Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information

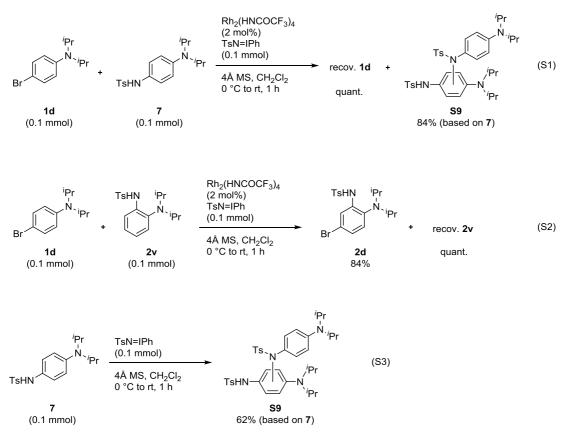
Dirhodium(II)-Catalyzed ortho C-H Amination of Sterically Congested

N,*N*-Dialkylanilines

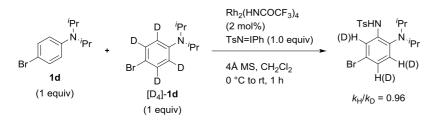
Motoki Ito,^{*} Tomoya Nakagawa, Kazuhiro Higuchi and Shigeo Sugiyama^{*}

Meiji Pharmaceutical University, 2-522-1 Noshio Kiyose, Tokyo 204-8588, Japan

1. Competition experiments between C–H amination products and 1d S4
2. KIE experiment between 1d and [D ₄]-1d
\$5
3. Synthesis of chiral tetrahydroquinoxaline 15 and 1,5-benzodiazepine 16 S5
4. General procedure for the preparation of <i>N</i> -alkyl- <i>N</i> -(1-phenylethyl)anilines S6
5. Procedure for the preparation of (<i>R</i>)- <i>N</i> -isopropyl- <i>N</i> -(1-oxypropan-2-yl)- <i>p</i> -toluidines
\mathbf{S}
6. Typical procedure for Rh(II)-catalyzed <i>ortho</i> C–H amination of <i>N</i> , <i>N</i> -dialkylanilines
S11
7. Rh(II)-catalyzed C(sp ²)–H amination of <i>N</i> , <i>N</i> -diisopropylaniline (1v)
S21
8. Typical procedure for Rh(II)-catalyzed <i>ortho</i> C–H amination of <i>papa</i> -unsubstituted <i>N</i> , <i>N</i> -dialkylanilines
S23
9. Competition experiments between <i>N</i> , <i>N</i> -diisopropyl-4-bromoaniline (1d) and 1,3,5-
triisopropylbenzene (10) S24
10. Procedure for the synthesis of tetrahydroquinoxaline 15
S26
11. Procedure for the synthesis of 1,5-benzodiazepine 16
S27

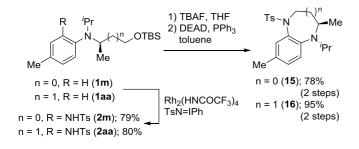

Experimental Section

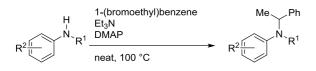
General. All melting points were measured on a Yanagimoto micro melting point apparatus. IR spectra were recorded on a JASCO FT/IR-4100 spectrometer and absorbance bands are reported in wavenumber (cm⁻¹). ¹H NMR spectra were recorded on a JEOL JNM-AL 300 (300 MHz) spectrometer or a JEOL JNM-ECA 400 (400 MHz) spectrometer. Chemical shifts are reported relative to internal standard (tetramethylsilane at $\delta_{\rm H}$ 0.00, CDCl₃ at $\delta_{\rm H}$ 7.26, CD₃OD at $\delta_{\rm H}$ 3.34, CD₃CN at $\delta_{\rm H}$ 1.96). Data are presented as follows: chemical shift ($\delta_{\rm H}$ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant and integration. ¹³C NMR spectra were recorded on a JEOL JNM-ECA 400 (100 MHz) spectrometer. Chemical shifts are reported relative to internal standard (CDCl₃ at δ 77.00, CD₃CN at δ 1.79 and 118.26). Mass spectra were recorded on a JEOL JMS 700 instrument with a direct inlet system. Column chromatography was carried out on Kanto silica gel 60 N (40-50 mesh). Analytical thin layer chromatography (TLC) was carried out on Merck Kieselgel 60 F₂₅₄ plates with visualization by ultraviolet, anisaldehyde stain solution or phosphomolybdic acid stain solution. All non-aqueous reactions were carried out in flamedried glassware under Ar atmosphere unless otherwise noted. Reagents and solvents were used without purification. 4Å MS (powder) from nacalai tesque was used after drying. Dirhodium(II) complex catalysts, Rh₂(esp)₂ and Rh₂(HNCOCF₃)₄, were prepared according to literatures,^{1,2} while Rh₂(esp)₂ is commercially available. Iminoiodinanes were prepared according to a literature.³ N,N-Diisopropylanilines 1g and 1w-z were prepared from corresponding primary anilines by reductive amination with 2-methoxypropene in high yields (>90%).⁴ Other *N*,*N*-diisopropylanilines **1e**, **1f**, **1h**, **1i**, and **1u** were synthesized from **1d**⁵ via Pd-catalyzed coupling with organometallic reagents ("BuMgBr for 1e, phenylboronic acid for 1f) or halogen-lithium exchange with "BuLi followed by treatment with electrophiles (RO₂CCl for **1h** and **1i**, estrone 3-methyl ether for **1u**).


1. Competition experiments between C-H amination products and 1d

In order to investigate the over-oxidation of *para* amination product **7** formed under the C–H amination conditions, a series of competition experiments was performed. A competition experiment between **7** and **1d** under C–H amination conditions led to dimerization of **7**, while a quantitative amount of **1d** was recovered [eqn (S1)]. Therefore, over-oxidation of **7** proceeded much faster than C–H amination. The formation **S9** was also observed undrer the conditions using TsN=IPh in the absence of the dirhodium(II) catalyst [eqn (S3)]. Conversely, no detectable degradation of *ortho* amination product **2v** was observed in the competition experiment with **1d** under the same conditions [eqn (S2)]. These results indicate that a bulky amino group with two secondary alkyl groups prevents over-oxidation of ortho amination products **2**.

Scheme S1.


2. KIE experiment between 1d and [D₄]-1d Scheme S2.


 $[D_4]$ -1d was synthesized from commercially available aniline- d_7 by reductive amination with 2-methoxypropene⁴ followed by treatment with NBS in DMF.⁵

TsN=IPh (37.3 mg, 0.10 mmol) was added to a stirred mixture of **1d** (25.6 mg, 0.10 mmol), $[D_4]$ -**1d** (26.0 mg, 0.10 mmol), Rh₂(HNCOCF₃)₄ (1.3 mg, 0.002 mmol, 2 mol %) and 4Å MS (powder, 40 mg) in CH₂Cl₂ (1.0 mL) at 0 °C under Ar atmosphere. After stirring at room temperature for 1 h, the whole mixture was filtered through a pad of Celite, and the filtrate was evaporated in vacuo to furnish the crude product, which was purified by column chromatography (silica gel, 8:1 *n*-hexane/AcOEt) to give a mixture of **2d** and $[D_4]$ -**2d** (33.6 mg) with recovery of a mixture of starting materials (32.5 mg). The $k_{\rm H}/k_{\rm D}$ value was determined to be 0.96 by ¹H NMR analysis of the mixture of products (**2d**:[D₄]-**2d** = 49:51). Ratio of the recovered starting materials **1d** and [D₄]-**1d** was also determined to be 51:49.

3. Synthesis of chiral tetrahydroquinoxaline 15 and 1,5-benzodiazepine 16 Scheme S3.

4. General procedure for the preparation of N-alkyl-N-(1-phenylethyl)anilines

A reaction vessel was equipped with a stirring bar and charged with *N*-alkylaniline (2.0 mmol), (1-bromoethyl)benzene (0.68 mL, 5.0 mmol), Et₃N (2.0 mL) and DMAP (24.4 mg, 0.20 mmol) before sealing with glass stopper. After heating at 100 °C for 12 h, formed precipitate was suspended in AcOEt, and resulting suspension was filtered through a plug of Celite with AcOEt. The filtrate was evaporated in vacuo to furnish the crude product, which was purified by column chromatography (silica gel) to give *N*-alkyl-*N*-(1-phenylethyl)aniline in 16–75% yield.

N-Isopropyl-N-(1-phenylethyl)-p-toluidine (1j)

 $\begin{array}{c} & \overset{\text{Me}}{\xrightarrow{}} \overset{\text{Ph}}{\xrightarrow{}} & \text{Colorless oil; IR (KBr) } v \ 2969, \ 1515, \ 1452, \ 1373, \ 1262, \ 1178, \ 1109, \ 700 \\ & \overset{\text{Me}}{\xrightarrow{}} \overset{\text{N}}{\xrightarrow{}} \overset{\text{Pr}}{\xrightarrow{}} & \text{cm}^{-1}; \ ^{1}\text{H} \ \text{NMR} \ (400 \ \text{MHz}, \ \text{CDCl}_3): \ \delta \ 1.07 \ (d, \ J = 6.8 \ \text{Hz}, \ 3\text{H}, \ \text{CH}(CH_3)_2), \\ & 1.09 \ (d, \ J = 6.8 \ \text{Hz}, \ 3\text{H}, \ \text{CH}(CH_3)_2), \ 1.40 \ (d, \ J = 6.8 \ \text{Hz}, \ 3\text{H}, \ \text{CH}(CH_3)\text{Ph}), \\ & 2.25 \ (s, \ 3\text{H}, \ \text{ArCH}_3), \ 3.67 \ (\text{septet}, \ J = 6.8 \ \text{Hz}, \ 1\text{H}, \ \text{CH}(\text{CH}_3)_2), \ 4.66 \ (q, \ J = 6.8 \ \text{Hz}, \ 1\text{H}, \ \text{CH}(\text{CH}_3)\text{Ph}), \ 6.79 \ (d, \ J = 8.0 \ \text{Hz}, \ 2\text{H}, \ \text{ArH}), \ 6.98 \ (d, \ J = 8.0 \ \text{Hz}, \ 2\text{H}, \ \text{ArH}), \ 7.21 \ (t, \ J = 7.6 \ \text{Hz}, \ 1\text{H}, \ \text{ArH}), \ 7.31 \ (t, \ J = 7.6 \ \text{Hz}, \ 2\text{H}, \ \text{ArH}), \ 7.42 \ (d, \ J = 7.6 \ \text{Hz}, \ 2\text{H}, \ \text{ArH}); \ ^{13}\text{C} \ \text{NMR} \\ (100 \ \text{MHz}, \ \text{CDCl}_3): \ \delta \ 19.6 \ (\text{CH}_3), \ 20.4 \ (\text{CH}_3), \ 20.9 \ (\text{CH}_3), \ 48.7 \ (\text{CH}), \ 55.3 \ (\text{CH}), \ 122.0 \ (\text{CH}), \ 126.3 \ (\text{CH}), \ 127.0 \ (\text{CH}), \ 128.2 \ (\text{CH}), \ 129.1 \ (\text{C}), \ 144.2 \ (\text{C}), \ 145.5 \ (\text{C}); \ \text{HRMS} \\ (\text{FAB}) \ \text{calcd for } \ C_{18}\text{H}_{23}\text{N} \ [\text{M}]^+ \ 253.1830, \ \text{found} \ 253.1829. \end{array}$

N-Isopropyl-N-(1-phenylethyl)-4-trifluoromethylaniline (1k)

Colorless oil; IR (KBr) v 2975, 1613, 1524, 1326, 1108, 825, 703 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.25 (d, J = 6.8 Hz, 3H, CH(CH₃)₂), 1.30 (d, J = 6.8 Hz, 3H, CH(CH₃)₂), 1.66 (d, J = 6.8 Hz, 3H, CH(CH₃)Ph), 4.12 (septet, J = 6.8 Hz, 1H, CH(CH₃)₂), 4.93 (q, J = 6.8 Hz, 1H, CH(CH₃)Ph), 6.70 (d, J = 6.8 Hz, 1Ph), 70 (d, J = 6.8

8.0 Hz, 2H, Ar*H*), 7.22–7.25 (m, 1H, Ar*H*), 7.31–7.37 (m, 6H, Ar*H*); ¹³C NMR (100 MHz, CDCl₃): δ 18.0 (CH₃), 19.9 (CH₃), 20.9 (CH₃), 48.8 (CH), 52.7 (CH), 115.0 (CH), 117.8 (q, *J* = 31 Hz, C), 125.1 (q, *J* = 268 Hz, CF₃), 125.7 (q, *J* = 3.8 Hz, CH), 126.5 (CH), 126.6 (CH), 128.5 (CH), 143.1 (C), 149.6 (C); HRMS (FAB) calcd for C₁₈H₂₁F₃N [M+H]⁺ 308.1621, found 308.1632.

N-Cyclohexyl-*N*-(1-phenylethyl)-*p*-toluidine (11)

Colorless oil; IR (KBr) v 2930, 1510, 1450, 1236, 1161, 1111, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 0.99–1.06 (m, 1H, ^cHex), 1.15–1.34 (m, 4H, ^cHex), 1.45 (d, J = 6.8 Hz, 3H, CH(CH₃)Ph), 1.57 (d, J = 12.8 Hz, 1H, ^tCHex), 1.71–1.77 (m, 2H, ^cHex), 1.90–1.93 (m, 2H, ^cHex), 2.23 (s, 3H, ArCH₃), 3.30 (t, J = 11.2 Hz, 1H, ^cHex), 4.72 (q, J = 6.8 Hz, 1H, CH(CH₃)Ph), 6.72 (d, J = 8.0 Hz, 2H, ArH), 6.94 (d, J = 8.0 Hz, 2H, ArH), 7.20 (t, J = 8.0 Hz, 1H, ArH), 7.30 (t, J = 8.0 Hz, 2H, ArH), 7.41 (d, J = 8.0 Hz, 2H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 20.1 (CH₃), 20.4 (CH₃), 26.0 (CH₂), 26.2 (CH₂), 26.3 (CH₂), 30.9 (CH₂), 31.2 (CH₂), 54.8 (CH), 58.2 (CH), 121.2 (CH), 126.2 (CH), 126.9 (CH), 128.2 (CH), 128.5 (C), 128.7 (CH), 144.6 (C), 145.5 (C); HRMS (FAB) calcd for C₂₁H₂₇N [M]⁺ 293.2143, found 293.2140.

