Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Hydroarylation of Unsaturated Carbon-Carbon Bonds in Cross-Conjugated Enynones under the Action of Superacid CF₃SO₃H or Acidic Zeolite HUSY. Reaction Mechanism and DFT Study on Cationic Intermediate Species

Maiia I. Aleksandrova,^[a] Stanislav V. Lozovskiy,^[a] Steve Saulnier,^[a] Alexander A. Golovanov,^[b] Irina A. Boyarskaya,^[a] and Aleksander V. Vasilyev^{*[a,c]}

[a] Department of Organic Chemistry, Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab. 7/9, Saint Petersburg, 199034, Russia

[b] Department of Chemistry, Chemical Processes and Technologies, Togliatti State University, Belorusskaya ul. 14, Togliatti, 445667, Russia

[c] Department of Chemistry, Saint Petersburg State Forest Technical University, Institutsky per.5, Saint Petersburg, 194021, Russia

*E-mail : <u>aleksvasil@mail.ru</u>, <u>a.vasilyev@spbu.ru</u>

Contents

I. ¹ H, ¹³ C, ¹⁹ F NMR spectra of compounds	
II. X-ray data	S46
III Data of DFT calculations	870

I. ¹H, ¹³C, ¹⁹F NMR spectra of compounds

Fig.. S1. ¹H NMR Spectra of compound **1b** at 20 °C (400 M Γ u, CDCl₃).

Fig. S2. ¹³C NMR Spectra of compound **1b** at 20 °C (101M Γ µ, CDCl₃).

Fig. S3. ¹H NMR Spectra of compound 1g at 20 °C (400 MFu, CDCl₃).

Fig. S4. ${}^{19}F{}^{1}H{}$ NMR Spectra of compound **1g** at 20 °C (400 M $\Gamma\mu$, CDCl₃).

Fig. S5. ¹³C NMR Spectra of compound 1g at 20 °C (101M Γ u, CDCl₃).

Fig. S6. ¹H NMR Spectra of compound **1h** at 20 °C (400 MΓц, CDCl₃).

Fig. S7. $^{19}F\{^{1}H\}$ NMR Spectra of compound 1h at 20 °C (400 MFu, CDCl₃).

Fig. S8. ¹³C NMR Spectra of compound **1h** at 20 °C (101M Γ u, CDCl₃).

Fig. S10. ¹⁹F ${^{1}H}$ NMR Spectra of compound **1i** at 20 °C (400 M Γ u, CDCl₃).

Fig. S11. ¹³C NMR Spectra of compound **1i** at 20 °C (101M Γ u, CDCl₃).

Fig. S12. ¹H NMR Spectra of compound 1j at 20 °C (400 M Γ u, CDCl₃).

~-109.45

~-104.16 ~-104.19

-103.8 -104.2 -104.6 -105.0 -105.4 -105.8 -106.2 -106.6 -107.0 -107.4 -107.8 -108.2 -108.6 -109.0 -109.4 -109. f1 (μд)

Fig. S13. ${}^{19}F{}^{1}H$ NMR Spectra of compound 1j at 20 °C (400 M Γ II, CDCl₃).

Fig. S14. ^{13}C NMR Spectra of compound 1j at 20 °C (101MFu, CDCl₃).

Fig. S16. ¹³C NMR Spectra of compound 1k at 20 °C (101M Γ u, CDCl₃).

Fig. S17. ¹H NMR Spectra of compound **11** at 20 °C (400 M Γ u, CDCl₃).

Fig. S18. ¹³C NMR Spectra of compound **11** at 20 °C (101M Γ u, CDCl₃).

Fig. S19. ¹H NMR Spectra of compound 2a at 20 °C (400 M Γ u, CDCl₃).

Fig. S20. ¹³C NMR Spectra of compound **2a** at 20 °C (101M Γ u, CDCl₃).

Fig. S21. ¹H NMR Spectra of compounds **2b** at 20 °C (400 MFu, CDCl₃).

