Stereo- and Regioselective Photocycloaddition of Extended Alkenes Using γ-Cyclodextrin

Akshay Kashyap,^a Treyvon Bokosike,^a Nattamai Bhuvanesh,^b Mahesh Pattabiraman*^a

 $^{\it a}$ Department of Chemistry, University of Nebraska Kearney, NE – 68845, USA

^b Department of Chemistry, Texas A&M University, TX – 77845, USA

Table of Contents

Contents	Page
1. Synthesis of reactants	2
2. Complexation and irradiation	2
3. Isolation and purification of products	2
4. List of possible products	3
5. ¹ H and ¹³ C NMR spectra	3
6. Time-dependence experiment	8
7. NOESY spectra	9
8. Solution phase, and β -CD complex irradiations	10
9. Photoreactivity of 1d within γ-CD	10
10. X-Ray Crystallography	11
11. Job's plot	12
12. Computational chemistry	13
13. Isothermal titration calorimetry	28

1. Synthesis of reactants 1a, 1b, 1c, and 1d

Chalcones **1a** to **1d** were synthesized using aldol condensation reaction. Solid sodium hydroxide (2.5g) was placed in a 125 mL Erlenmeyer flask, and water (13 mL) added to it. The mixture ws swirled until it is fully dissolved, and 13 mL of ethanol added to it. The mixture is brought to room temperature, and 1.8 mL acetone was added followed by 5.3 mL benzaldehyde. A yellow precipitate formed immediately, accumulated as the mixture was swirled for 15 minutes. The precipitate was filtered through a Büchner funnel, and transferred and washed with a small amount of cold ethanol. The crystals were air-dried. The crude, slightly wet product was spread out on a paper towel to dry for a short time, then weighed. The product was then recrystallized from ethyl acetate heated on a hot plate. Immiscible lower aqueous layer appeared in this step was decanted quickly. The resulting solution was allowed to cool during which recrystallization occurred. The final crystalline product was filtered and dried on a Büchner funnel. Final product was dried under vacuum overnight before recording NMR spectra. Typical product yield: 65-75%. Synthesis of other substrates followed same procedure involving the respective starting aldehydes.

2. Complexation and irradiation

Specific amounts of the guests (typically 20 mg) were weighed into a 20mL dram vial. Then half equivalent of γ -CD and water were added, and the mixture was sonicated for half hour followed by stirring for 12 hrs. Complexation is indicated by formation of chalky white or yellow precipitate, which forms a slurry of even consistency. The slurry was filtered using a filter funnel and dried to yield powdered complex. The precipitate was washed with cold water and methanol to remove uncomplexed host and guest.

The resulting dried powder is now added to 10 mL of water and allowed to form a slurry again, and the complex is irradiated as a slurry for at least specific duration. A medium pressure photochemical lamp immersed in a water-cooled pyrex jacket was used for irradiation.

Irradiated complexes were decomplexed through biphasic extraction with 50 mL of water and 50 mL of ethyl acetate. The organic layer was separated from the aqueous layer, dried over anhydrous magnesium sulfate, and solvent removed *in vacuo*.

3. Isolation, purification of products, and characterization

Reaction mixtures with photoproducts were dissolved in 50% water/acetonitrile mixture. Compounds in the reaction mixtures were separated on a Gilson preparative HPLC. Preparative HPLC elution scheme involved initial solvent mixture of 20/80 acetonitrile/water mixture for 1 min followed by a 20 min ramp towards 80/20 acetonitrile/water mixture with the eluent flow rate maintained at 20 mL/min. Isolated products were dried in a lyophilizer to obtain pure product in solid form. Isolated compounds were characterizing primarily using ¹H and ¹³C NMR spectra recorded using 400 MHz Bruker Avance spectrometer. Signals were analyzed using the *TopSpin 3.5pl7* software.

4. Scheme of possible products

Number of products

Scheme S1. Possible products that could result from primary and secondary reaction of dibenzalacetones

ppm Figure S5 ¹³C NMR spectrum of 6b

Figure S7 ¹³C NMR spectrum of 1c

Figure S9 ¹³C NMR spectrum of 6c

6. Time-dependence experiment

Figure S10 Time-dependent reaction of **1b**. NMR spectrum of reaction mixture of 1:2 complex irradiated for different durations as listed in the spectra.