N-Isopropyl-*N*-(1-phenylethyl)naphthalen-2-amine (1p)

^{2h} Colorless oil; IR (KBr) *v* 3056, 2970, 1626, 1597, 1507, 1373, 1276, 1234, ^{2r} 1185, 827, 743, 700 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.20 (d, *J* = 6.8 Hz, 3H, CH(CH₃)₂), 1.26 (d, *J* = 6.8 Hz, 3H, CH(CH₃)₂), 1.57 (d, *J* = 6.8 Hz, 3H, CH(CH₃)Ph), 4.00 (septet, *J* = 6.8 Hz, 1H, CH(CH₃)₂), 4.87 (q, *J* = 6.8 Hz,

1H, CH(CH₃)Ph), 7.05 (dd, J = 8.8, 2.0 Hz, 1H, ArH), 7.15 (s, 1H, ArH), 7.15–7.25 (m, 2H, ArH), 7.32–7.36 (m, 3H, ArH), 7.46 (d, J = 7.6 Hz, 2H, ArH), 7.55 (d, J = 8.8 Hz, 1H, ArH), 7.61 (d, J = 8.0 Hz, 1H, ArH), 7.66 (d, J = 8.0 Hz, 1H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 19.7 (CH₃), 20.5 (CH₃), 49.0 (CH), 54.2 (CH), 113.7 (CH), 113.8 (CH), 122.1 (CH), 122.6 (CH), 125.8 (CH), 126.4 (CH), 126.8 (CH), 127.3 (CH), 127.4 (CH), 127.8 (C), 128.3 (CH), 134.5 (C), 144.9 (C), 145.1 (C); HRMS (FAB) calcd for C₂₁H₂₄N [M+H]⁺ 290.1903, found 290.1909.

N-Isopropyl-N-(1-phenylethyl)quinolin-6-amine (1q)

^{2h} Colorless oil; IR (KBr) *v* 2971, 1616, 1588, 1504, 1374, 1256 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.25 (d, *J* = 6.4 Hz, 3H, CH(CH₃)₂), 1.32 (d, *J* = 6.4 Hz, 3H, CH(CH₃)₂), 1.64 (d, *J* = 6.4 Hz, 3H, CH(CH₃)Ph), 4.10 (septet, *J* = 6.4 Hz, 1H, CH(CH₃)₂), 4.93 (q, *J* = 6.4 Hz, 1H, CH(CH₃)Ph), 6.98 (d, *J* = 2.4 Hz, 2Hz, 2Hz), 6.98 (d, *J* = 2.4 Hz).

1H, Ar*H*), 7.20–7.26 (m, 3H, Ar*H*), 7.34 (t, J = 7.2 Hz, 2H, Ar*H*), 7.44 (d, J = 8.0 Hz, 2H, Ar*H*), 7.79 (d, J = 9.6 Hz, 1H, Ar*H*), 7.88 (d, J = 8.0 Hz, 1H, Ar*H*) 8.61 (d, J = 3.2 Hz, 1H, Ar*H*); ¹³C NMR (100 MHz, CDCl₃): δ 19.0 (CH₃), 20.2 (CH₃), 20.9 (CH₃), 49.1 (CH), 53.5 (CH), 77.2 (CH), 110.6 (CH), 121.0 (CH), 124.1 (CH), 126.5 (CH), 126.7 (CH), 128.4 (CH), 128.8 (CH), 129.4 (CH), 129.4 (C), 134.1 (CH), 142.9 (C), 144.0 (C), 145.6 (C), 146.7 (CH);

HRMS (FAB) calcd for C₂₀H₂₃N [M+H]⁺ 291.1856, found 291.1861.

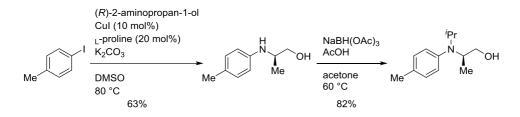
N-Isopropyl-*N*-(1-phenylethyl)-3,4-dimethylaniline (1r)

 $\begin{array}{c} & \stackrel{\text{Me}}{\longrightarrow} \stackrel{\text{Ph}}{\longrightarrow} \quad \text{Colorless oil; IR (KBr) $$\nu$ 2968, 1613, 1508, 1452, 1372, 1265, 1181, 1108, $$ \\ & \stackrel{\text{Me}}{\longrightarrow} \stackrel{\text{N}_{,\text{Pr}}}{\longrightarrow} \quad 765, 700 \text{ cm}^{-1}; \ ^{1}\text{H} \text{ NMR (400 MHz, CDCl_3): } \delta 1.06 \text{ (d, } J = 6.8 \text{ Hz, 3H, } \\ & \quad \text{CH(CH_3)_2), 1.10 \text{ (d, } J = 6.8 \text{ Hz, 3H, CH(CH_3)_2), 1.40 (d, } J = 6.8 \text{ Hz, 3H, } \\ & \quad \text{CH(CH_3)Ph), 2.16 (s, 3H, ArCH_3), 2.18 (s, 3H, ArCH_3), 3.66 (septet, J = 6.8 \text{ Hz, 3H, } \\ & \quad \text{CH(CH_3)_2), 4.66 (q, J = 6.8 \text{ Hz, 1H, CH(CH_3)Ph), 6.63 (d, J = 8.0 \text{ Hz, 1H, ArH}), \\ & \quad 6.72 \text{ (s, 1H, ArH), 6.92 (d, J = 8.0 \text{ Hz, 1H, ArH), 7.20 (t, J = 8.0 \text{ Hz, 1H, ArH}), \\ & \quad 6.72 \text{ (s, 1H, ArH), 7.42 (d, J = 8.0 \text{ Hz, 2H, ArH}); \ ^{13}\text{C} \text{ NMR (100 MHz, CDCl_3): } \delta 18.8 (CH_3), \\ & \quad 19.5 \text{ (CH_3), 20.2 (CH_3), 20.4 (CH_3), 21.0 (CH_3), 48.7 (CH), 55.3 (CH), 119.6 (CH), 123.3 \\ & \quad (CH), 126.3 (CH), 127.0 (CH), 127.8 (C), 128.2 (CH), 129.2 (CH), 136.1 (C), 144.6 (C), \\ & \quad 145.6 (C); \text{HRMS (FAB) calcd for C}_{19}\text{H}_{26}\text{N} [\text{M}+\text{H}]^+ 268.2060, found 268.2068. \\ \end{array}$

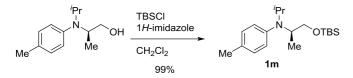
N-Isopropyl-*N*-(1-phenylethyl)-3-methoxycarbonyl-4-methylaniline (1s)

 $\stackrel{\text{Me} \ Ph}{\stackrel{\text{N}}{_{ipr}}} Colorless oil; IR (KBr) v 2970, 1722, 1610, 1508, 1435, 1254, 1075, 700$ $\stackrel{\text{Me} \ Ph}{\stackrel{\text{N}, ipr}{_{Me}}} cm^{-1}; {}^{1}\text{H} \text{NMR} (400 \text{ MHz, CDCl}_3): \delta 1.10 (d, J = 6.8 \text{ Hz}, 3\text{H}, CH(CH_3)_2),$ $1.13 (d, J = 6.8 \text{ Hz}, 3\text{H}, CH(CH_3)_2), 1.43 (d, J = 6.8 \text{ Hz}, 3\text{H}, CH(CH_3)\text{Ph}),$ $2.47 (s, 3\text{H}, ArCH_3), 3.73 (septet, J = 6.8 \text{ Hz}, 1\text{H}, CH(CH_3)_2), 3.85 (s, 3\text{H}, MR)$

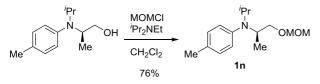
CO₂C*H*₃), 4.71 (q, *J* = 6.8 Hz, 1H, C*H*(CH₃)Ph), 6.86 (dd, *J* = 8.8, 2.8 Hz, 1H, Ar*H*), 6.99 (d, *J* = 8.8 Hz, 1H, Ar*H*), 7.22 (t, *J* = 8.0 Hz, 1H, Ar*H*), 7.31 (t, *J* = 8.0 Hz, 2H, Ar*H*), 7.40 (d, *J* = 8.0 Hz, 2H, Ar*H*), 7.48 (d, *J* = 2.8 Hz, 1H, Ar*H*); ¹³C NMR (100 MHz, CDCl₃): δ 19.7 (CH₃), 20.0 (CH₃), 20.8 (CH₃), 48.8 (CH), 51.7 (CH₃), 55.0 (CH), 122.8 (CH), 125.5 (CH), 126.4 (CH), 126.9 (CH), 128.3 (CH), 129.3 (C), 130.8 (C), 131.4 (CH), 144.5 (C), 144.8 (C), 168.5 (C=O); HRMS (FAB) calcd for C₂₀H₂₆NO₂ [M+H]⁺ 312.1958, found 312.1968.


N-Isopropyl-N-(1-phenylethyl)-3,5-dibromo-4-methylaniline (1t)

^{2h} Colorless solid; mp 85–86 °C; IR (KBr) v 2971, 1594, 1482, 1261, 1180, ^{2r} 1037, 733 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.13 (d, J = 6.8 Hz, 3H, CH(CH₃)₂), 1.19 (d, J = 6.8 Hz, 3H, CH(CH₃)₂), 1.52(d, J = 6.8 Hz, 3H, CH(CH₃)Ph), 2.43 (s, 3H, ArCH₃), 3.77 (septet, J = 6.8 Hz, 1H, CH(CH₃)₂),

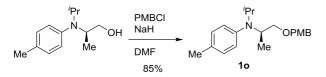

4.73 (q, J = 6.8 Hz, 1H, CH(CH₃)Ph), 6.95 (s, 2H, ArH), 7.22–7.25 (m, 1H, ArH), 7.30–7.35 (m, 4H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 18.8 (CH₃), 20.4 (CH₃), 22.5 (CH₃), 48.9 (CH), 54.2 (CH), 121.8 (CH), 121.9 (CH), 124.7 (C), 126.1 (C), 126.7 (CH), 128.4 (CH), 143.4 (C), 146.5 (C); HRMS (FAB) calcd for C₁₈H₂₁Br₂N [M]⁺ 409.0041, found 409.0037.

5. Procedure for the preparation of (R)-N-isopropyl-N-(1-oxypropan-2-yl)-p-toluidines

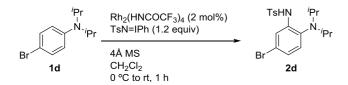


A mixture of 4-iodotoluene (2.18 g, 10 mmol), (*R*)-2-aminopropan-1-ol (1.16 mL, 15 mmol), CuI (191 mg, 1.0 mmol, 10 mol%), L-proline (230 mg, 2.0 mmol, 20 mol%), and K₂CO₃ (2.76 g, 20 mmol) in DMSO (6.0 mL) was heated to 80 °C under Ar atmosphere. After stirring for 12 h at the same temperature, the reaction was quenched with saturated aqueous NH₄Cl, and the mixture was extracted with AcOEt. The combined organic extracts were successively washed with brine, and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product, which was purified by column chromatography (silica gel, 3:2 *n*-hexane/AcOEt) to give (*R*)-*N*-(1-hydroxypropan-2-yl)-*p*-toluidine⁶ (1.04 g, 63%) as a colorless oil: $[\alpha]_D^{23} = -36.0$ (*c* 1.33, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 1.17 (d, *J* = 6.3 Hz, 3H, CH(CH₃)CH₂), 2.24 (s, 3H, ArCH₃), 3.48 (dd, *J* = 10.5, 6.3 Hz, 1H, CHCHHO), 3.59 (ddq, *J* = 6.3, 6.3, 4.8 Hz, 1H, CH(CH₃)CH₂), 3.71 (dd, *J* = 10.5, 4.2 Hz, 1H, CHCHHO), 6.60 (d, *J* = 8.4 Hz, 2H, ArH), 6.99 (d, *J* = 8.4 Hz, 2H, ArH).

To a solution of (*R*)-*N*-(1-hydroxypropan-2-yl)-*p*-toluidine (330 mg, 2.0 mmol) and AcOH (0.34 mL, 6.0 mmol) in acetone (10 mL) was added NaBH(OAc)₃ (1.27 g, 6.0 mmol) at room temperature under Ar atmosphere and the mixture was heated to 60 °C. After stirring for 12 h at the same temperature, the reaction was quenched with saturated aqueous NaHCO₃, and the mixture was extracted with AcOEt. The combined organic extracts were successively washed with brine, and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product, which was purified by column chromatography (silica gel, 3:1 nhexane/AcOEt) to give (R)-N-isopropyl-N-(1-hydroxypropan-2-yl)-p-toluidine (340 mg, 82%) as a colorless oil: $[\alpha]_D^{24} = -167.3$ (c 1.01, CHCl₃); IR (KBr) v 3366, 2969, 1616, 1514, 1184, 1042 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.00 (d, J = 6.8 Hz, 3H, CH(CH₃)CH₂), 1.12 (d, *J* = 6.4 Hz, 3H, CH(CH₃)₂), 1.15 (d, *J* = 6.4 Hz, 3H, CH(CH₃)₂), 2.30 (s, 3H, ArCH₃), 3.28 (dd, J = 10.4, 9.2 Hz, 1H, CHHO), 3.44 (dd, J = 10.4, 5.2 Hz, 1H, CHHO), 3.51-3.55 (m, 1H, $CH(CH_3)CH_2$), 3.59 (septet, J = 6.4 Hz, 1H, $CH(CH_3)_2$), 6.94 (d, J = 8.0 Hz, 2H, ArH), 7.06 (d, J = 8.0 Hz, 2H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 14.6 (CH₃), 20.7 (CH₃), 21.3 (CH₃), 23.3 (CH₃), 49.4 (CH), 54.7 (CH), 64.2 (CH₂), 125.5 (CH), 129.1 (CH), 132.5 (C), 144.0 (C); HRMS (FAB) calcd for C₁₃H₂₂NO [M+H]⁺ 208.1696, found 208.1708.



To a solution of (*R*)-*N*-isopropyl-*N*-(1-hydroxypropan-2-yl)-*p*-toluidine (311 mg, 1.5 mmol) and 1*H*-imidazole (153 mg, 2.3 mmol) in CH₂Cl₂ (5.0 mL) was added TBSCl (339 mg, 2.3 mmol) at 0 °C under Ar atmosphere. After stirring at room temperature for 1 h, the reaction was quenched with water, and the mixture was extracted with CH₂Cl₂. The combined organic extracts were dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product, which was purified by column chromatography (silica gel, 10:1 *n*-hexane/AcOEt) to give **1m** (478 mg, 99%) as a colorless oil: $[\alpha]_D^{24} = -27.1$ (*c* 1.01, CHCl₃); IR (KBr) *v* 2928, 1515, 1253, 1088, 836 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 0.00 (s, 6H, Si(CH₃)₂), 0.87 (s, 9H, Si'Bu) 1.11–1.17 (m, 9H, CH(CH₃)₂ and CH(CH₃)CH₂), 2.23 (s, 3H, ArCH₃), 3.54–3.57 (m, 2H, CH₂OSi), 3.68–3.76 (m, 2H, CH(CH₃)₂ and CH(CH₃)₂ and CH(CH₃)₂), 6.78 (d, *J* = 8.0 Hz, 2H, ArH), 6.97 (d, *J* = 8.0 Hz, 2H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ -5.4 (CH₃), 16.3 (CH₃), 18.2 (C), 20.4 (CH₃), 21.0 (CH₃), 21.9 (CH₃), 25.9 (CH₃), 48.9 (CH), 54.0 (CH), 66.7 (CH₂), 120.4 (CH), 128.1 (C), 128.9 (CH), 145.5 (C); HRMS (FAB) calcd for C₁₉H₃₆NOSi [M+H]⁺ 322.2561, found 322.2565.