Fig. S22. ¹H-¹H NMR NOESY Spectra of compounds **2b** at 20 °C (400 MΓι, CDCl₃).

Fig. S23. ^{13}C NMR Spectra of compounds **2b** at 20 °C (101MFu, CDCl₃).

Fig. S24. ¹H NMR Spectra of compounds 2c at 20 °C (400 MFu, CDCl₃).

-116.50 -116.65 -116.65 -116.70 -116.75 -116.80 -116.85 -116.95 -117.00 -117.05 -117.10 -117.15 -117.20 -117.25 -117.30 -117.35 -117.40 -117.45 f1 (μ_μ)

Fig. S26. 13 C NMR Spectra of compounds **2c** at 20 °C (101MFµ, CDCl₃).

Fig. S27. ¹H NMR Spectra of compound **2d** at 20 °C (400MΓц, CDCl₃).

Fig. S28. ¹⁹F ${}^{1}H$ NMR Spectra of compound **2d** at 20 °C (400 M Γ u, CDCl₃).

Fig. S29. ¹H NMR Spectra of compound **2e** at 20 °C (400MΓμ, CDCl₃).

-111.0 -111.5 -112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.0 -115.5 -116.0 -116.5 -117.0 -117.5 -118.0 -118.5 -119.0 -119.5 -120.0 -120.5 fl (Mg)

Fig. S30. ¹⁹F ${}^{1}H$ NMR Spectra of compound **2e** at 20 °C (400 M Γ II, CDCl₃).

Fig. S31. ¹³C NMR Spectra of compound 2e at 20 °C (101MFu, CDCl₃).

Fig. S32. ¹H NMR Spectra of compounds **2f** at 20 °C (400 M Γ u, CDCl₃).

Fig. S33. ¹H-¹H NMR NOESY Spectra of compounds **2f** at 20 °C (400 MΓц, CDCl₃).

Fig. S34. ¹³C NMR Spectra of compounds **2f** at 20 °C (101M Γ u, CDCl₃).

Fig. S35. ¹H NMR Spectra of compound 2g at 20 °C (400 MFu, CDCl₃).

Fig. S36. ¹⁹F{¹H} NMR Spectra of compound 2g at 20 °C (400 MFu, CDCl₃).

Fig. S37. ¹H NMR Spectra of compound **3a** at 20 °C (400 MΓц, CDCl₃).

Fig. S38. ¹³C NMR Spectra of compound **3a** at 20 °C (101M Γ u, CDCl₃).

Fig. S39. ¹H NMR Spectra of compound **3b** at 20 °C (400 MF μ , CDCl₃).

Fig. S40. ¹³C NMR Spectra of compound **3b** at 20 °C (101M Γ u, CDCl₃).

Fig. S41. ¹H NMR Spectra of compound **3c** at 20 °C (400 M Γ II, CDCl₃).

Fig. S42. ${}^{19}F{}^{1}H{}$ NMR Spectra of compound **3c** at 20 °C (376MFu, CDCl₃).

Fig. S43. 13 C NMR Spectra of compound **3c** at 20 °C (101M Γ II, CDCl₃).

Fig. S44. ¹H NMR Spectra of compound **3d** at 20 °C (400 MΓμ, CDCl₃).

^{-113.75 -113.80 -113.85 -113.90 -113.95 -114.00 -114.05 -114.10 -114.15 -114.20 -114.25 -114.30 -114.35 -114.40 -114.45 -114.50 -114.55 -114.60 -114.1}

Fig. S46. ¹³C NMR Spectra of compound **3d** at 20 °C (101M Γ u, CDCl₃).

Fig. S47. ¹H NMR Spectra of compound **3e** at 20 °C (400 M Γ II, CDCl₃).

Fig. S48. ¹³C NMR Spectra of compound **3e** at 20 °C (101M Γ u, CDCl₃).

Fig. S49. ¹H NMR Spectra of compounds **3f** at 20 °C (400 M Γ u, CDCl₃).