7. NOESY spectra

8. Solution phase and irradiation of β -CD complex for compound 1b

9. Photoreactivity of 1d@γ-CD

Figure S14 Product mixture obtained after irradiation of **1d**@γ-CD after 36 hrs. Appearance of new signals in the NMR spectrum suggests photoactivity. Lack of dimers suggests supramolecular influence.

10. X-Ray crystallography

Data Collection

A Leica MZ 75 microscope was used to identify a suitable colorless plate with very well defined faces with dimensions (max, intermediate, and min) 0.243 x 0.186 x 0.016 mm³ from a representative sample of crystals of the same habit. The crystal mounted on a nylon loop was then placed in a cold nitrogen stream (Oxford) maintained at 100 K.

A BRUKER Venture X-ray (kappa geometry) diffractometer was employed for crystal screening, unit cell determination, and data collection. The goniometer was controlled using the APEX3 software suite.¹ The sample was optically centered with the aid of a video camera such that no translations were observed as the crystal was rotated through all positions. The X-ray radiation employed was generated from a Cu-Iµs X-ray tube ($K_{\alpha} = 1.5418$ Å with a potential of 50 kV and a current of 1.0mA). 45 data frames were taken at widths of 1°. These reflections were used to determine the unit cell. The unit cell was verified by examination of the *h k l* overlays on several frames of data. No super-cell or erroneous reflections were observed. After careful examination of the unit cell, an extended data collection procedure (26 sets) was initiated using omega and phi scans.

Data Reduction, Structure Solution, and Refinement

Integrated intensity information for each reflection was obtained by reduction of the data frames with the program APEX3.¹ The integration method employed a three-dimensional profiling algorithm and all data were corrected for Lorentz and polarization factors, as well as for crystal decay effects. Finally the data was merged and scaled to produce a suitable data set. The absorption correction program SADABS² was employed to correct the data for absorption effects.

Systematic reflection conditions and statistical tests of the data suggested the space group *P*-1. A solution was obtained readily using XT/XS in APEX3.^{1,3} Hydrogen atoms were placed in idealized positions and were set riding on the respective parent atoms. All non-hydrogen atoms were refined with anisotropic thermal parameters. Absence of additional symmetry or void were confirmed using PLATON (ADDSYM).[#] The structure was refined (weighted least squares refinement on *F*²) to convergence.^{3,4}

Olex2 was employed for the final data presentation and structure plots.⁴

¹ APEX3 "Program for Data Collection on Area Detectors" BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711-5373 USA

² SADABS, Sheldrick, G.M. "Program for Absorption Correction of Area Detector Frames", BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711-5373 USA.

³ Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122. Sheldrick, G. M. (2015), Acta Cryst. A71, 3-8. Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8. XT, XS, BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711-5373 USA.

⁴ Dolomanov, O. V, Bourhis, L. J., Gildea, R. J., Howard, J. A. K., and Puschmann, H. "OLEX2: A Complete Structure Solution, Refinement and Analysis Program", *J. Appl. Cryst.* **2009**, *42*, 339-341.

[#]Spek, A. L., "PLATON - A Multipurpose Crystallographic Tool" *J. Appl. Cryst.* **2003**, *36*, 7-13.; Spek, A. L., Utrecht University, Utrecht, The Netherlands **2008**.

* Sheldrick, G. M. "Cell_Now (version 2008/1): Program for Obtaining Unit Cell Constants from Single Crystal Data": University of Göttingen, Germany

§ Spek, A. L. (2015) Acta Cryst. C71, 9-18.

11. Job's continuous variation method

Figure S15 Job's plot for 1a (dibenzalacetone) with γ -CD

Figure S16 Job's plot for 1d (N,N-dimethyl chalcone) with γ -CD

12. Computational chemistry

Computational chemistry calculations were performed using Gaussian '09. Windows 10 desktop with eight dual core processors and 16 GB RAM were used for the purposes. Calculations were performed at different levels of theory to obtain complex structures for gaining insight into relative dimensions and arrangement of the components. Theory performed at molecular mechanics (MM, UFF) and semi empirical (SE PM6) using solvent effects based on IPCM were first obtained. However, the geometry-optimized structures showed the reactant chalcones in which the aromatic rings were orthogonal to the pentadienone skeleton. This was realized to be an unrealistic due to the common knowledge that the molecule is fully conjugated and should remain planar. Hence *ab initio* calculations were performed using ONIOM wB97XD/631++G(2d,2p)/Auto:PM6.