To a solution of (*R*)-*N*-isopropyl-*N*-(1-hydroxypropan-2-yl)-*p*-toluidine (160 mg, 0.77 mmol) and ^{*i*}Pr₂NEt (0.20 mL, 1.2 mmol) in CH₂Cl₂ (10 mL) was added MOMCl (71 µL, 0.93 mmol) at room temperature under Ar atmosphere. After stirring for 12 h, the reaction was quenched with water, and the mixture was extracted with CH₂Cl₂. The combined organic extracts were dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product, which was purified by column chromatography (silica gel, 10:1 *n*-hexane/AcOEt) to give **1n** (147 mg, 76%) as a colorless oil: $[\alpha]_D^{24} = -48.2$ (*c* 1.06, CHCl₃); IR (KBr) *v* 2969, 1616, 1515, 1109, 1045, 920, 808 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.17 (d, *J* = 6.4 Hz, 6H, CH(CH₃)₂), 1.20 (d, *J* = 6.4 Hz, 3H, CH(CH₃)CH₂), 2.26 (s, 3H, ArCH₃), 3.34 (s, 3H, OCH₃), 3.49 (t, *J* = 8.0 Hz, 1H, CH(CH₃)CHH), 3.62–3.76 (m, 3H, CH(CH₃)₂, CH(CH₃)CHH), 4.60 (s, 2H, OCH₂OCH₃), 6.82 (d, *J* = 8.0 Hz, 2H, ArH), 7.01 (d, *J* = 8.0 Hz, 2H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 16.6 (CH₃), 20.4 (CH₃), 21.0 (CH₃), 21.9 (CH₃), 48.9 (CH), 52.0 (CH), 55.2 (CH₃), 71.8 (CH₂), 96.6 (CH₂), 121.2 (CH), 129.0 (CH), 129.0 (C), 145.2 (C); HRMS (FAB) calcd for C₁₅H₂₆NO₂ [M+H]⁺ 252.1958, found

252.1960.

To a solution of (R)-N-isopropyl-N-(1-hydroxypropan-2-yl)-p-toluidine (175 mg, 0.84 mmol) in DMF (1.7 mL) was added NaH (60%, 50.4 mg, 1.3 mmol) at 0 °C under Ar atmosphere. After stirring at room temperature for 30 min, PMBCl (0.17 mL, 1.3 mmol) was added at 0 °C. After stirring at room temperature for 4 h, the reaction was quenched with water, and the mixture was extracted with CH₂Cl₂. The combined organic extracts were dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product, which was purified by column chromatography (silica gel, 10:1 *n*-hexane/AcOEt) to give **10** (234 mg, 85%) as a colorless oil: $[\alpha]_D^{24} = -38.7$ (c 1.05, CHCl₃); IR (KBr) v 2969, 1613, 1513, 1247, 1095, 1036, 808 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.15 (d, J = 6.8 Hz, 6H, CH(CH₃)₂), 1.20 (d, *J* = 6.8 Hz, 3H, CH(CH₃)CH₂), 2.26 (s, 3H, ArCH₃), 3.42 (t, *J* = 8.4 Hz, 1H, CH(CH₃)CHH), 3.55 (dd, J = 8.4, 4.8 Hz, 1H, CH(CH₃)CHH), 3.69–3.76 (m, 2H, $CH(CH_3)_2$ and $CH(CH_3)CH_2$, 3.80 (s, 3H, ArOCH₃), 4.41 (s, 2H, OCH₂OAr), 6.80 (d, J = 8.0 Hz, 2H, ArH), 6.86 (d, J = 8.0 Hz, 2H, ArH), 6.99 (d, J = 8.0 Hz, 2H, ArH), 7.23 (d, J = 8.0 Hz, 2H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 16.8 (CH₃), 20.4 (CH₃), 21.0 (CH₃), 21.8 (CH₃), 48.8 (CH), 51.9 (CH), 55.2 (CH₃), 72.7 (CH₂), 74.1 (CH₂), 113.7 (CH), 120.9 (CH), 128.6 (C), 129.0 (CH), 129.1 (CH), 130.6 (C), 145.3 (C), 159.0 (C); HRMS (FAB) calcd for C₂₁H₃₀NO₂ [M+H]⁺ 328.2271, found 328.2274.

6. Typical procedure for Rh(II)-catalyzed *ortho* C–H amination of *N*,*N*-dialkylanilines: Preparation of *N*,*N*-diisopropyl-4-bromo-2-(tosylamido)aniline (2d)

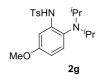
TsN=IPh (44.7 mg, 0.12 mmol) was added to a stirred mixture of *N*,*N*-diisopropyl-4-bromoaniline (**1d**) (25.6 mg, 0.10 mmol), Rh₂(HNCOCF₃)₄ (1.3 mg, 0.002 mmol, 2 mol %) and 4Å MS (powder, 40 mg) in CH₂Cl₂ (1.0 mL) at 0 °C under Ar atmosphere. After stirring at room temperature for 1 h, the whole mixture was filtered through a pad of Celite, and the filtrate was evaporated in vacuo to furnish the crude product, which was purified by column chromatography (silica gel, 8:1 *n*-hexane/AcOEt) to give 1,2-diaminobenzene **2d** (35.3 mg, 83%) as a colorless solid: mp 151–153 °C; IR (KBr) *v* 3194, 2971, 1485, 1382, 1165, 913, 745 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 60 °C): δ 0.85 (d, *J* = 6.4 Hz, 12H, CH(CH₃)₂), 2.36 (s, 3H, ArCH₃), 3.35 (septet, *J* = 6.4 Hz, 2H, CH(CH₃)₂), 6.94 (d, *J* = 8.4 Hz, 1H, ArH), 7.05 (dd, *J* = 8.4, 2.4 Hz, 1H, ArH), 7.24 (d, *J* = 8.4 Hz, 2H, ArH), 7.76 (d, *J* = 2.4 Hz, 1H, ArH), 7.78 (d, *J* = 8.4 Hz, 2H, ArH), 8.54 (brs, 1H, NH); ¹³C NMR (100 MHz, CDCl₃, 50 °C): δ 20.4 (CH₃), 21.4 (CH₃), 50.1 (CH), 118.6 (CH), 120.0 (C), 125.4 (CH), 127.2 (CH), 129.6 (CH), 129.8 (CH), 134.0 (C), 137.1 (C), 139.4 (C), 144.0 (C); HRMS (FAB) calcd for C₁₉H₂₆BrN₂O₂S [M+H]⁺425.0893, found 425.0891.

N,*N*-Diisopropyl-4-butyl-2-(tosylamido)aniline (2e)

Yield 87%; purified by column chromatography (silica gel, 10:1 *n*hexane/AcOEt); colorless solid; mp 97–98 °C; IR (KBr) v 3208, 2967, 1501, 1381, 905 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 60 °C): δ 0.84 (d, *J* = 6.4 Hz, 12H, CH(CH₃)₂), 0.92 (t, *J* = 7.6 Hz, 3H, (CH₂)₃CH₃), 1.32 (sextet, *J* = 7.6 Hz,

2H, CH₂CH₂CH₃), 1.58 (quintet, J = 7.6 Hz, 2H, CH₂CH₂CH₂), 2.34 (s, 3H, ArCH₃), 2.55 (t, J = 7.6 Hz, 2H, ArCH₂CH₂), 3.34 (septet, J = 6.4 Hz, 2H, CH(CH₃)₂), 6.72 (d, J = 8.0 Hz, 1H, ArH), 6.96 (d, J = 8.0 Hz, 1H, ArH), 7.18 (d, J = 8.0 Hz, 2H, ArH), 7.42 (s, 1H, ArH), 7.78 (d, J = 8.0 Hz, 2H, ArH), 8.54 (brs, 1H, NH); ¹³C NMR (100 MHz, CDCl₃, 60 °C): δ 13.9 (CH₃), 20.6 (CH₃), 21.3 (CH₃), 22.3 (CH₂), 33.3 (CH₂), 35.5 (CH₂), 50.1 (CH), 115.6 (CH), 122.4 (C), 127.3 (CH), 128.1 (CH), 129.3 (CH), 132.5 (CH), 137.6 (C), 137.7 (C), 141.3 (C), 143.5 (C); HRMS (FAB) calcd for C₂₃H₃₅N₂O₂S [M+H]⁺ 403.2414, found 403.2422.

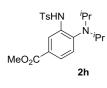
N,*N*-Diisopropyl-4-phenyl-2-(tosylamido)aniline (2f)



ⁿBı

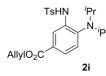
Yield 87%; purified by column chromatography (silica gel, 8:1 *n*-hexane/AcOEt); colorless amorphous; IR (KBr) *v* 3200, 2971, 1484, 1380, 1162, 942, 752 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 60 °C): δ 0.90 (d, *J* = 6.8 Hz, 12H, CH(CH₃)₂), 2.33 (s, 3H, ArCH₃), 3.40 (septet, *J* = 6.8 Hz, 2H, CH(CH₃)₂),

7.13 (d, J = 8.0 Hz, 1H, Ar*H*), 7.16 (dd, J = 8.0, 2.0 Hz, 1H, Ar*H*), 7.20 (d, J = 8.0 Hz, 2H, Ar*H*), 7.31 (t, J = 8.0 Hz, 1H, Ar*H*), 7.41 (t, J = 8.0 Hz, 2H, Ar*H*), 7.56 (dd, J = 8.0, 2.0 Hz, 2H, Ar*H*), 7.82 (d, J = 8.0 Hz, 2H, Ar*H*), 7.85 (d, J = 2.0 Hz, 1H, Ar*H*), 8.61 (brs, 1H, N*H*); ¹³C NMR (100 MHz, CDCl₃, 60 °C): δ 20.6 (CH₃), 21.3 (CH₃), 50.2 (CH), 114.1 (CH), 120.9 (CH), 127.0 (CH), 127.3 (CH), 127.4 (CH), 128.6 (CH), 128.7 (CH), 129.5 (CH), 134.3 (C), 137.6 (C), 138.3 (C), 139.4 (C), 140.6 (C), 143.6 (C); HRMS (FAB) calcd for C₂₅H₃₁N₂O₂S [M+H]⁺ 423.2101, found 423.2098.


N,*N*-Diisopropyl-4-methoxy-2-(tosylamido)aniline (2g)

Yield 92%; purified by column chromatography (silica gel, 4:1 *n*-hexane/AcOEt); colorless solid; mp 130–132 °C; IR (KBr) *v* 2971, 1505, 1381, 1159, 1091 cm⁻¹; ¹H NMR (400 MHz, CD₃CN, 70 °C): δ 0.86 (d, *J* = 6.4 Hz, 12H, CH(CH₃)₂), 2.36 (s, 3H, ArCH₃), 3.38 (septet, *J* = 6.4 Hz, 2H,

CH(CH₃)₂), 3.76 (s, 3H, OCH₃), 6.53 (dd, J = 8.8, 2.8 Hz, 1H, ArH), 7.09 (m, 2H, ArH), 7.32 (d, J = 8.0 Hz, 2H, ArH), 7.80 (d, J = 8.0 Hz, 2H, ArH), 8.60 (brs, 1H, NH); ¹³C NMR (100 MHz, CD₃CN, 70 °C): δ 20.8 (CH₃), 21.2 (CH₃), 50.9 (CH), 55.9 (CH₃), 102.1 (CH), 108.5 (CH), 128.0 (CH), 128.7 (C), 130.4 (CH), 130.5 (CH), 138.1 (C), 139.6 (C), 145.2 (C), 158.8 (C); HRMS (FAB) calcd for C₂₀H₂₉N₂O₃S [M+H]⁺ 377.1893, found 377.1908.


N,*N*-Diisopropyl-4-methoxycarbonyl-2-(tosylamido)aniline (2h)

Yield 78%; purified by column chromatography (silica gel, 6:1 to 4:1 *n*-hexane/AcOEt); colorless solid; mp 157–159 °C; IR (KBr) *v* 3209, 2974, 1720, 1383, 1245, 1164, 913, 746 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 0.85 (d, *J* = 6.4 Hz, 12H, CH(CH₃)₂), 2.36 (s, 3H, ArCH₃), 3.40 (septet, *J* =

6.4 Hz, 2H, CH(CH₃)₂), 3.92 (s, 3H, CO₂Me), 7.17 (d, J = 8.4 Hz, 1H, ArH), 7.23 (d, J = 8.0 Hz, 2H, ArH), 7.63 (d, J = 8.4 Hz, 1H, ArH), 7.81 (d, J = 8.0 Hz, 2H, ArH), 8.26 (s, 1H, ArH), 8.66 (brs, 1H, NH); ¹³C NMR (100 MHz, CDCl₃): δ 20.2 (CH₃), 21.5 (CH₃), 50.0 (CH), 52.2 (CH₃), 116.2 (CH), 123.6 (CH), 127.2 (CH), 128.2 (CH), 128.2 (C), 129.6 (CH), 136.6 (C), 138.0 (C), 139.7 (C), 143.9 (C), 166.5 (C=O); HRMS (FAB) calcd for C₂₁H₂₉N₂O₄S [M+H]⁺ 405.1843, found 405.1856.

N,*N*-Diisopropyl-4-allyloxycarbonyl-2-(tosylamido)aniline (2i)

Yield 72%; purified by column chromatography (silica gel, 8:1 to 6:1 *n*-hexane/AcOEt); colorless oil; IR (KBr) *v* 3207, 2973, 1720, 1382, 1239, 1165, 944, 749 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 60 °C): δ 0.89 (d, *J* = 6.4 Hz, 12H, CH(CH₃)₂), 2.35 (s, 3H, ArCH₃), 3.41 (septet, *J* = 6.4 Hz, 2H,

CH(CH₃)₂), 4.81 (d, J = 5.6 Hz, 2H, CH₂CH=CHH), 5.29 (d, J = 10.4 Hz, 1H, CH₂CH=CHH), 5.41 (d, J = 17.2 Hz, 1H, CH₂CH=CHH), 6.03 (ddd, J = 17.2, 10.4, 5.6 Hz, 1H, CH₂CH=CHH), 7.16 (d, J = 8.0 Hz, 1H, ArH), 7.22 (d, J = 8.0 Hz, 2H, ArH), 7.64 (dd, J = 8.0, 2.0 Hz, 1H, ArH), 7.82 (d, J = 8.0 Hz, 2H, ArH), 8.23 (d, J = 2.0 Hz, 1H, ArH), 8.57 (brs, 1H, NH); ¹³C NMR (100 MHz, CDCl₃, 60 °C): δ 20.5 (CH₃), 21.4 (CH₃), 50.3 (CH), 65.5 (CH₂), 116.6 (CH), 118.0 (CH₂), 123.5 (CH), 127.4 (CH), 128.4 (CH), 128.5 (C), 129.6 (CH), 132.3 (CH), 137.2 (C), 138.3 (C), 139.9 (C), 143.9 (C), 165.6 (C=O); HRMS (FAB)

calcd for C₂₃H₃₁N₂O₄S [M+H]⁺ 431.1999, found 431.2014.

