9** The amounts of IgA, IgG1, IgG2a and IgG3 against LY antigen determined by ELISA of the sera of G4 at (a) day 7 and (b) day 14. ELISA was carried out on the LY-L plate. Significant difference between blank and G4 in any antibody type was not detected. ■: the sera prepared from blank group after 1st administration, ■: the sera prepared from G4 after 1st administration, ■: the sera prepared

from blank group after 2nd administration, **-**: the sera prepared from G4 after 2nd administration.

### NMR and MALDI-MS spectrum

#### Butanoic acid, 4-[[2-hydroxy-1-hydroxymethylethyl]amino]-4-oxo-tert-buthyl ester (3)



Figure S10. a) <sup>1</sup>H NMR and b) <sup>13</sup>C NMR spectrum of **3** in CDCl<sub>3</sub>.

a)



Figure S11. a) <sup>1</sup>H NMR and b) <sup>13</sup>C NMR spectrum of 5 in CDCl<sub>3</sub>.



Figure S12. <sup>1</sup>H NMR spectra of 6 in CDCl<sub>3</sub>.



Figure S13. <sup>1</sup>H NMR spectra of 9 in MeOH-d4.



Figure S14. <sup>1</sup>H NMR spectra of 10 in CDCl<sub>3</sub>.

a)



Figure S15. a) <sup>1</sup>H NMR spectra in MeOH-d4 and b) MALDI-TOF-MS spectra of 11.





Figure S16. a) <sup>1</sup>H NMR spectra in MeOH-d4 and b) MALDI-TOF-MS spectra of 12.

# Alkyne-functionalized PSar30-(p-LeuAib)6-OMe (Alkyne-functionalized AB type amphiphile)

a)



**Figure S17**. a) <sup>1</sup>H NMR spectra in MeOH-d4 and b) MALDI-TOF-MS spectra of Alkyne capping PSar30-(<sub>D</sub>-LeuAIb)<sub>6</sub>-OMe.



Figure S18. a) <sup>1</sup>H NMR spectra in MeOH-d4 and b) MALDI-TOF-MS spectra of LY-S-L.





Figure S19. a) <sup>1</sup>H NMR spectra in MeOH-d4 and b) MALDI-TOF-MS spectra of LY-S-D.