Figure S17. Output screen from calculation performed on **1a**₂@γ-Cd **Coordinates of final structure obtained after geometry optimization (.pdb file format)**

TITLE		Requ	uired				
REMARK	1 F	ile	created	by	GaussView 5.0	.9	
HETATM	1	С		0	-2.272	5.956	1.448
С							
HETATM	2	Η		0	-1.973	7.011	1.647
Н							
HETATM	3	С		0	-3.132	5.300	2.558
С							
HETATM	4	Η		0	-3.951	5.988	2.878
Н							

HETATM C	5	С	(C	-3.689	3.946	2.061
HETATM H	6	Н	(C	-2.883	3.176	1.952
HETATM C	7	С	(C	-4.450	4.151	0.726
HETATM H	8	Н	(C	-5.390	4.727	0.869
HETATM C	9	С	(C	-3.538	4.819	-0.327
HETATM H	10	Η	(C	-2.705	4.139	-0.614
HETATM C	11	С	(C	-4.281	5.408	-1.547
НЕТАТМ Н	12	Η	(C	-4.600	6.452	-1.338
НЕТАТМ Н	13	Η	(C	-3.636	5.394	-2.444
HETATM O	14	0	(C	-4.754	2.803	0.273
HETATM O	15	0	(C	-2.953	6.036	0.216
НЕТАТМ С	16	С	(C	3.014	5.470	1.140
НЕТАТМ Н	17	Η	(C	3.960	6.026	1.355
НЕТАТМ С	18	С	(C	2.420	4.729	2.370
НЕТАТМ Н	19	Н	(C	2.739	5.239	3.311
HETATM C	20	С	(C	0.885	4.548	2.342
HETATM H	21	Η	(C	0.621	3.537	1.921
HETATM C	22	С	(C	0.142	5.666	1.589
НЕТАТМ Н	23	Η	(C	0.008	6.572	2.227
НЕТАТМ С	24	С	(C	0.825	6.039	0.262
НЕТАТМ Н	25	Н	(C	0.872	5.168	-0.440
НЕТАТМ С	26	С	(C	0.179	7.265	-0.399
НЕТАТМ Н	27	Н	(C	0.795	7.642	-1.234
НЕТАТМ Н	28	Η	(C	-0.851	7.028	-0.748
НЕТАТМ О	29	0	(C	-1.141	5.084	1.263
НЕТАТМ О	30	0	(C	2.176	6.462	0.574

HETATM C	31	С	0	6.478	2.799	-1.719
HETATM H	32	Н	0	7.252	2.608	-2.497
HETATM C	33	С	0	6.845	3.871	-0.667
HETATM H	34	Н	0	7.287	4.774	-1.155
HETATM C	35	С	0	5.624	4.263	0.195
НЕТАТМ Н	36	Н	0	5.408	3.502	0.983
НЕТАТМ С	37	С	0	4.381	4.546	-0.668
НЕТАТМ Н	38	Н	0	4.430	5.569	-1.104
НЕТАТМ С	39	С	0	4.131	3.439	-1.718
HETATM	40	Н	0	3.802	2.497	-1.217
H HETATM C	41	С	0	3.137	3.891	-2.802
HETATM H	42	Н	0	3.388	4.886	-3.212
HETATM H	43	Н	0	3.081	3.157	-3.629
HETATM O	44	0	0	3.187	4.441	0.153
НЕТАТМ С	45	С	0	6.798	-2.472	-1.173
НЕТАТМ Н	46	H	0	7.269	-3.427	-1.484
НЕТАТМ С	47	С	0	7.558	-1.705	-0.063
HETATM	48	Н	0	8.655	-1.680	-0.284
HETATM C	49	С	0	7.015	-0.267	0.114
HETATM H	50	Н	0	6.051	-0.248	0.672
НЕТАТМ С	51	С	0	6.903	0.442	-1.248
НЕТАТМ Н	52	Η	0	7.911	0.721	-1.639
НЕТАТМ С	53	С	0	6.107	-0.405	-2.262
НЕТАТМ Н	54	Н	0	5.057	-0.559	-1.917
НЕТАТМ С	55	С	0	6.168	0.176	-3.680
НЕТАТМ Н	56	Н	0	5.843	-0.564	-4.433