Fig. S50. ¹H-¹H NMR NOESY Spectra of compounds **3f** at 20 °C (400 M Γ u, CDCl₃).

Fig. S51. ¹³C NMR Spectra of compounds **3f** at 20 °C (101M Γ µ, CDCl₃).

Fig. S52. ¹H NMR Spectra of compounds 3g at 20 °C (400 MFu, CDCl₃).

Fig. S53. ¹H-¹H COSY NMR Spectra of compounds **3g** at 20 °C (400 MΓμ, CDCl₃).

Fig. S54. ¹³C NMR Spectra of compounds 3g at 20 °C (101M Γ II, CDCl₃).

Fig. S55. ¹H NMR Spectra of compound **3h** at 20 °C (400 MFu, CDCl₃).

Fig. S56. ¹³C NMR Spectra of compound **3h** at 20 °C (101M Γ u, CDCl₃).

Fig. S57. ¹H NMR Spectra of compounds **3i** at 20 °C (400 MΓц, CDCl₃).

Fig. S58. ¹³C NMR Spectra of compounds **3i** at 20 °C (101MΓц, CDCl₃).

Fig. S59. ¹H NMR Spectra of compounds 3j at 20 °C (400 MFu, CDCl₃).

Fig. S60. 13 C NMR Spectra of compounds **3j** at 20 °C (101MFu, CDCl₃).

Fig. S61. ¹H NMR Spectra of compounds **3k** at 20 °C (400 MΓμ, CDCl₃).

Fig. S62. ¹H-¹H NMR NOESY Spectra of compounds **3k** at 20 °C (400 MΓц, CDCl₃).

Fig. S63. 13 C NMR Spectra of compounds **3k** at 20 °C (101MFu, CDCl₃).

Fig. S64. ¹H NMR Spectra of compound **3l** at 20 °C (400 MΓμ, CDCl₃).

-101 -102 -107 -108 -109 -110 -111 -112 -113 -116 -117 -118 -120 -103 -104 -105 -106 -114 -115 -119

Fig. S65. ${}^{19}F{}^{1}H$ NMR Spectra of compound **31** at 20 °C (376M Γ u, CDCl₃).

Fig. S66. 13 C NMR Spectra of compound **31** at 20 °C (101MFµ, CDCl₃).

Fig. S67. ¹H NMR Spectra of compounds3m at 20 °C (400 MFu, CDCl₃).

Fig. S68. ¹H-¹H NMR NOESY Spectra of compounds **3m** at 20 °C (400 MΓц, CDCl₃).

Fig. S69. ${}^{19}F{}^{1}H$ NMR Spectra of compounds **3m** at 20 °C (376MFu, CDCl₃).

Fig. S70. ¹³C NMR Spectra of compounds 3m at 20 °C (101MFu, CDCl₃).
---3.488

Fig. S71. ¹H NMR Spectra of compound **3n** at 20 °C (400 MFu, $CDCl_3$).

Fig. S72. ¹⁹F{¹H} NMR Spectra of compound **3n** at 20 °C (376MFu, CDCl₃).

Fig. S73. ¹³C NMR Spectra of compound **3n** at 20 °C (101M Γ u, CDCl₃).

Fig. S74. ¹H NMR Spectra of compound **3o** at 20 °C (400 MΓц, CDCl₃).

Fig. S75. ¹³C NMR Spectra of compound **30** at 20 °C (101M Γ u, CDCl₃).

Fig. S76. ¹H NMR Spectra of compound **3p** at 20 °C (400 MΓμ, CDCl₃).

Fig. S77. ¹³C NMR Spectra of compound **3p** at 20 °C (101MΓμ, CDCl₃).

Fig. S78. ¹H NMR Spectra of compound 3q at 20 °C (400 MFu, CDCl₃).

Fig. S79. ¹³C NMR Spectra of compound 3q at 20 °C (101MFu, CDCl₃).

Fig. S80. ¹H NMR Spectra of compound 4 at 20 °C (400 MΓμ, CDCl₃).