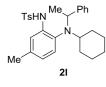
N-Isopropyl-*N*-(1-phenylethyl)-2-(tosylamido)-*p*-toluidine (2j)

TsHN Me Me 2j

1090, 910, 704 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 60 °C): δ 0.70 (d, J = 6.4Hz, 3H, CH(CH₃)₂), 0.80 (brs, 3H, CH(CH₃)Ph), 0.90 (d, J = 6.4 Hz, 3H, $CH(CH_3)_2$), 2.30 (s, 3H, ArCH₃), 2.33 (s, 3H, ArCH₃), 3.13 (septet, J = 6.4 Hz, 1H, CH(CH₃)₂), 4.21 (q, J = 6.4 Hz, 1H, CH(CH₃)Ph), 6.76 (d, J = 8.0 Hz, 1H, ArH), 7.00 (d, J = 8.0 Hz, 1H, ArH), 7.20 (d, J = 8.0 Hz, 2H, ArH), 7.24–7.40 (m, 6H, ArH), 7.80 (d, J = 8.0 Hz, 2H, ArH), 8.64 (brs, 1H, NH); ¹³C NMR (100 MHz, CDCl₃, 60 °C): δ 20.8 (CH₃), 21.3 (CH₃), 21.4 (CH₃), 21.8 (CH₃), 50.4 (CH), 60.4 (CH), 116.5 (CH), 123.1 (CH), 127.2 (CH), 127.3 (CH), 128.5 (CH), 128.7 (CH), 129.5 (CH), 129.5 (CH), 131.1 (C), 136.6 (C), 137.8 (C), 138.0 (C), 143.6 (C), 144.7 (C); HRMS (FAB) calcd for C₂₅H₃₁N₂O₂S [M+H]⁺ 423.2101, found 423.2113.

Yield 78%; purified by column chromatography (silica gel, 8:1 n-

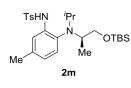
hexane/AcOEt); colorless oil; IR (KBr) v 3222, 2971, 1504, 1379, 1235, 1168,


N-Isopropyl-*N*-(1-phenylethyl)-2-(tosylamido)-4-trifluoromethylaniline (2k)

Yield 59%; purified by column chromatography (silica gel, 8:1 nhexane/AcOEt); colorless oil; IR (KBr) v 3232, 2973, 1598, 1507, 1384, 1167, 947, 701 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 50 °C): δ 0.72 (d, J = 6.4 Hz, 3H, $CH(CH_3)_2$), 0.83 (d, J = 6.4 Hz, 3H, $CH(CH_3)Ph$), 0.92 (d, J = 6.4 Hz, 3H,

 $CH(CH_3)_2$, 2.34 (s, 3H, ArCH₃), 3.20 (septet, J = 6.4 Hz, 1H, $CH(CH_3)_2$), 4.26 (q, J = 6.4 Hz, 1H, CH(CH₃)Ph), 7.22–7.37 (m, 9H, ArH), 7.80 (d, J = 8.0 Hz, 2H, ArH), 7.87 (s, 1H, ArH), 8.73 (brs, 1H, NH); ¹³C NMR (100 MHz, CDCl₃, 50 °C): δ 17.3 (CH₃), 20.6 (CH₃), 21.4 (CH₃), 21.6 (CH₃), 50.7 (CH), 60.3 (CH), 112.8 (q, J = 3.8 Hz, CH), 118.9 (q, J = 3.8 Hz, CH), 123.8 (q, J = 270 Hz, CF₃), 127.2 (CH), 127.3 (CH), 127.6 (CH), 128.9 (CH), 129.0 (q, *J* = 32 Hz, C), 129.3 (CH), 129.7 (CH), 136.9 (C), 137.3 (C), 138.9 (C), 143.7 (C), 144.2 (C); HRMS (FAB) calcd for C₂₅H₂₈F₃N₂O₂S [M+H]⁺477.1818, found 477.1819.

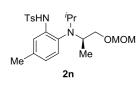
N-Cyclohexyl-*N*-(1-phenylethyl)-2-(tosylamido)-*p*-toluidine (2l)



Yield 68%; purified by column chromatography (silica gel, 8:1 nhexane/AcOEt); colorless oil; IR (KBr) v 3220, 2930, 1504, 1370, 1167, 1090, 911, 734 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 60 °C): δ 0.65 (ddd, J = 24.4, 12.4, 3.6 Hz, 1H, ^cHex), 0.83–0.99 (m, 7H, CH(CH₃)Ph and ^cHex),

1.38-1.47 (m, 2H, ^cHex), 1.58-1.60 (m, 2H, ^cHex), 1.95-1.98 (m, 1H, ^cHex), 2.30 (s, 3H,

ArCH₃), 2.33 (s, 3H, ArCH₃), 2.64-2.70 (m, 1H, ^cHex), 4.29 (q, J = 6.4 Hz, 1H, CH(CH₃)Ph), 6.74 (d, J = 8.0 Hz, 1H, ArH), 6.98 (d, J = 8.0 Hz, 1H, ArH), 7.19 (d, J = 8.0 Hz, 2H, ArH), 7.24–7.32 (m, 5H, ArH), 7.40 (s, 1H, ArH), 7.78 (d, J = 8.0 Hz, 2H, ArH), 8.63 (brs, 1H, NH); ¹³C NMR (100 MHz, CDCl₃, 60 °C): δ 14.0 (CH₃), 21.3 (CH₂), 21.4 (CH₂), 21.6 (CH₃), 25.7 (CH₂), 25.8 (CH₂), 26.0 (CH₂), 31.6 (CH₃), 59.6 (CH), 59.7 (CH), 116.4 (CH), 123.0 (CH), 127.2 (CH), 127.3 (CH), 127.3 (CH), 128.6 (CH), 128.9 (CH), 129.5 (CH), 131.8 (C), 136.5 (C), 137.8 (C), 137.9 (C), 143.5 (C); HRMS (FAB) calcd for C₂₈H₃₅N₂O₂S [M+H]⁺ 463.2414, found 463.2417.


(*R*)-*N*-Isopropyl-*N*-[1-(*tert*-butyldimethylsilyloxy)propan-2-yl]-2-(tosylamido)-*p*-toluidine (2m)

TsN=IPh (1.5 equiv) was used. Yield 79%; purified by column chromatography (silica gel, 8:1 *n*-hexane/AcOEt); colorless oil; $[\alpha]_D^{24} = -36.8$ (*c* 0.62, CHCl₃); IR (KBr) *v* 3202, 2928, 1505, 1384, 1169, 1091, 835 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 60 °C): δ 0.06 (s, 6H, SiCH₃),

0.84–0.88 (m, 18H, CH(CH₃)₂, CH(CH₃)CH₂ and Si^{*i*}Bu), 2.27 (s, 3H, ArCH₃), 2.35 (s, 3H, ArCH₃), 3.24–3.29 (m, 3H, CH(CH₃)₂, CH(CH₃)CH₂), 3.41–3.45 (m, 1H, CH(CH₃)CH₂), 6.71 (d, J = 8.0 Hz, 1H, ArH), 6.99 (d, J = 8.0 Hz, 1H, ArH), 7.20 (d, J = 8.0 Hz, 2H, ArH), 7.38 (s, 1H, ArH), 7.78 (d, J = 8.0 Hz, 2H, ArH), 8.59 (brs, 1H, NH); ¹³C NMR (100 MHz, CDCl₃, 60 °C): δ –5.31 (CH₃), –5.28 (CH₃), 15.7 (CH₃), 18.4 (C), 21.2 (CH₃), 21.4 (CH₃), 21.4 (CH₃), 26.1 (CH₃), 51.2 (CH), 56.6 (CH), 65.9 (CH₂), 117.0 (CH), 123.0 (CH), 127.2 (CH), 129.4 (CH), 129.6 (CH), 131.9 (C), 136.5 (C), 138.0 (C), 138.2 (C), 143.3 (C); HRMS (FAB) calcd for C₂₆H₄₃N₂O₃SSi [M+H]⁺491.2758, found 491.2765.

(*R*)-*N*-Isopropyl-*N*-[1-(methoxymethoxy)propan-2-yl]-2-(tosylamido)-*p*-toluidine (2n)

TsN=IPh (1.5 equiv) was used. Yield 77%; purified by column chromatography (silica gel, 8:1 to 6:1 *n*-hexane/AcOEt); colorless oil; $[\alpha]_D^{24} = -26.6$ (*c* 0.52, CHCl₃); IR (KBr) *v* 3163, 2970, 1506, 1384, 1159, 1043, 814 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 60 °C): δ 0.86 (d, *J*

= 6.0 Hz, 3H, CH(CH₃)CH₂), 0.94 (d, J = 6.4 Hz, 6H, CH(CH₃)₂), 2.23 (s, 3H, ArCH₃), 2.34 (s, 3H, ArCH₃), 3.33–3.40 (m, 7H, CH(CH₃)₂, CH(CH₃)CH₂, OCH₃), 4.68 (d, J = 6.4 Hz, 1H, OCHHOCH₃), 4.72 (d, J = 6.4 Hz, 1H, OCHHOCH₃), 6.70 (dd, J = 8.0, 2.0 Hz, 1H, ArH), 6.98 (d, J = 8.0 Hz, 1H, ArH), 7.20 (d, J = 8.0 Hz, 2H, ArH), 7.38 (d, J = 2.0 Hz, 1H, ArH), 7.79 (d, J = 8.0 Hz, 2H, ArH), 9.03 (brs, 1H, NH); ¹³C NMR (100 MHz, CDCl₃, 60 °C): δ 15.4 (CH₃), 21.3 (CH₃), 21.4 (CH₃), 21.9 (CH₃), 55.5 (CH₃), 69.6 (CH₂), 96.8 (CH₂), 116.9

(CH), 122.9 (CH), 127.3 (CH), 129.4 (CH), 129.9 (CH), 131.8 (C), 136.6 (C), 138.0 (C), 138.3 (C), 143.3 (C) (Two of CH–N were not found); HRMS (FAB) calcd for C₂₂H₃₃N₂O₄S [M+H]⁺ 421.2156, found 421.2159.

(R)-N-Isopropyl-N-[1-(p-methoxybenzyloxy)propan-2-yl]-2-(tosylamido)-p-toluidine (20)

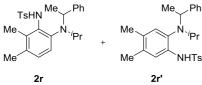
Yield 76%; purified by column chromatography (silica gel, 8:1 to 6:1 *n*-

hexane/AcOEt); colorless oil; $\left[\alpha\right]_{D}^{24} = -30.2$ (c 0.84, CHCl₃); IR (KBr)

TsHN [/]Pr N Me 2o

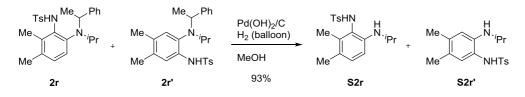
Me⁻ v 3134, 2969, 1510, 1380, 1246, 1159, 1091, 814, 706 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 60 °C): δ 0.81–0.91 (m, 9H, CH(CH₃)₂ and CH(CH₃)CH₂), 2.27 (s, 3H, ArCH₃), 2.33 (s, 3H, ArCH₃), 3.12–3.25 (m, 4H, CH(CH₃)₂, CH(CH₃)CH₂), 3.79 (s, 3H, OCH₃), 4.46 (d, J = 12.0 Hz, 1H, OCHHOAr), 4.56 (d, J = 12.0Hz, 1H, OCHHOAr), 6.68 (d, J = 8.0 Hz, 1H, ArH), 6.87 (d, J = 8.0 Hz, 2H, ArH), 6.95 (d, J = 8.0 Hz, 1H, ArH), 7.17 (d, J = 8.0 Hz, 2H, ArH), 7.28 (d, J = 8.0 Hz, 2H, ArH), 7.41 (s, 1H, ArH), 7.78 (d, J = 8.0 Hz, 2H, ArH), 9.10 (brs, 1H, NH); ¹³C NMR (100 MHz, CDCl₃, 60 °C): δ 15.5 (CH₃), 21.3 (CH₃), 21.4 (CH₃), 21.9 (CH₃), 55.3 (CH₃), 71.9 (CH₂), 72.7 (CH₂), 113.9 (CH), 117.0 (CH), 122.9 (CH), 127.3 (CH), 129.3 (CH), 129.6 (CH), 130.0 (CH), 130.5 (C), 132.1 (C), 136.5 (C), 138.0 (C), 138.4 (C), 143.2 (C), 159.4 (C) (Two of CH –N were not found); HRMS (FAB) calcd for C₂₈H₃₇N₂O₄S [M+H]⁺ 497.2469, found 497.2473.

N-Isopropyl-*N*-(1-phenylethyl)-1-(tosylamido)naphthalen-2-amine (2p)

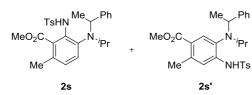

Yield 86%; purified by column chromatography (silica gel, 8:1 *n*-hexane/AcOEt); colorless amorphous; IR (KBr) *v* 2972, 1596, 1493, 1454, 1379, 1301, 1153, 1092, 911, 812, 734 cm⁻¹; ¹H NMR (400 MHz, CDCl₃,

50 °C): δ 0.87 (d, J = 6.4 Hz, 3H, CH(CH₃)₂), 0.98 (d, J = 6.4 Hz, 3H, CH(CH₃)Ph), 1.11 (d, J = 6.4 Hz, 3H, CH(CH₃)₂), 2.45 (s, 3H, ArCH₃), 3.31 (septet, J = 6.4 Hz, 1H, CH(CH₃)₂), 4.46 (q, J = 6.4 Hz, 1H, CH(CH₃)Ph), 7.23 (t, J = 6.8 Hz, 1H, ArH), 7.27 (t, J = 7.2 Hz, 1H, ArH), 7.31–7.42 (m, 6H, ArH), 7.47 (d, J = 7.2 Hz, 2H, ArH), 7.63 (d, J = 8.0 Hz, 1H, ArH), 7.76 (d, J = 8.0 Hz, 2H, ArH), 7.89 (d, J = 8.0 Hz, 2H, ArH), 8.96 (brs, 1H, NH); ¹³C NMR (100 MHz, CDCl₃, 50 °C): δ 17.5 (CH₃), 21.4 (CH₃), 21.5 (CH₃), 21.9 (CH₃), 51.3 (CH), 60.2 (CH), 124.7 (CH), 125.3 (CH), 125.8 (CH), 126.1 (CH), 126.2 (CH), 127.3 (CH), 127.4 (CH), 127.6 (CH), 127.8 (CH), 127.9 (C), 128.7 (CH), 129.5 (CH), 132.8 (C), 135.0 (C), 135.4 (C), 139.3 (C), 143.6 (C), 144.8 (C); HRMS (FAB) calcd for C₂₈H₃₁N₂O₂S [M+H]⁺ 459.2101, found 459.2102.