HETATM H	57	Н	0	5.550	1.100	-3.751
HETATM	58	0	0	6.127	1.627	-0.965
HETATM	59	0	0	6.741	-1.712	-2.383
HETATM C	60	С	0	-6.118	-2.477	-1.796
HETATM H	61	Н	0	-6.888	-2.036	-2.472
НЕТАТМ С	62	С	0	-6.603	-3.676	-0.950
НЕТАТМ Н	63	Н	0	-7.112	-4.434	-1.598
НЕТАТМ С	64	С	0	-5.427	-4.313	-0.180
НЕТАТМ Н	65	Н	0	-5.129	-3.691	0.694
НЕТАТМ С	66	С	0	-4.238	-4.604	-1.108
НЕТАТМ Н	67	Н	0	-4.384	-5.590	-1.618
НЕТАТМ С	68	С	0	-3.900	-3.480	-2.102
НЕТАТМ Н	69	Н	0	-3.321	-2.676	-1.577
НЕТАТМ С	70	С	0	-3.167	-3.991	-3.363
НЕТАТМ Н	71	Н	0	-3.741	-3.713	-4.276
НЕТАТМ Н	72	Н	0	-2.146	-3.572	-3.424
НЕТАТМ О	73	0	0	-3.040	-4.634	-0.277
HETATM O	74	0	0	-5.071	-2.836	-2.670
НЕТАТМ С	75	С	0	-6.121	2.595	-0.134
НЕТАТМ Н	76	Н	0	-6.672	3.560	-0.246
НЕТАТМ С	77	С	0	-6.784	1.598	0.845
НЕТАТМ Н	78	Н	0	-7.896	1.611	0.706
НЕТАТМ С	79	С	0	-6.250	0.155	0.682
НЕТАТМ Н	80	Н	0	-5.238	0.025	1.123
НЕТАТМ С	81	С	0	-6.298	-0.259	-0.799
НЕТАТМ Н	82	Н	0	-7.353	-0.406	-1.135

НЕТАТМ С	83	С	0	-5.554	0.765	-1.681
НЕТАТМ Н	84	Н	0	-4.464	0.786	-1.444
НЕТАТМ С	85	С	0	-5.799	0.519	-3.179
HETATM H	86	Η	0	-5.570	1.425	-3.776
HETATM H	87	Н	0	-5.181	-0.343	-3.535
HETATM O	88	0	0	-5.570	-1.502	-0.876
HETATM O	89	0	0	-6.080	2.102	-1.466
НЕТАТМ С	90	С	0	2.624	-5.717	-0.285
НЕТАТМ Н	91	Η	0	2.408	-6.803	-0.436
HETATM C	92	С	0	3.572	-5.422	0.908
HETATM H	93	Η	0	4.252	-6.290	1.086
HETATM C	94	С	0	4.389	-4.122	0.737
HETATM H	95	Η	0	3.803	-3.212	1.055
НЕТАТМ С	96	С	0	4.890	-3.949	-0.718
НЕТАТМ Н	97	Η	0	5.651	-4.700	-1.017
НЕТАТМ С	98	С	0	3.676	-3.977	-1.667
НЕТАТМ Н	99	Η	0	2.919	-3.215	-1.363
НЕТАТМ С	100	С	0	3.979	-3.934	-3.177
НЕТАТМ Н	101	Н	0	3.621	-4.877	-3.654
НЕТАТМ Н	102	Н	0	3.487	-3.069	-3.653
HETATM O	103	0	0	5.449	-2.614	-0.725
HETATM O	104	0	0	3.080	-5.305	-1.548
НЕТАТМ С	105	С	0	-2.650	-5.930	0.192
НЕТАТМ Н	106	Н	0	-3.512	-6.631	0.271
НЕТАТМ С	107	С	0	-1.924	-5.646	1.532
НЕТАТМ Н	108	Η	0	-1.851	-6.573	2.149

