Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Phosphinatophenylporphyrins tailored for high photodynamic efficacy

Jan Hynek,^{a,b} Martina Koncošová,^c Jaroslav Zelenka,^c Ivana Křížová,^d Tomáš Ruml,^c Pavel Kubát,^e Jan Demel,^a and Kamil Lang^a*

^a Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež,

Czech Republic

^b Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030,

128 43 Praha 2, Czech Republic

^c Department of Biochemistry and Microbiology, University of Chemistry and Technology

Prague, Technická 5, 166 28 Praha, Czech Republic

^d Department of Biotechnology, University of Chemistry and Technology Prague, Technická

5, 166 28 Praha, Czech Republic

^e J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova

3, 182 23 Praha 8, Czech Republic

Corresponding author, E-mail: lang@iic.cas.cz

Content

Figure S1-S9. NMR spectra of 2a-c.

Figure S10-S12. Electrospray ionization-mass spectra of 2a-c.

Figure S13-S15. Electrospray ionization-mass spectra of **3a-c**.

Figure S16. Absorption spectra of **3a-c** in PBS.

Figure S17. Titration of TPPS and **3a-c** with HSA in PBS.

Figure S18. Kinetics of the porphyrins triplet states of **3a-c**.

Figure S19. Phosphorescence of $O_2(^{1}\Delta_g)$ produced by **3a-c** and TPPS in D_2O .

Figure S20. Flow cytometry histograms.

Table S1. IC_{50} values of **3a-c** and TPPS for HeLa and MRC-5 cells irradiated with a 150 W halogen lamp or 525 nm light.

Figure S1. ¹H NMR (CDCl₃) spectrum of compound **2a**.

Figure S2. ${}^{31}P{}^{1}H$ NMR (CDCl₃) spectrum of compound **2a**.

Figure S3. ${}^{13}C{}^{1}H$ NMR (CDCl₃) spectrum of compound **2a**.

Figure S4. ¹H NMR (CDCl₃) spectrum of compound **2b**.

Figure S5. ${}^{31}P{}^{1}H$ NMR (CDCl₃) spectrum of compound **2b**.

Figure S6. ${}^{13}C{}^{1}H$ NMR (CDCl₃) spectrum of compound **2b**.

Figure S8. ${}^{31}P{}^{1}H$ NMR (CDCl₃) spectrum of compound **2c**.

51.662

 <sup>60.0
 50.0
 40.0
 30.0
 20.0
 10.0</sup> X : parts per Million : Phosphorus31

Figure S9. ${}^{13}C{}^{1}H$ NMR (CDCl₃) spectrum of compound **2c**.

Figure S10. Electrospray ionization-mass spectrum of **2a** in the positive mode (top) and high-resolution mass spectrum (bottom).

Figure S11. Electrospray ionization-mass spectrum of **2b** in the positive mode (top) and high-resolution mass spectrum (bottom).

Figure S12. Electrospray ionization-mass spectrum of **2c** in the positive mode (top) and high-resolution mass spectrum (bottom).

Figure S13. Electrospray ionization-mass spectrum of **3a** in the positive mode (top) and high-resolution mass spectrum (bottom).

Figure S14. Electrospray ionization-mass spectrum of **3b** in the positive mode (top) and high-resolution mass spectrum (bottom).

Figure S15. Electrospray ionization-mass spectrum of **3c** in the positive mode (top) and high-resolution mass spectrum (bottom).

Figure S16. Absorption spectra of **3a**, **3b** and **3c** in PBS.

Figure S17. Titration of TPPS and **3a-c** with HSA in PBS: A) Changes of the Soret bands of porphyrins after addition of HSA; B) Difference absorption spectra; C) Corresponding binding isotherms at 422 nm. Arrows indicate absorption changes after the addition of HSA.

In a simple binding equilibrium assuming 1:1 stoichiometry, the relationship between the observed absorption changes and experimental parameters is as follows:

$$\Delta A = \frac{\Delta A_{max} K_b [HSA]}{1 + K_b [HSA]}$$

where ΔA is the absorbance change after the addition of HSA at a selected wavelength, ΔA_{max} is the maximum absorbance change, i.e., all porphyrin molecules are bound to HSA, K_b is the binding constant, and [HSA] is the equilibrium molar concentration of free HSA given by the equation:

$$[HSA] = (c_{HSA}K_b - c_{porph}K_b - 1)/2K_b + \sqrt{(c_{porph}K_b - c_{HSA}K_b + 1)^2 + 4c_{HSA}K_b/2K_b}$$

where c_{HSA} is the total HSA concentration and c_{porph} is the total porphyrin concentration.

A nonlinear fit to the binding isotherms affords binding constant K_b . The estimated error is 15%.

Reference: K. A. Connors, Binding Constants, John Wiley & Sons, New York, 1987.

Figure S18. Kinetics of the porphyrins triplet states of **3a-c** monitored by transient absorption at 460 nm in oxygen-, air- and argon-saturated PBS. Excited at 420 nm.

Figure S19. Phosphorescence of $O_2({}^{1}\Delta_g)$ produced by **3a-c** and TPPS in D_2O after excitation at 420 nm (solutions with matched absorbance, A = 0.400). The sharp signal at the beginning of kinetic traces is due to porphyrin short-lived fluorescence (fluorescence lifetime of ~10 ns). Red lines represent single exponential fits to experimental data.

Figure S20. Flow cytometry histograms: (A) HeLa cells incubated with 0.625, 1.25, 2.5, 5 or 10 μ M **3c** for 24 h (darkening tones of green); (B) HeLa cells incubated with 0.625 μ M **3c** for 0, 2, 18 or 24 h (from light green to dark green). (C) HeLa cells incubated with porphyrins **3a** (grey), **3b** (orange), **3c** (green), TPPS (red) for 24 hours (porphyrins concentrations are 1.25 μ M). Black color is a control.

С

Table S1. IC₅₀ values of **3a-c** and TPPS for HeLa and MRC-5 cells irradiated with a 150 W halogen lamp (45 mW cm⁻²) or 525 nm light (9 mW cm⁻²).

Cell line	Light	Porphyrin	IC ₅₀ /μM	Cell line	Light	Porphyrin	$IC_{50}/\mu M$
HeLa	Halogen lamp	TPPS	8.82	MRC-5	Halogen lamp	TPPS	1.86
		TPPC	6.35			TPPC	1.67
		3c	0.63			3c	0.69
		3b	3.19		525 nm	TPPS	0.85
		3a	> 10			TPPC	1.59
	525 nm	TPPS	2.50			3c	0.43
		TPPC	7.64				
		3c	0.45				
		3b	2.51				
		3a	> 10				