N-Isopropyl-N-(1-phenylethyl)-5-(tosylamido)quinolin-6-amine (2q)


Yield 79%; purified by column chromatography (silica gel, 2:1 to 3:2 *n*hexane/AcOEt); colorless amorphous; IR (KBr) *v* 2972, 1590, 1564, 1494, 1378, 1300, 1157, 1091, 908, 813, 763 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, **2q** 60 °C): δ 0.89 (d, *J* = 6.4 Hz, 3H, CH(CH₃)₂), 0.95 (d, *J* = 6.4 Hz, 3H, CH(CH₃)Ph), 1.06 (d, *J* = 6.4 Hz, 3H, CH(CH₃)₂), 2.43 (s, 3H, ArCH₃), 3.31 (septet, *J* = 6.4 Hz, 1H, CH(CH₃)₂), 4.45 (q, *J* = 6.4 Hz, 1H, CH(CH₃)Ph), 7.20 (dd, *J* = 8.0, 4.0 Hz, 1H, ArH), 7.27–7.32 (m, 5H, ArH), 7.36 (t, *J* = 7.2 Hz, 2H, ArH), 7.61 (d, *J* = 8.8 Hz, 1H, ArH), 7.79 (d, *J* = 8.0 Hz, 2H, ArH), 7.91 (d, *J* = 9.6 Hz, 1H, ArH), 8.27 (d, *J* = 8.0 Hz, 1H, ArH), 8.79 (brs, 1H, NH), 8.83 (dd, *J* = 4.0, 1.6 Hz, 1H, ArH); ¹³C NMR (100 MHz, CDCl₃, 60 °C): δ 17.9 (CH₃), 21.3 (CH₃), 21.4 (CH₃), 21.5 (CH₃), 51.4 (CH), 60.0 (CH), 120.1 (CH), 123.3 (C), 126.1 (CH), 127.3 (CH), 127.4 (CH), 127.6 (CH), 128.7 (CH), 129.7 (CH), 134.5 (CH), 134.9 (C), 135.4 (C), 138.7 (C), 144.0 (C), 144.3 (C), 147.2 (C), 150.2 (CH); HRMS (FAB) calcd for C₂₇H₃₀N₃O₂S [M+H]⁺ 460.2053, found 460.2057.

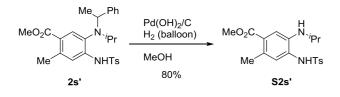
N-Isopropyl-*N*-(1-phenylethyl)-3,4-dimethyl-2-(tosylamido)aniline (2r) and *N*-isopropyl-*N*-(1-phenylethyl)-4,5-dimethyl-2-(tosylamido)aniline (2r')


⁵h Yield 83% (**2r**:**2r**' = 70:30); purified by column ⁵r chromatography (silica gel, 8:1 *n*-hexane/AcOEt); colorless ^{Ts} amorphous; IR (KBr) *v* 1971, 1493, 1323, 1154, 1092, 702 cm⁻¹; ¹H NMR (400 MHz, CDCl₃,): δ 0.68 (d, *J* = 6.4 Hz,

3H, CH(CH₃)₂ for **2r**'), 0.77 (d, J = 6.4 Hz, 3H, CH(CH₃)Ph for **2r**'), 0.85 (d, J = 6.4 Hz, 3H, CH(CH₃)₂ for **2r**), 0.90 (d, J = 6.4 Hz, 3H, CH(CH₃)₂ for **2r**'), 0.97 (d, J = 6.4 Hz, 3H, CH(CH₃)Ph for **2r**), 1.15 (d, J = 6.4 Hz, 3H, CH(CH₃)₂ for **2r**), 1.96 (s, 3H, ArCH₃ for **2r**), 2.15 (s, 3H, ArCH₃ for **2r**'), 2.21 (s, 3H, ArCH₃ for **2r**'), 2.22 (s, 3H, ArCH₃ for **2r**), 2.32 (s, 3H, ArCH₃ for **2r**'), 2.44 (s, 3H, ArCH₃ for **2r**), 3.11 (septet, J = 6.4 Hz, 1H, CH(CH₃)₂ for **2r**'), 3.23 (septet, J = 6.4 Hz, 1H, CH(CH₃)Ph for **2r**), 4.20 (d, J = 6.4 Hz, 1H, CH(CH₃)Ph for **2r**'), 4.33 (d, J = 6.4 Hz, 1H, CH(CH₃)Ph for **2r**), 6.86 (s, 1H, ArH for **2r**'), 6.93 (d, J = 8.0 Hz, 1H, ArH for **2r**), 7.03 (d, J = 8.0 Hz, 1H, ArH for **2r**'), 7.45 (d, J = 8.0 Hz, 2H, ArH for **2r**'), 7.80 (d, J = 8.0 Hz, 2H, ArH for **2r**'), 7.89 (d, J = 8.0 Hz, 2H, ArH for **2r**'), 8.91 (brs, 1H, NH for **2r**'); HRMS (FAB) calcd for C₂₆H₃₃N₂O₂S [M+H]⁺ 437.2257, found 437.2261.

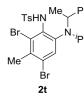
The structures of **2r** and **2r**' were assigned after removal of their 1-phenylethyl groups. A solution of **2r** and **2r**' (70:30, 53.8 mg) in MeOH (1.0 mL) was stirred with 20% Pd(OH)₂/C (27 mg) under 1 atm of H₂ at room temperature for 6 h. The catalyst was removed by filtration, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, 3:1 *n*-hexane/AcOEt) to give a mixture of **S2r** and **S2r'** (65:35, 38.1 mg, 93%) as a colorless oil: IR (KBr) *v* 3271, 2966, 1607, 1513, 1325, 1159, 1092, 916, 813 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): δ 0.91 (d, *J* = 6.4 Hz, 6H, CH(CH₃)₂ for **S2r**), 0.97 (d, *J* = 6.4 Hz, 6H, CH(CH₃)₂ for **S2r**), 0.97 (d, *J* = 6.4 Hz, 6H, CH(CH₃)₂ for **S2r**), 2.03 (s, 3H, ArCH₃ for **S2r**), 2.30 (s, 3H, ArCH₃ for **S2r**'), 2.32 (s, 3H, ArCH₃ for **S2r**), 3.33 (septet, *J* = 6.4 Hz, 1H, CH(CH₃)₂ for **S2r**), 3.39 (septet, *J* = 6.4 Hz, 1H, CH(CH₃)₂ for **S2r**'), 6.20 (s, 1H, ArH for **S2r**'), 6.32 (d, *J* = 8.0 Hz, 1H, ArH for **S2r**'), 7.20 (d, *J* = 8.0 Hz, 2H, ArH for **S2r**'), 7.50 (d, *J* = 8.0 Hz, 2H, ArH for **S2r**); HRMS (FAB) calcd for C₁₈H₂₅N₂O₂S [M+H]⁺ 333.1631, found 333.1643.

N-Isopropyl-*N*-(1-phenylethyl)-4-methyl-3-methoxycarbonyl-2-(tosylamido)aniline (2s) and *N*-isopropyl-*N*-(1-phenylethyl)-4-methyl-5-methoxycarbonyl-2-(tosylamido)aniline (2s')



TsN=IPh (2.0 equiv) was used. Yield 78% (2s:2s' = 5:>95); 2s and 2s' were separable by column chromatography (silica gel, 6:1 to 4:1 *n*-hexane/AcOEt).

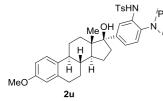
2s; colorless oil; ¹H NMR (300 MHz, CDCl₃): δ 0.76 (d, J = 6.6 Hz, 3H, CH(CH₃)₂), 0.78 (d, J = 6.6 Hz, 3H, CH(CH₃)₂), 0.88 (d, J = 6.6 Hz, 3H, CH(CH₃)Ph), 2.36 (s, 3H, ArCH₃), 2.39 (s, 3H, ArCH₃), 3.11 (septet, J = 6.6 Hz, 1H, CH(CH₃)₂), 3.67 (s, 3H, CO₂CH₃), 4.22 (q, J = 6.6 Hz, 1H, CH(CH₃)Ph), 6.96 (d, J = 8.1 Hz, 1H, ArH), 7.15 (d, J = 8.1 Hz, 1H, ArH), 7.23–7.36 (m, 7H, ArH), 7.81 (d, J = 8.1 Hz, 2H, ArH), 9.10 (brs, 1H, NH).


2s'; colorless amorphous; IR (KBr) *v* 3235, 2972, 1719, 1562, 1453, 1305, 1255, 1169, 1090, 894, 702 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 60°C): δ 0.72 (d, *J* = 6.4 Hz, 3H, CH(CH₃)₂), 0.85–0.94 (m, 6H, CH(CH₃)₂ and CH(CH₃)Ph), 2.35 (s, 3H, ArCH₃), 2.56 (s, 3H, ArCH₃),

3.18 (septet, J = 6.4 Hz, 1H, $CH(CH_3)_2$), 3.85 (s, 3H, CO_2CH_3), 4.27 (q, J = 6.4 Hz, 1H, $CH(CH_3)Ph$), 7.22 (d, J = 8.0 Hz, 2H, Ar*H*), 7.26–7.34 (m, 5H, Ar*H*), 7.41 (s, 1H, Ar*H*), 7.73 (s, 1H, Ar*H*), 7.80 (d, J = 8.0 Hz, 2H, Ar*H*), 8.75 (brs, 1H, N*H*); ¹³C NMR (100 MHz, CDCl₃, 60 °C): δ 20.7 (CH₃), 21.4 (CH₃), 21.7 (CH₃), 22.0 (CH₃), 50.5 (CH), 51.6 (CH), 60.3 (CH₃), 118.0 (CH), 123.3 (CH), 127.2 (CH), 127.2 (C), 127.5 (CH), 128.8 (CH), 129.7 (CH), 131.0 (C), 131.4 (CH), 137.4 (C), 139.9 (C), 141.5 (C), 144.0 (C), 144.2 (C), 167.4 (C=O); HRMS (FAB) calcd for C₂₇H₃₃N₂O₄S [M+H]⁺ 481.2156, found 481.2158.

The structure of isolated **2s'** was assigned after removal of the 1-phenylethyl group. The reaction was carried out according to the procedure for hydrogenolysis of **2r** and **2r'**. **S2s'**; yield 80%; purified by column chromatography (silica gel, 3:1 *n*-hexane/AcOEt); colorless oil: IR (KBr) *v* 3245, 2967, 1721, 1518, 1437, 1335, 1248, 1157, 909 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.08 (d, *J* = 6.4 Hz, 6H, CH(CH₃)₂), 2.32 (s, 3H, ArCH₃), 2.41 (s, 3H, ArCH₃), 3.47 (septet, *J* = 6.4 Hz, 1H, CH(CH₃)₂), 3.85 (s, 3H, CO₂CH₃), 6.71 (s, 1H, ArH), 7.23 (s, 1H, ArH), 7.26 (d, *J* = 8.0 Hz, 2H, ArH), 7.65 (d, *J* = 8.0 Hz, 2H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 20.7 (CH₃), 21.5 (CH₃), 22.5 (CH₃), 44.9 (CH), 51.8 (CH₃), 116.9 (CH), 126.5 (C), 127.4 (CH), 128.4 (C), 128.9 (CH), 129.7 (CH), 129.9 (C), 136.1 (C), 140.1 (C), 144.1 (C), 167.9 (C=O); HRMS (FAB) calcd for C₁₉H₂₅N₂O₄S [M+H]⁺ 377.1530, found 377.1537.

N-Isopropyl-*N*-(1-phenylethyl)-3,5-dibromo-4-methyl-2-(tosylamido)aniline (2t)



TsN=IPh (1.5 equiv) was used. Yield 59%; purified by column chromatography (silica gel, 4:1 *n*-hexane/AcOEt); colorless amorphous; IR (KBr) *v* 3149, 2971, 1446, 1323, 1155, 1091, 900, 811, 735 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 0.88 (d, J = 6.4 Hz, 3H, CH(CH₃)₂), 1.01 (d, J = 6.4 Hz, 3H, CH(CH₃)₃)

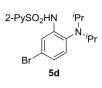
3H, CH(CH₃)Ph), 1.25 (d, J = 6.4 Hz, 3H, CH(CH₃)₂), 2.45 (s, 3H, ArCH₃), 2.56 (s, 3H, ArCH₃), 3.25 (septet, J = 6.4 Hz, 1H, CH(CH₃)₂), 4.36 (q, J = 6.4 Hz, 1H, CH(CH₃)Ph), 7.28 –7.33 (m, 3H, ArH), 7.39 (t, J = 8.0 Hz, 2H, ArH), 7.40–7.52 (m, 3H, ArH), 7.92 (d, J = 8.0 Hz, 2H, ArH), 8.75 (brs, 1H, NH); ¹³C NMR (100 MHz, CDCl₃): δ 16.7 (CH₃), 21.1 (CH₃), 21.6 (CH₃), 21.8 (CH₃), 24.7 (CH₃), 50.8 (CH), 60.8 (CH), 119.5 (C), 119.7 (C), 127.0 (CH), 127.5 (CH), 127.6 (CH), 128.8 (CH), 128.9 (CH), 131.7 (CH), 137.1 (C), 138.5 (C), 139.4

(C), 139.8 (C), 143.1 (C), 143.8 (C); HRMS (FAB) calcd for $C_{25}H_{29}Br_2N_2O_2S$ [M+H]⁺ 579.0311, found 579.0312.

3-O-Methyl-17-[4-(diisopropylamino)-3-(tosylamido)phenyl]estradiol (2u)

Yield 83%; purified by column chromatography (silica gel, 3:1 *n*-hexane/AcOEt); colorless solid; mp 100–103 °C, $[\alpha]_D^{26} =$ +24.8 (*c* 0.70, CHCl₃); IR (KBr) *v* 3543, 3199, 2931, 1499, 1379, 1237, 1162, 911, 813, 732 cm⁻¹; ¹H NMR (400 MHz, CDCl₃,

60 °C): δ 0.53 (dt, J = 12.8, 4.0 Hz, 1H, C16-H), 0.87–0.90 (m, 12H, CH(CH₃)₂), 1.06 (s, 3H, C18-H), 1.27–1.64 (m, 7H), 1.81–1.91 (m, 3H), 2.06–2.14 (m, 2H), 2.32 (s, 3H, ArCH₃), 2.32 –2.39 (m, 1H), 2.79–2.86 (m, 2H), 3.38 (septet, J = 6.4 Hz, 2H, CH(CH₃)₂), 3.74 (s, 3H, OCH₃), 6.59 (d, J = 2.0 Hz, 1H, ArH), 6.65 (dd, J = 8.0, 2.0 Hz, 1H, ArH), 7.01–7.09 (m, 3H, ArH), 7.19 (d, J = 8.0 Hz, 2H, ArH), 7.53 (s, 1H, ArH), 7.80 (d, J = 8.0 Hz, 2H, ArH), 8.52 (brs, 1H, NH); ¹³C NMR (100 MHz, CDCl₃, 60 °C): δ 14.8 (CH₃), 20.7 (CH₃), 21.4 (CH₃), 24.0 (CH₂), 26.4 (CH₂), 27.5 (CH₂), 29.8 (CH₂), 33.9 (CH₂), 38.8 (CH₂), 39.7 (CH), 43.6 (CH), 47.3 (C), 48.5 (CH), 50.1 (CH), 55.2 (CH₃), 86.0 (C), 111.6 (CH), 114.0 (CH), 114.9 (CH), 121.4 (CH), 126.0 (CH), 127.1 (CH), 127.3 (CH), 129.5 (CH), 132.7 (C), 133.7 (C), 137.1 (C), 138.0 (C), 138.0 (C), 143.5 (C), 144.5 (C), 157.7 (C); HRMS (FAB) calcd for C₃₈H₅₁N₂O₄S [M+H]⁺ 631.3564, found 631.3570.