HETATM C	109	С	0	-0.532	-5.003	1.318
HETATM H	110	Н	0	-0.617	-3.917	1.066
HETATM	111	С	0	0.250	-5.772	0.234
HETATM	112	Н	0	0.551	-6.787	0.586
HETATM	113	С	0	-0.555	-5.863	-1.076
HETATM	114	Н	0	-0.762	-4.851	-1.490
n HETATM C	115	С	0	0.119	-6.777	-2.111
HETATM	116	Н	0	-0.567	-7.025	-2.942
HETATM	117	Н	0	1.048	-6.305	-2.504
HETATM	118	0	0	1.415	-4.962	-0.021
0 HETATM	119	0	0	-1.827	-6.518	-0.807
0 HETATM	120	0	0	-7.620	-3.279	-0.049
0 HETATM	121	Н	0	-7.322	-2.497	0.509
H HETATM	122	0	0	-5.811	-5.615	0.293
U HETATM	123	Н	0	-6.665	-5.552	0.784
H HETATM	124	0	0	-2.749	-4.800	2.319
0 HETATM	125	Н	0	-3.040	-4.014	1.787
HETATM	126	0	0	0.208	-4.972	2.534
HETATM	127	Н	0	0.447	-5.876	2.851
HETATM	128	0	0	-6.616	2.022	2.179
HETATM	129	Н	0	-5.627	2.188	2.382
HETATM	130	0	0	-7.154	-0.740	1.348
U HETATM	131	Н	0	-7.316	-0.428	2.272
h HETATM	132	0	0	-4.545	3.356	3.039
U HETATM	133	Н	0	-5.137	4.020	3.462
HETATM O	134	0	0	-2.353	5.161	3.726

НЕТАТМ Н	135	Н	0	-1.552	4.563	3.560
HETATM O	136	0	0	0.362	4.457	3.671
HETATM H	137	Н	0	0.594	5.243	4.212
HETATM	138	0	0	3.056	3.464	2.463
HETATM H	139	Н	0	2.840	2.911	1.656
HETATM	140	0	0	5.909	5.520	0.836
HETATM H	141	Н	0	6.751	5.444	1.348
HETATM	142	0	0	7.889	3.402	0.166
HETATM H	143	Н	0	7.697	2.468	0.497
HETATM	144	0	0	7.989	0.507	0.836
HETATM	145	Н	0	8.177	0.077	1.704
h HETATM	146	0	0	7.482	-2.414	1.155
0 HETATM	147	Н	0	6.516	-2.654	1.376
h HETATM	148	0	0	5.490	-4.099	1.645
0 HETATM	149	Н	0	6.076	-4.880	1.540
H HETATM	150	0	0	2.786	-5.389	2.086
0 HETATM	151	Н	0	2.076	-4.668	2.026
HETATM	152	0	0	-3.102	-5.412	-3.451
HETATM H	153	Н	0	-2.600	-5.795	-2.686
HETATM	154	0	0	-7.139	0.094	-3.433
HETATM	155	Н	0	-7.762	0.844	-3.291
h HETATM	156	0	0	-5.505	4.732	-1.814
U HETATM	157	Н	0	-5.325	3.830	-2.193
h HETATM	158	0	0	-0.029	8.307	0.560
U HETATM	159	Н	0	0.842	8.657	0.859
h HETATM O	160	0	0	1.807	3.933	-2.277

HETATM	161	Н	0	1.814	4.310	-1.341
HETATM	162	0	0	5.333	3.164	-2.476
HETATM	163	0	0	0.594	-7.979	-1.496
HETATM H	164	Н	0	-0.171	-8.544	-1.240
HETATM O	165	0	0	5.370	-3.931	-3.476
НЕТАТМ Н	166	Н	0	5.748	-3.017	-3.344
HETATM O	167	0	0	7.483	0.643	-3.998
НЕТАТМ Н	168	Н	0	8.101	-0.122	-4.061
HETATM C	169	С	0	2.511	-1.827	5.392
HETATM	170	С	0	1.615	-2.295	4.423
HETATM C	171	С	0	0.511	-3.051	4.836
HETATM C	172	С	0	0.303	-3.315	6.182
HETATM C	173	С	0	1.191	-2.829	7.138
НЕТАТМ С	174	С	0	2.296	-2.083	6.740
НЕТАТМ Н	175	Н	0	3.379	-1.257	5.081
НЕТАТМ Н	176	Н	0	-0.171	-3.462	4.095
НЕТАТМ Н	177	Н	0	-0.554	-3.904	6.486
HETATM	178	Н	0	1.027	-3.038	8.189
HETATM H	179	Н	0	2.997	-1.711	7.478
HETATM C	180	С	0	1.875	-1.998	3.012
НЕТАТМ Н	181	Н	0	2.900	-1.746	2.750
НЕТАТМ С	182	С	0	0.967	-1.981	2.025
НЕТАТМ Н	183	Н	0	-0.084	-2.154	2.236
HETATM C	184	С	0	1.360	-1.691	0.632
U HETATM C	185	С	0	0.266	-1.461	-0.349
HETATM H	186	Н	0	-0.755	-1.597	-0.005

HETATM C	187	С	0	0.557	-1.058	-1.592
HETATM H	188	Н	0	1.612	-0.911	-1.807
HETATM C	189	С	0	-0.366	-0.773	-2.692
HETATM C	190	С	0	0.154	-0.258	-3.884
HETATM C	191	С	0	-1.747	-0.989	-2.611
HETATM C	192	С	0	-0.674	0.033	-4.963
НЕТАТМ Н	193	Н	0	1.220	-0.076	-3.961
НЕТАТМ С	194	С	0	-2.573	-0.711	-3.689
НЕТАТМ Н	195	Н	0	-2.185	-1.388	-1.699
НЕТАТМ С	196	С	0	-2.041	-0.196	-4.870
НЕТАТМ Н	197	Н	0	-0.253	0.447	-5.872
НЕТАТМ Н	198	Н	0	-3.644	-0.900	-3.608
НЕТАТМ Н	199	Н	0	-2.691	0.034	-5.706
HETATM O	200	0	0	2.535	-1.651	0.291
НЕТАТМ С	201	С	0	-2.786	3.571	-5.309
НЕТАТМ С	202	С	0	-1.419	3.771	-5.145
НЕТАТМ С	203	С	0	-0.804	3.413	-3.951
НЕТАТМ С	204	С	0	-1.540	2.850	-2.903
НЕТАТМ С	205	С	0	-2.916	2.665	-3.079
НЕТАТМ С	206	С	0	-3.532	3.021	-4.269
НЕТАТМ Н	207	Н	0	-3.269	3.846	-6.239
НЕТАТМ Н	208	Н	0	-0.832	4.205	-5.946
НЕТАТМ Н	209	Н	0	0.265	3.570	-3.814
НЕТАТМ Н	210	Н	0	-3.507	2.230	-2.279
НЕТАТМ Н	211	Η	0	-4.599	2.858	-4.394
НЕТАТМ С	212	С	0	-0.834	2.474	-1.677

НЕТАТМ н	213	Η			0		0.246	2.634	-1.680
HETATM	214	С			0		-1.360	1.955	-0.561
HETATM	215	Η			0		-2.423	1.745	-0.467
HETATM	216	С			0		-0.510	1.656	0.611
HETATM	217	С			0		-1.187	1.009	1.751
HETATM	218	Н			0		-2.229	0.731	1.622
H HETATM	219	С			0		-0.551	0.804	2.915
C HETATM	220	Η			0		0.477	1.154	2.984
H HETATM	221	С			0		-1.111	0.186	4.117
C HETATM	222	С			0		-0.464	0.387	5.342
C HETATM	223	С			0		-2.274	-0.595	4.095
HETATM	224	С			0		-0.985	-0.139	6.517
HETATM	225	Η			0		0.451	0.969	5.369
HETATM	226	С			0		-2.789	-1.130	5.267
HETATM	227	Η			0		-2.774	-0.793	3.154
HETATM	228	С			0		-2.151	-0.895	6.483
HETATM	229	Η			0		-0.474	0.030	7.456
h HETATM u	230	Η			0		-3.687	-1.737	5.233
HETATM	231	Η			0		-2.555	-1.315	7.397
HETATM	232	0			0		0.679	1.949	0.644
END	1		~	2	1 -	0.0			
CONECT	Ţ		2	3	15	29			
CONECT	2		T	_	_				
CONECT	3		1	4	5	134			
CONECT	4		3						
CONECT	5		3	6	7	132			
CONECT	6		5						
CONECT	7		5	8	9	14			
CONECT	8		7						
CONECT	9		7	10	11	15			
CONECT	10		9						
CONECT	11		9	12	13	156			