N,*N*-Diisopropyl-4-bromo-2-(*p*-nosylamido)aniline (4d)

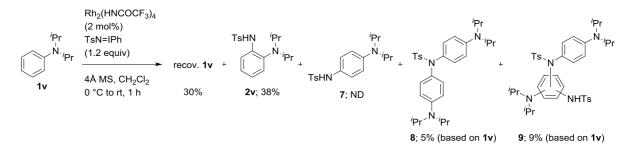
*p*NsN=IPh (1.5 equiv) was used instead of TsN=IPh under otherwise identical or conditions to the typical procedure. Yield 93%; purified by column chromatography (silica gel, 3:1 to 2:1 *n*-hexane/AcOEt); yellow solid; mp 143–

145 °C; IR (KBr) *v* 3180, 2972, 1530, 1484, 1348, 1171, 1090, 939, 854, 736 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 60 °C): δ 0.85 (d, *J* = 6.4 Hz, 12H, CH(CH₃)₂) 3.37 (septet, *J* = 6.4 Hz, 2H, CH(CH₃)₂), 6.99 (d, *J* = 8.0 Hz, 1H, Ar*H*), 7.12 (dd, *J* = 8.0, 2.4 Hz, 1H, Ar*H*), 7.77 (d, *J* = 2.4 Hz, 1H, Ar*H*), 8.09 (d, *J* = 8.8 Hz, 2H, Ar*H*), 8.30 (d, *J* = 8.8 Hz, 2H, Ar*H*), 8.78 (s, 1H, N*H*); ¹³C NMR (100 MHz, CDCl₃, 60 °C): δ 20.4 (CH₃), 50.2 (CH), 118.6 (CH), 120.3 (C), 124.3 (CH), 126.3 (CH), 128.3 (CH), 130.1 (CH), 134.2 (C), 138.5 (C), 145.7 (C), 150.6 (C); HRMS (FAB) calcd for C₁₈H₂₃BrN₃O₄S [M+H]⁺ 456.0587, found 456.0596.

N,*N*-Diisopropyl-4-bromo-2-(2ryridinesulfonylamido)aniline (5d)

2rySO₂N=IPh was used instead of TsN=IPh under otherwise identical conditions to the typical procedure. Yield 70%; purified by column chromatography (silica gel, 3:1 to 2:1 *n*-hexane/AcOEt); colorless solid; mp 108–110 °C; IR (KBr) *v* 3194, 2972, 1585, 1485, 1382, 1177, 940, 869, 736

cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 60 °C): δ 0.93 (d, *J* = 6.4 Hz, 12H, CH(CH₃)₂), 3.40 (septet, *J* = 6.4 Hz, 2H, CH(CH₃)₂), 6.96 (d, *J* = 8.0 Hz, 1H, Ar*H*), 7.05 (dd, *J* = 8.0, 2.0 Hz, 1H, Ar*H*), 7.42 (dd, *J* = 8.0, 4.8 Hz, 1H, Ar*H*), 7.83 (d, *J* = 2.0 Hz, 1H, Ar*H*), 7.87 (dt, *J* = 8.0, 1.6 Hz, 1H, Ar*H*), 8.07 (d, *J* = 8.0 Hz, 1H, Ar*H*), 8.61 (d, *J* = 4.8 Hz, 1H, Ar*H*), 8.83 (brs, 1H, N*H*); ¹³C NMR (100 MHz, CDCl₃, 60 °C): δ 20.5 (CH₃), 50.2 (CH), 118.8 (CH), 120.0 (C), 122.5 (CH), 125.5 (CH), 126.9 (CH), 129.8 (CH), 134.2 (C), 137.8 (CH), 139.3 (C), 150.1 (CH), 157.0 (C); HRMS (FAB) calcd for C₁₇H₂₃BrN₃O₂S [M+H]⁺412.0689, found 412.0702.

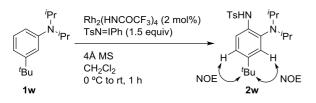

N,*N*-Diisopropyl-4-bromo-2-(trichloroethoxysulfonylamido)aniline (6d)

TcesN=IPh was used instead of TsN=IPh under otherwise identical conditions to the typical procedure. Yield 79%; purified by column chromatography (silica gel, 2:1 to 3:2 *n*-hexane/AcOEt); colorless oil; IR (KBr) *v* 3566, 2978, 1597, 1480, 1395, 1147, 992, 843, 726 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 60 °C): δ

1.02 (d, J = 6.4 Hz, 12H, CH(CH₃)₂), 3.48 (septet, J = 6.4 Hz, 2H, CH(CH₃)₂), 4.66 (s, 2H, OCH₂CCl₃), 7.06 (d, J = 8.4 Hz, 1H, ArH), 7.18 (dd, J = 8.4, 2.0 Hz, 1H, ArH), 7.72 (d, J = 2.0 Hz, 1H, ArH); ¹³C NMR (100 MHz, CDCl₃, 60 °C): δ 20.5 (CH₃), 50.6 (CH), 78.8 (CH₂), 93.2 (C), 119.9 (CH), 120.5 (C), 126.4 (CH), 129.4 (CH), 133.8 (C), 138.6 (C); HRMS (FAB) calcd for C₁₄H₂₁BrCl₃N₂O₃S [M+H]⁺ 480.9516, found 480.9524.

7. Rh(II)-catalyzed C(sp²)–H amination of *N*,*N*-diisopropylaniline (1v)

TsN=IPh (134 mg, 0.36 mmol) was added to a stirred mixture of *N*,*N*-diisopropylaniline (**1v**) (53.2 mg, 0.30 mmol), Rh₂(HNCOCF₃)₄ (3.9 mg, 0.006 mmol, 2 mol %) and 4Å MS (powder, 120 mg) in CH₂Cl₂ (3.0 mL) at 0 °C under Ar atmosphere. After stirring at room temperature for 1 h, the whole mixture was filtered through a pad of Celite,


and the filtrate was evaporated in vacuo to furnish the crude product, which was purified by column chromatography (silica gel, 6:1 to 4:1 *n*-hexane/AcOEt) to give **2v** (39.9 mg, 38%), **8** (3.6 mg, 5%), and **9** (8.9 mg, 9%).

2v; colorless solid; mp 100–102 °C; IR (KBr) *v* 3205, 2971, 1597, 1490, 1382, 1165, 1091, 934, 913, 754 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 60 °C): δ 0.87 (d, *J* = 6.4 Hz, 12H, CH(CH₃)₂), 2.34 (s, 3H, ArCH₃), 3.37 (septet, *J* = 6.4 Hz, 2H, CH(CH₃)₂), 6.91 (dt, *J* = 8.0, 2.0 Hz, 1H, ArH), 7.08–7.11 (m, 2H, ArH), 7.20 (d, *J* = 8.0 Hz, 2H, ArH), 7.56 (dd, *J* = 8.0, 2.0 Hz, 1H, ArH), 7.78 (d, *J* = 8.0 Hz, 2H, ArH), 8.61 (s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃, 60 °C): δ 20.5 (CH₃), 21.3 (CH₃), 50.1 (CH), 115.6 (CH), 122.3 (CH), 126.5 (CH), 127.2 (CH), 128.5 (CH), 129.5 (CH), 135.1 (C), 137.7 (C), 138.1 (C), 143.5 (C); HRMS (FAB) calcd for C₁₉H₂₇N₂O₂S [M+H]⁺ 347.1788, found 347.1784.

8; colorless amorphous; IR (KBr) *v* 2969, 1603, 1509, 1350, 1290, 1163, 814 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.20 (d, *J* = 6.4 Hz, 24H, CH(CH₃)₂), 2.44 (s, 3H, ArCH₃), 3.76 (septet, *J* = 6.4 Hz, 4H, CH(CH₃)₂), 6.71 (d, *J* = 9.2 Hz, 4H, ArH), 7.04 (d, *J* = 9.2 Hz, 4H, ArH), 7.25 (d, *J* = 8.0 Hz, 2H, ArH), 7.59 (d, *J* = 8.0 Hz, 2H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 21.2 (CH₃), 21.6 (CH₃), 47.4 (CH), 117.3 (CH), 127.9 (CH), 128.8 (CH), 129.2 (CH), 131.2 (C), 138.2 (C), 142.7 (C), 147.2 (C); HRMS (FAB) calcd for C₃₁H₄₄N₃O₂S [M+H]⁺ 522.3149, found 522.3157.

9; colorless amorphous; IR (KBr) *v* 3198, 2971, 1602, 1512, 1352, 1166, 1090, 1011, 911, 813 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 60 °C): δ 0.79 (d, *J* = 6.4 Hz, 12H, CH(CH₃)₂), 1.25 (d, *J* = 6.4 Hz, 12H, CH(CH₃)₂), 2.30 (s, 3H, ArCH₃), 2.42 (s, 3H, ArCH₃), 3.28 (septet, *J* = 6.4 Hz, 2H, CH(CH₃)₂), 3.81 (septet, *J* = 6.4 Hz, 2H, CH(CH₃)₂), 6.76 (d, *J* = 8.0 Hz, 2H, ArH), 6.89 (dd, *J* = 8.0, 2.8 Hz, 1H, ArH), 6.95 (d, *J* = 8.8 Hz, 1H, ArH), 7.01 (d, *J* = 8.8 Hz, 2H, ArH), 7.10 (d, *J* = 8.0 Hz, 2H, ArH), 7.24 (d, *J* = 8.8 Hz, 2H, ArH), 7.62–7.65 (m, 5H, ArH), 8.42 (brs, 1H, NH); ¹³C NMR (100 MHz, CDCl₃): δ 20.5 (CH₃), 21.4 (CH₃), 21.5 (CH₃), 47.7 (CH), 50.1 (CH), 113.9 (CH), 117.4 (CH), 121.0 (CH), 127.4 (CH), 128.1 (CH), 128.6 (CH), 129.4 (CH), 129.8 (CH), 130.2 (CH), 133.9 (C), 137.0 (C), 137.9 (C), 138.2 (C), 140.8 (C), 142.0 (C), 143.2 (C), 143.5 (C), 148.0 (C); HRMS (FAB) calcd for C₃₈H₅₁N₄O₄S₂ [M+H]⁺ 691.3346, found 691.3361.

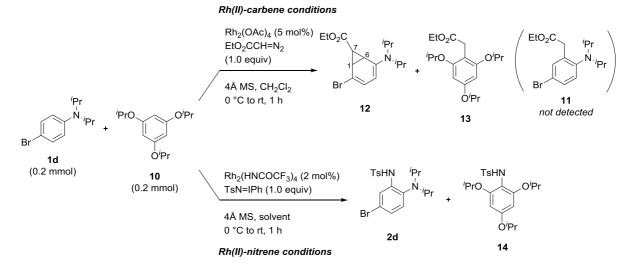
8. Typical procedure for Rh(II)-catalyzed *ortho* C–H amination of *papa*-unsubstituted *N*,*N*-dialkylanilines: Preparation of *N*,*N*-diisopropyl-5-*tert*-butyl-2-(tosylamido)aniline (2w)

TsN=IPh (56.0 mg, 0.15 mmol) was added to a stirred mixture of *N*,*N*-diisopropyl-3-*tert*-butylaniline (**1w**) (23.3 mg, 0.10 mmol), Rh₂(HNCOCF₃)₄ (1.3 mg, 0.002 mmol, 2 mol %) and 4Å MS (powder, 40 mg) in CH₂Cl₂ (1.0 mL) at 0 °C under Ar atmosphere. After stirring at room temperature for 1 h, the whole mixture was filtered through a pad of Celite, and the filtrate was evaporated in vacuo to furnish the crude product, which was purified by column chromatography (silica gel, 8:1 *n*-hexane/AcOEt) to give 1,2-diaminobenzene **2w** (26.9 mg, 67%) as a colorless oil: IR (KBr) *v* 3215, 2965, 1499, 1365, 1166, 1091, 889, 813 cm⁻¹; ¹H NMR (400 MHz, CD₃CN, 60 °C): δ 0.77 (d, *J* = 6.4 Hz, 12H, CH(CH₃)₂), 1.15 (s, 9H, 'Bu), 2.26 (s, 3H, ArCH₃), 3.34 (septet, *J* = 6.4 Hz, 2H, CH(CH₃)₂), 7.08 (dd, *J* = 8.4, 2.0 Hz, 1H, Ar*H*), 7.11 (d, *J* = 2.0 Hz, 1H, Ar*H*), 7.21 (d, *J* = 8.4 Hz, 2H, Ar*H*), 7.33 (d, *J* = 8.4 Hz, 1H, Ar*H*), 7.70 (d, *J* = 8.0 Hz, 2H, Ar*H*), 8.42 (brs, 1H, N*H*); ¹³C NMR (100 MHz, CD₃CN, 60 °C): δ 20.8 (CH₃), 21.1 (CH₃), 31.3 (CH₃), 34.5 (C), 50.6 (CH), 115.3 (CH), 123.6 (CH), 126.8 (CH), 127.8 (CH), 130.3 (CH), 135.5 (C), 136.0 (C), 138.2 (C), 145.0 (C), 146.3 (C); HRMS (FAB) calcd for C₂₃H₃₅N₂O₂S [M+H]⁺403.2414, found 403.2426.

N,*N*-Diisopropyl-5-[2-(methoxycarbonyl)propan-2-yl]-2-(tosylamido)aniline (2x)

Yield 59%; purified by column chromatography (silica gel, 4:1 *n*h/_{i/Pr} hexane/AcOEt); colorless solid; mp 104–106 °C; IR (KBr) v 3212, 2972, 1731, 1499, 1382, 1254, 1165 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 60 °C): δ 0.86 (d, *J* = 6.4 Hz, 12H, CH(CH₃)₂), 1.50 (s, 6H, ArC(CH₃)₂), 2.36 (s, 3H, ArCH₃), 3.37

(septet, J = 6.4 Hz, 2H, $CH(CH_3)_2$), 3.60 (s, 3H, CO_2CH_3), 7.06–7.09 (m, 2H, Ar*H*), 7.22 (d, J = 8.0 Hz, 2H, Ar*H*), 7.45 (d, J = 8.0 Hz, 1H, Ar*H*), 7.79 (d, J = 8.0 Hz, 2H, Ar*H*), 8.47 (brs, 1H, N*H*); ¹³C NMR (100 MHz, CDCl₃, 60 °C): δ 20.6 (CH₃), 21.4 (CH₃), 26.4 (CH₃), 46.1 (C), 50.2 (CH), 51.9 (CH₃), 115.1 (CH), 123.4 (CH), 126.6 (CH), 127.2 (CH), 129.5 (CH), 134.7 (C), 136.5 (C), 137.9 (C), 138.8 (C), 143.6 (C), 177.0 (C=O); HRMS (FAB) calcd for C₂₄H₃₅N₂O₄S [M+H]⁺447.2312, found 447.2317.


N,*N*-Diisopropyl-3,5-dimethyl-2-(tosylamido)aniline (2y)

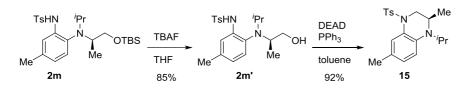
Yield 97%; purified by column chromatography (silica gel, 8:1 *n*-Me $\stackrel{i_{Pr}}{\underset{Me}{}}$ hexane/AcOEt); colorless oil; IR (KBr) *v* 2970, 1474, 1322, 1154, 1093, 922, 812 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.03 (d, *J* = 6.4 Hz, 12H, CH(CH₃)₂), 1.97 (s, 3H, ArCH₃), 2.25 (s, 3H, ArCH₃), 2.43 (s, 3H, ArCH₃), 3.45 (septet, *J* = 6.4 Hz, 2H, CH(CH₃)₂), 6.78 (d, *J* = 1.6 Hz, 1H, ArH), 6.87 (d, *J* = 1.6 Hz, 1H, ArH), 7.30 (d, *J* = 8.0 Hz, 2H, ArH), 7.88 (d, *J* = 8.0 Hz, 2H, ArH), 9.00 (brs, 1H, NH); ¹³C NMR (100 MHz, CDCl₃): δ 20.6 (CH₃), 21.0 (CH₃), 21.3 (CH₃), 21.5 (CH₃), 50.0 (CH), 126.0 (CH), 126.7 (CH), 129.2 (CH), 129.6 (C), 129.7 (CH), 133.0 (C), 135.6 (C), 138.7 (C), 140.0 (C), 142.8 (C); HRMS (FAB) calcd for C₂₁H₃₁N₂O₂S [M+H]⁺ 375.2101, found 375.2102.

N,*N*-Diisopropyl-3,5-dimethyl-2-(tosylamido)aniline (2z)

Yield 65%; purified by prep. TLC (silica gel, 10:1 *n*-hexane/AcOEt); beige MeO $H_{v,pr}$ solid: mp 115–117 °C; IR (KBr) *v* 3180, 2968, 1598, 1487, 1329, 1151, 915 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.06 (d, *J* = 6.4 Hz, 12H, CH(CH₃)₂), 2y 2.43 (s, 3H, ArCH₃), 3.39 (s, 3H, OCH₃), 3.49 (septet, *J* = 6.4 Hz, 2H, CH(CH₃)₂), 3.74 (s, 3H, OCH₃), 6.30 (d, *J* = 2.4 Hz, 1H, ArH), 6.41 (d, *J* = 2.4 Hz, 1H, ArH), 7.31 (d, *J* = 8.0 Hz, 2H, ArH), 7.88 (d, *J* = 8.0 Hz, 2H, ArH), 8.19 (brs, 1H, NH); ¹³C NMR (100 MHz, CDCl₃): δ 20.6 (CH₃), 21.5 (CH₃), 50.0 (CH), 54.6 (CH₃), 55.4 (CH₃), 97.1 (CH), 105.4 (CH), 122.7 (C), 126.8 (CH), 128.7 (CH), 139.5 (C), 140.4 (C), 142.3 (C), 151.7 (C), 156.2 (C); HRMS (FAB) calcd for C₂₁H₃₀N₂O₄S [M]⁺406.1926, found 406.1926.

9. Competition experiments between *N*,*N*-diisopropyl-4-bromoaniline (1d) and 1,3,5triisopropylbenzene (10)

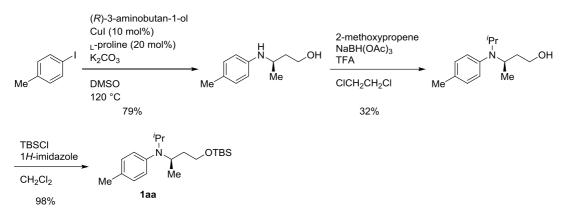
Rh(II)-carbene conditions: To a stirred mixture of **1d** (51.2 mg, 0.20 mmol), **10** (50.4 mg, 0.20 mmol), Rh₂(OAc)₄ (2.2 mg, 0.005 mmol, 5 mol %) and 4Å MS (powder, 40 mg) in CH₂Cl₂ (1.0 mL) was added a solution of ethyl diazoacetate in CH₂Cl₂ (0.1 M, 1.0 mL, 0.10 mmol) dropwise at 0 °C under Ar atmosphere. After stirring at room temperature for 1 h, the whole mixture was filtered through a pad of Celite, and the filtrate was evaporated in vacuo to furnish the crude product, which was purified by column chromatography (silica gel, 10:1 to 6:1 *n*-hexane/AcOEt) to give cyclopropane **12** (5.5 mg, 16%) and C–H insertion product **13** (6.4 mg, 19%) with recovery of a mixture of starting materials (40.1 mg, **1d**:**10** = 51:49). **12**; yellow amorphous; IR (KBr) *v* 2975, 1685, 1529, 1490, 1252, 1215, 1044, 911, 750 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.25–1.38 (m, 16H, CH(*CH*₃)₂, C7-*H* and CO₂CH₂CH₃), 3.72 (septet, *J* = 6.4 Hz, 2H, C*H*(CH₃)₂), 4.10–4.26 (m, 3H, C1-*H* and CO₂CH₂CH₃), 5.06 (ddd, *J* = 8.0, 8.0, 1.2 Hz, 1H, C6-*H*), 6.06 (dd, *J* = 11.2, 1.2 Hz, 1H, C4-*H*), 7.07 (d, *J* = 11.2 Hz, 1H, C3-*H*); ¹³C NMR (100 MHz, CDCl₃): δ 14.5 (CH₃), 22.3 (CH₃), 36.7 (CH), 53.5 (CH), 59.8 (CH₂), 104.4 (CH), 111.7 (CH), 116.5 (CH), 123.1 (CH), 131.7 (CH), 144.9 (C), 167.2 (C=O); HRMS (FAB) calcd for C₁₆H₂₄BrNO₂ [M]⁺ 341.0990, found 341.0992.


13; colorless oil; IR (KBr) *v* 2976, 1740, 1607, 1117, 1034, 815 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.24 (t, *J* = 7.2 Hz, 3H, OCH₂CH₃), 1.29 (d, *J* = 6.0 Hz, 12H, CH(CH₃)₂), 1.33 (d, *J* = 6.0 Hz, 6H, CH(CH₃)₂), 3.56 (s, 2H, ArCH₂CO₂), 4.12 (q, *J* = 7.2 Hz, 2H, OCH₂CH₃), 4.46 (septet, *J* = 6.0 Hz, 3H, CH(CH₃)₂), 6.09 (s, 2H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 14.3 (CH₃), 22.1 (CH₃), 22.1 (CH₃), 29.1 (CH₂), 60.1 (CH₂), 69.9 (CH), 70.5 (CH), 94.7 (CH), 106.9 (C), 157.3 (C), 158.1 (C), 172.8 (C=O); HRMS (FAB) calcd for C₁₉H₃₁O₅ [M+H]⁺ 339.2166, found 339.2167.

Rh(II)-nitrene conditions: TsN=IPh (37.3 mg, 0.10 mmol) was added to a stirred mixture of **1d** (51.2 mg, 0.20 mmol), **10** (50.4 mg, 0.20 mmol), Rh₂(HNCOCF₃)₄ (1.3 mg, 0.002 mmol, 2 mol %) and 4Å MS (powder, 40 mg) in indicated solvent (1.0 mL) at 0 °C under Ar atmosphere. After stirring at room temperature for 1 h, the whole mixture was filtered through a pad of Celite, and the filtrate was evaporated in vacuo to furnish the crude product, which was purified by column chromatography (silica gel, 4:1 to 1:1 *n*-hexane/AcOEt) to give **2d** and **14** with recovery of a mixture of starting materials.

14; light yellow oil; IR (KBr) *v* 3282, 2977, 1596, 1496, 1329, 1117, 811 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.14 (d, *J* = 6.0 Hz, 12H, CH(CH₃)₂), 1.32 (d, *J* = 6.0 Hz, 6H, CH(CH₃)₂), 2.39 (s, 3H, ArCH₃), 4.38 (septet, *J* = 6.0 Hz, 2H, CH(CH₃)₂), 4.45 (septet, *J* = 6.0 Hz, 1H, CH(CH₃)₂), 6.00 (s, 2H, ArH), 7.21 (d, *J* = 8.0 Hz, 2H, ArH), 7.71 (d, *J* = 8.0 Hz, 2H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 21.4 (CH₃), 21.7 (CH₃), 22.1 (CH₃), 70.1 (CH), 70.6 (CH),

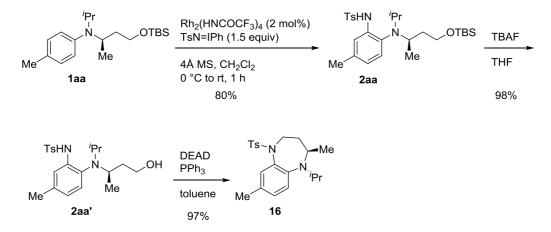
94.4 (CH), 108.6 (C), 127.5 (CH), 128.9 (CH), 138.6 (C), 142.6 (C), 154.9 (C), 157.7 (C); HRMS (FAB) calcd for C₂₂H₃₁NO₅S [M]⁺ 421.5520, found 421.1930.


10. Procedure for the synthesis of tetrahydroquinoxaline 15

To a solution of 2m (147 mg, 0.30 mmol) in THF (3.0 mL) was added a solution of TBAF in THF (1.0 M, 0.45 mL, 0.45 mmol) at room temperature under Ar atmosphere. After stirring for 1 h, water was added and the mixture was extracted with AcOEt. The combined organic extracts were successively washed with brine, and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product, which was purified by column chromatography (silica gel, 1:1 *n*-hexane/AcOEt) to give 2m' (95.8 mg, 85%) as a colorless oil: $[\alpha]_D^{20} = -44.8$ (c 1.03, CHCl₃); IR (KBr) v 3520, 3142, 2969, 1506, 1383, 1327, 1157, 1091, 814 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 60 °C): δ 0.85 (d, J = 6.4 Hz, 3H, CH(CH₃)₂), 0.94 (d, *J* = 4.8 Hz, 3H, CH(CH₃)CH₂), 0.98 (d, *J* = 6.4 Hz, 3H, CH(CH₃)₂), 2.27 (s, 3H, ArCH₃), 2.36 (s, 3H, ArCH₃), 3.30–3.38 (m, 4H, CH(CH₃)₂ and CH(CH₃)CH₂O), 6.71 (d, J = 8.0 Hz, 1H, ArH), 6.98 (d, J = 8.0 Hz, 1H, ArH), 7.22 (d, J = 8.0 Hz, 2H, ArH), 7.37 (s, 1H, ArH), 7.83 (d, J = 8.0 Hz, 2H, ArH), 9.00 (brs, 1H, NH); ¹³C NMR (100 MHz, CDCl₃, 60 °C): δ 14.9 (CH₃), 21.4 (CH₃), 21.4 (CH₃), 21.5 (CH₃), 50.5 (CH), 56.7 (CH), 64.9 (CH₂), 116.9 (CH), 123.0 (CH), 127.3 (CH), 129.4 (CH), 129.9 (CH), 131.7 (C), 136.7 (C), 137.9 (C), 138.4 (C), 143.4 (C); HRMS (FAB) calcd for C₂₀H₂₉N₂O₃S [M+H]⁺ 377.1893, found 377.1903.

To a solution of **2m'** (37.5 mg, 0.10 mmol) and PPh₃ (39.3 mg, 0.15 mmol) in toluene (1.0 mL) was added a solution of DEAD in toluene (2.2 M, 68 μ L, 0.15 mmol) dropwise at room temperature under Ar atmosphere. After stirring for 6 h, the whole mixture was evaporated in vacuo to furnish the crude product, which was purified by column chromatography (silica gel, 6:1 *n*-hexane/AcOEt) to give **15** (33.2 mg, 92%) as a colorless oil: $[\alpha]_D^{20} = -42.9$ (*c* 0.68, CHCl₃); IR (KBr) *v* 2971, 1508, 1341, 1160, 1090, 810 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.00 (d, *J* = 6.4 Hz, 3H, CH(CH₃)₂), 1.10 (d, *J* = 6.4 Hz, 3H, CH(CH₃)₂), 1.13 (d, *J* = 6.4 Hz, 3H, CH(CH₃)CH₂), 2.20 (s, 3H, ArCH₃), 2.39 (s, 3H, ArCH₃), 3.50 (dd, *J* = 12.8, 4.4 Hz, 1H, CH(CH₃)CHHO), 3.53–3.57 (m, 1H, CH(CH₃)CHHO) 3.74 (septet, *J* = 6.4 Hz, 1H, CH(CH₃)₂), 3.89 (dd, *J* = 12.8, 5.2 Hz, 1H, CH(CH₃)CHHO), 6.64 (d, *J* = 8.0 Hz, 1H, ArH), 6.79 (dd, *J* = 8.0, 1.6 Hz, 1H, ArH), 7.23–7.25 (m, 3H, ArH), 7.64 (d, *J*

= 8.0 Hz, 2H, Ar*H*); ¹³C NMR (100 MHz, CDCl₃): δ 19.6 (CH₃), 19.9 (CH₃), 20.8 (CH₃), 21.4 (CH₃), 46.3 (CH), 49.6 (CH), 50.7 (CH₂), 114.0 (CH), 122.7 (CH), 123.0 (CH), 124.2 (C), 125.2 (C), 126.9 (CH), 127.1 (CH), 129.4 (CH), 129.7 (CH), 135.5 (C), 138.0 (C), 143.3 (C); HRMS (FAB) calcd for C₂₀H₂₆N₂O₂S [M]⁺ 358.1715, found 358.1720.