CONECT	12	11				
CONECT	13	11				
CONECT	14	7	75			
CONECT	15	1	9			
CONECT	16	17	18	30	44	
CONECT	17	16				
CONECT	18	16	19	20	138	
CONECT	19	18				
CONECT	20	18	21	22	136	
CONECT	21	20				
CONECT	22	20	23	24	29	
CONECT	23	22				
CONECT	24	22	25	26	30	
CONECT	25	24				
CONECT	26	24	27	28	158	
CONECT	27	26				
CONECT	28	26				
CONECT	29	1	22			
CONECT	30	16	24			
CONECT	31	32	33	58	162	
CONECT	32	31				
CONECT	33	31	34	35	142	
CONECT	34	33				
CONECT	35	33	36	37	140	
CONECT	36	35				
CONECT	37	35	38	39	44	
CONECT	38	37	4.0		1.60	
CONECT	39	37	40	4⊥	162	
CONECT	40	39	4.0	4.0	1.00	
CONECT	41	39	42	43	16U	
CONECT	42	41 41				
CONECT	43	41 16	27			
CONECI	44	10	/ د ۳۸	ΕO	102	
CONECT	40	40	4/	59	103	
CONECT	40	4J 15	18	19	116	
CONFCT	18 18	4J 17	40	49	140	
CONECT	40 49	47	50	51	144	
CONECT	50	49	50	<u> </u>	_ 1 1	
CONECT	51	49	52	53	58	
CONECT	52	51	02	00	00	
CONECT	53	51	54	55	59	
CONECT	54	53	01	00	0.5	
CONECT	55	53	56	57	167	
CONECT	56	55				
CONECT	57	55				
CONECT	58	31	51			
CONECT	59	45	53			
CONECT	60	61	62	74	88	
CONECT	61	60			-	
CONECT	62	60	63	64	120	
CONECT	63	62				

CONECT	64	62	65	66	122
CONECT	65	64			
CONECT	66	64	67	68	73
CONECT	67	66			
CONECT	68	66	69	70	74
CONECT	69	68			
CONECT	70	68	71	72	152
CONECT	71	70			
CONECT	72	70			
CONECT	73	66	105		
CONECT	74	60	68		
CONECT	75	14	76	77	89
CONECT	76	75			
CONECT	77	75	78	79	128
CONECT	78	77			
CONECT	79	77	80	81	130
CONECT	80	79			
CONECT	81	79	82	83	88
CONECT	82	81		o =	
CONECT	83	81	84	85	89
CONECT	84	83	0.0	0 7	1 - 4
CONECT	85	83	86	8 /	154
CONECT	86	85			
CONECT	8 /	85	0.1		
CONECT	88	60 75	18		
CONECI	09	01	03	101	110
CONECI	90	91	92	104	110
CONECT	91	90	03	QЛ	150
CONECT	92	90	95	94	100
CONECT	94	92	95	96	148
CONECT	95	94	55	50	110
CONECT	96	94	97	98	103
CONECT	97	96	5,	50	100
CONECT	98	96	99	100	104
CONECT	99	98			
CONECT	100	98	101	102	165
CONECT	101	100			
CONECT	102	100			
CONECT	103	45	96		
CONECT	104	90	98		
CONECT	105	73	106	107	119
CONECT	106	105			
CONECT	107	105	108	109	124
CONECT	108	107			
CONECT	109	107	110	111	126
CONECT	110	109			
CONECT	111	109	112	113	118
CONECT	112	111			
CONECT	113	111	114	115	119
CONECT	114	113			
CONECT	115	113	116	117	163