11. Procedure for the synthesis of 1,5-benzodiazepine 16.

The mixture of 4-iodotoluene (2.04 g, 9.4 mmol), (*R*)-3-aminobutan-1-ol (1.00 g, 11 mmol), CuI (179 mg, 0.94 mmol, 10 mol%), L-proline (215 mg, 1.9 mmol, 20 mol%), and K₂CO₃ (2.58 g, 19 mmol) in DMSO (5.6 mL) was heated to 120 °C under Ar atmosphere. After stirring for 12 h at the same temperature, the reaction was quenched with saturated aqueous NH₄Cl, and the mixture was extracted with AcOEt. The combined organic extracts were successively washed with brine, and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product, which was purified by column chromatography (silica gel, 1:1 *n*-hexane/AcOEt) to give (*R*)-*N*-(4-hydroxybutan-2-yl)-*p*-toluidine⁷ (1.30 g, 79%) as a colorless oil: $[\alpha]_D^{23} = -84.5$ (*c* 1.03, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 1.19 (d, *J* = 6.0 Hz, 3H, CH(CH₃)CH₂), 1.72–1.78 (m, 2H, CHCH₂CH₂), 2.24 (s, 3H, ArH), 2.93 (brs, 1H, OH), 3.64 (sextet, *J* = 6.3 Hz, 1H, CH(CH₃)CH₂), 3.82 (t, *J* = 6.0 Hz, 2H, CH₂CH₂O), 6.59 (d, *J* = 8.4 Hz, 2H, ArH), 6.99 (d, *J* = 8.4 Hz, 2H, ArH).

To a solution of (*R*)-*N*-(4-hydroxybutan-2-yl)-*p*-toluidine (538 mg, 3.0 mmol), 2methoxypropene (0.42 mL, 4.5 mmol), and TFA (0.23 mL, 3.0 mmol) in 1,2-dichloroethane (9.0 mL) was added NaBH(OAc)₃ (954 mg, 4.5 mmol) at room temperature under Ar atmosphere. After stirring for 12 h, the reaction was quenched with saturated aqueous NaHCO₃, and the mixture was extracted with AcOEt. The combined organic extracts were successively washed with brine, and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product, which was purified by column chromatography (silica gel, 2:1 *n*-hexane/AcOEt) to give (*R*)-*N*-isopropyl-*N*-(4-hydroxybutan-2-yl)-*p*-toluidine (215 mg, 32%) as a colorless oil: $[\alpha]_D^{23} = -102.7$ (*c* 1.02, CHCl₃); IR (KBr) *v* 3323, 2967, 1616, 1515, 1286, 1181, 1053, 807 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.12 (d, J = 6.8 Hz, 3H, CH(CH₃)CH₂), 1.13 (d, J = 6.4 Hz, 3H, CH(CH₃)₂), 1.14 (d, J = 6.4 Hz, 3H, CH(CH₃)₂), 1.58 (ddd, J = 14.4, 10.0, 4.4 Hz, 1H, CHCHHCH₂), 1.81 (ddd, J = 14.4, 8.0, 5.2 Hz, 1H, CHCHHCH₂), 2.29 (s, 3H, ArCH₃), 3.61–3.92 (m, 4H, CH(CH₃)₂, CH(CH₃)CH₂CH₂O), 6.98 (d, J = 8.4 Hz, 2H, ArH), 7.05 (d, J = 8.4 Hz, 2H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 18.5 (CH₃), 20.6 (CH₃), 21.1 (CH₃), 22.3 (CH₃), 36.4 (CH₂), 48.9 (CH), 52.6 (CH), 62.1 (CH₂), 124.6 (CH), 128.9 (CH), 131.5 (C), 144.3 (C); HRMS (FAB) calcd for C₁₄H₂₄NO [M+H]⁺ 222.1852, found 222.1865.

To a solution of (R)-N-isopropyl-N-(4-hydroxypropan-2-yl)-p-toluidine (177 mg, 0.80 mmol) and 1*H*-imidazole (81.7 mg, 1.2 mmol) in CH₂Cl₂ (4.0 mL) was added TBSCl (181 mg, 1.2 mmol) at room temperature under Ar atmosphere. After stirring for 1 h, the reaction was quenched with water, and the mixture was extracted with CH₂Cl₂. The combined organic extracts were dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product, which was purified by column chromatography (silica gel, 10:1 *n*-hexane/AcOEt) to give **1aa** (264 mg, 98%) as a colorless oil: $[\alpha]_D^{23} = -16.7$ (c 1.03, CHCl₃); IR (KBr) v 2957, 1617, 1516, 1255, 1098, 835 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 0.02 (s, 3H, SiCH₃), 0.03 (s, 3H, SiCH₃), 0.89 (s, 9H, Si'Bu), 1.18-1.20 (m, 9H, CH(CH₃)CH₂ and CH(CH₃)₂), 1.65 (ddt, J = 14.0, 8.0, 6.0 Hz, 1H, CHCHHCH₂), 1.89 (dt, J = 14.0, 6.0 Hz, 1H, CHCHHCH₂), 2.25 (s, 3H, ArCH₃), 3.57-3.74 (m, 4H, CH(CH₃)₂, $CH(CH_3)CH_2CH_2O)$, 6.81 (d, J = 8.4 Hz, 2H, ArH), 6.98 (d, J = 8.4 Hz, 2H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ -5.41 (CH₃), -5.36 (CH₃), 18.3 (C), 19.2 (CH₃), 20.4 (CH₃), 21.6 (CH₃), 21.7 (CH₃), 25.9 (CH₃), 38.7 (CH₂), 48.3 (CH), 48.7 (CH), 60.9 (CH₂), 119.6 (CH), 127.4 (CH), 129.0 (C), 145.9 (C); HRMS (FAB) calcd for C₂₀H₃₈NOSi [M+H]⁺ 336.2717, found 336.2722.

TsN=IPh (224 mg, 0.60 mmol) was added to a stirred mixture of **1aa** (134 mg, 0.40 mmol), $Rh_2(HNCOCF_3)_4$ (5.2 mg, 0.008 mmol, 2 mol %) and 4Å MS (powder, 160 mg) in

CH₂Cl₂ (4.0 mL) at 0 °C under Ar atmosphere. After stirring at room temperature for 1 h, the whole mixture was filtered through a pad of Celite, and the filtrate was evaporated in vacuo to furnish the crude product, which was purified by column chromatography (silica gel, 8:1 *n*-hexane/AcOEt) to give diaminobenzene **2aa** (161 mg, 80%) as a colorless oil: $[\alpha]_D^{23} =$ +3.75 (c 0.99, CHCl₃); IR (KBr) v 3210, 2956, 1504, 1382, 1169, 1092, 835 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 60 °C): δ 0.02 (s, 3H, SiCH₃), 0.03 (s, 3H, SiCH₃), 0.86–0.89 (m, 18H, Si^tBu, CH(CH₃)CH₂ and CH(CH₃)₂), 1.09 (ddd, J = 18.0, 9.6, 4.8 Hz, 1H, CHCHHCH₂), 1.73-1.81 (m, 1H, CHCHHCH₂), 2.28 (s, 3H, ArCH₃), 2.35 (s, 3H, ArCH₃), 3.32 (septet, J =6.4 Hz, 1H, CH(CH₃)₂), 3.40 (ddq, J = 16.0, 6.4, 3.2 Hz, 1H, CH(CH₃)CH₂), 3.48 (ddd, J = 10.4, 8.4, 4.8 Hz, 1H, CH₂CHHO), 3.56 (ddd, J = 10.4, 6.0, 4.8 Hz, 1H, CH₂CHHO), 6.71 (d, J = 8.0 Hz, 1H, ArH), 6.96 (d, J = 8.0 Hz, 1H, ArH), 7.20 (d, J = 8.0 Hz, 2H, ArH), 7.39 (s, 1H, ArH), 7.79 (d, J = 8.0 Hz, 2H, ArH), 8.51 (brs, 1H, NH); ¹³C NMR (100 MHz, CDCl₃, 60 °C): δ -5.4 (CH₃), -5.3 (CH₃), 17.5 (CH₃), 18.3 (C), 21.0 (CH₃), 21.4 (CH₃), 21.4 (CH₃), 26.0 (CH₃), 36.9 (CH₂), 50.4 (CH), 51.7 (CH), 60.6 (CH₂), 116.2 (CH), 123.1 (CH), 127.3 (CH), 128.4 (CH), 128.5 (C), 129.5 (CH), 132.5 (C), 136.4 (C), 137.8 (C), 143.5 (C); HRMS (FAB) calcd for C₂₇H₄₅N₂O₃SSi [M+H]⁺ 505.2915, found 505.2927.

To a solution of 2aa (126 mg, 0.25 mmol) in THF (2.5 mL) was added a solution of TBAF in THF (1.0 M, 0.38 mL, 0.38 mmol) at room temperature under Ar atmosphere. After stirring for 1 h, the reaction was quenched with water, and the mixture was extracted with AcOEt. The combined organic extracts were successively washed with brine, and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product, which was purified by column chromatography (silica gel, 3:2 n-hexane/AcOEt) to give 2aa' (95.2 mg, 98%) as a colorless oil: $[\alpha]_D^{23} = -12.7$ (c 0.42, CHCl₃); IR (KBr) v 3212, 2970, 1504, 1370, 1167, 1090, 967, 814 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 60 °C): δ 0.85 (d, J = 6.4 H, 3H, CH(CH₃)₂), 0.90 (d, J = 6.4 H, 3H, CH(CH₃)₂), 0.94 (d, J = 6.4 H, 3H, CH(CH₃)CH₂), 1.25 (ddd, J = 19.6, 9.6, 5.6 Hz, 1H, CHCHHCH₂), 1.68–1.76 (m, 1H, CHCHHCH₂), 2.28 (s, 3H, ArCH₃), 2.35 (s, 3H, ArCH₃), 3.36 (m, 2H, CH(CH₃)₂ and CH(CH₃)CH₂), 3.54-3.60 (m, 1H, CH₂CHHO), 3.56 (dt, J = 12.0, 6.0 Hz, 1H, CH₂CHHO), 5.03 (brs, 1H, OH), 6.72 (d, J = 8.0 Hz, 1H, ArH), 6.98 (d, J = 8.0 Hz, 1H, ArH), 7.21 (d, J = 8.0 Hz, 2H, ArH), 7.39 (s, 1H, Ar*H*), 7.79 (d, J = 8.0 Hz, 2H, Ar*H*); ¹³C NMR (100 MHz, CDCl₃, 60 °C): δ 17.8 (CH₃), 21.0 (CH₃), 21.4 (CH₃), 21.4 (CH₃), 37.0 (CH₂), 50.0 (CH), 52.3 (CH), 60.5 (CH₂), 116.4 (CH), 123.1 (CH), 127.2 (CH), 128.7 (CH), 129.5 (CH), 132.3 (C), 136.5 (C), 137.8 (C), 137.8 (C), 143.5 (C); HRMS (FAB) calcd for C₂₁H₃₁N₂O₃S [M+H]⁺ 391.2050, found 391.2064.

To a solution of **2aa'** (52.7 mg, 0.14 mmol) and PPh₃ (53.1 mg, 0.20 mmol) in toluene (5.4 mL) was added a solution of DEAD in toluene (2.2 M, 92 μ L, 0.20 mmol)

dropwise at room temperature under Ar atmosphere. After stirring for 6 h, the whole mixture was evaporated in vacuo to furnish the crude product, which was purified by column chromatography (silica gel, 6:1 *n*-hexane/AcOEt) to give **16** (48.8 mg, 97%) as a colorless solid: mp 120–121 °C; [α]_D²⁴ = -177.8 (*c* 1.03, CHCl₃); IR (KBr) *v* 2967, 1504, 1343, 1160, 1091, 981, 812 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 60 °C): δ 0.54 (d, J = 6.4 H, 3H, $CH(CH_3)_2$, 0.74 (d, J = 6.4 H, 3H, $CH(CH_3)CH_2$), 1.04 (d, J = 6.4 H, 3H, $CH(CH_3)_2$), 1.26 (dddd, *J* = 14.4, 7.6, 7.6, 2.0 Hz, 1H, CHCHHCH₂), 1.86 (dddd, *J* = 14.4, 9.2, 5.2, 2.8 Hz, 1H, CHCHHCH₂), 2.29 (s, 3H, ArCH₃), 2.36 (s, 3H, ArCH₃), 3.32 (septet, J = 6.4 Hz, 1H, CH(CH₃)₂) 3.37 (dd, J = 12.0, 6.4 Hz, 1H, CH(CH₃)CH₂), 3.44 (ddd, J = 12.0, 9.2, 2.0 Hz, 1H, CH₂CHHN), 4.00 (ddd, J = 12.0, 8.0, 2.8 Hz, 1H, CH₂CHHN), 6.84 (d, J = 8.0 Hz, 1H, Ar*H*), 6.97 (dd, *J* = 8.0, 2.0 Hz, 1H, Ar*H*), 7.16 (d, *J* = 8.0 Hz, 2H, Ar*H*), 7.28 (d, *J* = 2.0 Hz, 1H, Ar*H*), 7.55 (d, J = 8.0 Hz, 2H, Ar*H*); ¹³C NMR (100 MHz, CDCl₃, 60 °C): δ 15.1 (CH₃), 20.6 (CH₃), 20.9 (CH₃), 21.3 (CH₃), 21.9 (CH₃), 34.0 (CH₂), 45.0 (CH₂), 48.2 (CH), 49.2 (CH), 124.3 (CH), 127.6 (CH), 128.2 (CH), 129.1 (CH), 131.1 (CH), 132.3 (C), 133.7 (C), 138.6 (C), 141.6 (C), 142.5 (C); HRMS (FAB) calcd for C₂₁H₂₉N₂O₂S [M+H]⁺ 373.1944, found 373.1951.

References

- (a) C. G. Espino, K. W. Fiori, M. Kim, J. Du Bois, J. Am. Chem. Soc. 2004, 126, 15378– 15379. (b) K. P. Kornecki, J. F. Berry, Eur. J. Inorg. Chem. 2012, 562–568.
- (a) K. Guthikonda, J. Du Bois, J. Am. Chem. Soc. 2002, 124, 13672–13673. (b) E. Martinand-Lurin, R. Gruber, P. Retailleau, P. Fleurat-Lessard, P. Dauban, J. Org. Chem. 2015, 80, 1414–1426.
- 3. A. K. Mishra, M. M. Olmstead, J. J. Ellison, P. P. Power, *Inorg. Chem.* **1995**, *34*, 3210–3214.
- 4. T. J. Reddy, M. Leclair, M. Proulx, Synthesis 2005, 583–586.
- 5. D. Wang, M. R. Talipov, M. V. Ivanov, R. Rathore, J. Am. Chem. Soc. 2016, 138, 16337–16344.
- 6. J.-G. Cao, H.-M. Cao, Y.-J. Lin, D.-P. Liang, H.-F. Duan, S.-Y. Han, X.-Z. Zhao, *Chemical Research in Chinese Universities*, **2011**, *27*, 780–783.
- 7. G. Bartoli, C. Cimarelli, E. Marcantoni, G. Palmieri, M. Petrini, J. Org. Chem. 1994, 59, 5328–5335.