CONECT	116	115	
CONECT	117	115	
CONECT	118	90	111
CONECT	119	105	113
CONECT	120	62	121
CONECT	121	120	
CONECT	122	64	123
CONECT	123	122	
CONECT	124	107	125
CONECT	125	124	
CONECT	126	109	127
CONECT	127	126	
CONECT	128	77	129
CONECT	129	128	
CONECT	130	79	131
CONECT	131	130	
CONECT	132	5	133
CONECT	133	132	
CONECT	134	3	135
CONECT	135	134	
CONECT	136	20	137
CONECT	137	136	
CONECT	138	18	139
CONECT	139	138	
CONECT	140	35	141
CONECT	141	140	
CONECT	142	33	143
CONECT	143	142	
CONECT	144	49	145
CONECT	145	144	
CONECT	146	47	147
CONECT	147	146	
CONECT	148	94	149
CONECT	149	148	
CONECT	150	92	151
CONECT	151	150	
CONECT	152	70	153
CONECT	153	152	
CONECT	154	85	155
CONECT	155	154	
CONECT	156	11	157
CONECT	157	156	
CONECT	158	26	159
CONECT	159	158	
CONECT	160	41	161
CONECT	161	160	
CONECT	162	31	39
CONECT	163	115	164
CONECT	164	163	
CONECT	165	100	166
CONECT	166	165	
CONECT	167	55	168

CONECT	168	167		
CONECT	169	170	174	175
CONECT	170	169	171	180
CONECT	171	170	172	176
CONECT	172	171	173	177
CONECT	173	172	174	178
CONECT	174	169	173	179
CONECT	175	169		
CONECT	176	171		
CONECT	177	172		
CONECT	178	173		
CONECT	179	174		
CONECT	180	170	181	182
CONECT	181	180		
CONECT	182	180	183	184
CONECT	183	182		
CONECT	184	182	185	200
CONECT	185	184	186	187
CONECT	186	185		
CONECT	187	185	188	189
CONECT	188	187		
CONECT	189	187	190	191
CONECT	190	189	192	193
CONECT	191	189	194	195
CONECT	192	190	196	197
CONECT	193	190		
CONECT	194	191	196	198
CONECT	195	191		
CONECT	196	192	194	199
CONECT	197	192		
CONECT	198	194		
CONECT	199	196		
CONECT	200	184		
CONECT	201	202	206	207
CONECT	202	201	203	208
CONECT	203	202	204	209
CONECT	204	203	205	212
CONECT	205	204	206	210
CONECT	206	201	205	211
CONECT	207	201		
CONECT	208	202		
CONECT	209	203		
CONECT	210	205		
CONECT	211	206		
CONECT	212	204	213	214
CONECT	213	212		
CONECT	214	212	215	216
CONECT	215	214		
CONECT	216	214	217	232
CONECT	217	216	218	219
CONECT	218	217		
CONECT	219	217	220	221

CONECT	220	219		
CONECT	221	219	222	223
CONECT	222	221	224	225
CONECT	223	221	226	227
CONECT	224	222	228	229
CONECT	225	222		
CONECT	226	223	228	230
CONECT	227	223		
CONECT	228	224	226	231
CONECT	229	224		
CONECT	230	226		
CONECT	231	228		
CONECT	232	216		

Frequency calculation of optimized structure showed that there were no negative frequencies

13. Isothermal titration calorimetry

Isothermal titration experiments were performed on a TA nano ITC instrument with titration cell and reference cell volumes of 1000 μ L, and a 100 μ L syringe used to inject the titrant. Stock solutions (10⁻²M) of γ -cyclodextrin in water and 4-methoxy chalcone **1b** in methanol were prepared, which were further diluted with water. The host concentration was diluted to 5 x 10⁻⁴ M, and that of guest was diluted to 5 x 10⁻⁵ M. The solutions were degassed for 15 mins before titration ITC experiments were performed with the cell temperature set to be maintained at 25.0 °C with each injection volume set at 4.81 μ L for nineteen injections. The stirring rate during injection rate was set at 350 rpm. Blank heat from titration of 5 x 10⁻⁴ M host was subtracted from the host-guest complex titration before isotherm fitting algorithm. The independent binding model available in nanoAnalyze software issued along with the VP nano ITC instrument package was used to use for curve fitting.

Figure S18 ITC data for titration of 5 x 10^{-4} M γ -CD to 5 x 10^{-5} M **1b** (blue), and the background titration of 5 x 10^{-4} M γ -CD to water (orange).