Fig. S81. ${}^{19}F{}^{1}H{}$ NMR Spectra of compound 4 at 20 °C (376M Γ II, CDCl₃).

Fig. S82. ¹³C NMR Spectra of compound 4 at 20° C (101MFu, CDCl₃).

Fig. S83. ¹H NMR Spectra of compound **5** at 20 °C (400 M Γ u, CDCl₃).

4.0 -114.2 -114.4 -114.6 -114.8 -115.0 -115.2 -115.4 -115.6 -115.8 -116.0 -116.2 -116.4 -116.6 -116.8 -117.0 -117.2 -117.4 -117.6 -117.8 -118.0 -118.2 -118.4 -118.6 -118.8 -119.0 f1 (μg)

Fig. S84. ${}^{19}F{}^{1}H$ NMR Spectra of compound 5 at 20 °C (376MFu, CDCl₃).

Fig. S85. ¹³C NMR Spectra of compound **5** at 20 °C (101M Γ ц, CDCl₃).

3b

CCDC 1847444

Table S1 Crystal data and structure refinement for 3b.

Identificationcode	7071-8899-IMA065_twin1_hklf4
Empiricalformula	$C_{23}H_{17}ClO$
Formulaweight	344.82
Temperature/K	100(2)
Crystalsystem	monoclinic
Spacegroup	$P2_1/c$
a/Å	6.23180(10)
b/Å	19.0611(3)
c/Å	30.5102(4)
$\alpha/^{\circ}$	90
β/°	95.1740(10)
γ/°	90
Volume/Å ³	3609.39(9)
Ζ	8
$\rho_{calc}g/cm^3$	1.269
μ/mm^{-1}	1.911
F(000)	1440.0
Crystalsize/mm ³	$0.29 \times 0.21 \times 0.2$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	5.474 to 144.42
Indexranges	$-7 \le h \le 5, -23 \le k \le 23, -36 \le l \le 37$
Reflectionscollected	7095
Independentreflections	7095 [$R_{int} = ?, R_{sigma} = 0.0115$]
Data/restraints/parameters	7095/0/452
Goodness-of-fit on F ²	1.080
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0525, wR_2 = 0.1530$
Final R indexes [all data]	$R_1 = 0.0570, wR_2 = 0.1576$
Largest diff. peak/hole / e Å ⁻³	0.37/-0.53

Table S2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 3b. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	Y	Z	U(eq)
Cl01	-5676.3(8)	5698.2(3)	1445.8(2)	47.33(16)
Cl02	12605.7(9)	502.1(3)	5178.4(2)	50.59(17)
O003	5648.8(18)	3284.7(7)	3252.7(4)	31.5(3)
O004	1134.6(17)	2492.3(7)	3105.9(4)	29.1(3)
C005	4441(2)	2102.2(8)	2233.6(5)	24.2(3)
C006	2373(2)	3876.0(8)	4084.1(5)	24.6(3)
C007	572(3)	4382.5(9)	4084.2(5)	25.3(3)

C008 3268(2)	3612.2(8)	4523.7(5)	24.8(3)
C009 4877(2)	3215.0(9)	3606.6(5)	27.9(3)
C00A 6248(2)	1607.2(9)	2181.8(5)	25.5(3)
C00B 7951(3)	1705.1(9)	4600.2(6)	32.4(4)
C00C 3685(2)	2182.6(9)	2631.1(5)	26.9(3)
C00D 3922(3)	3307.0(10)	1248.7(6)	34.8(4)
C00E 11101(3)	1021.9(10)	4797.4(7)	38.3(4)
C00F 8743(3)	1886.9(9)	4199.3(6)	30.5(4)
C00G 1958(3)	3198.0(9)	4766.5(5)	28.3(3)
C00H 5362(3)	3762.6(9)	4699.2(5)	29.4(3)
C00I 1162(3)	3249.4(9)	2496.1(5)	26.5(3)
C00J 9468(3)	1005.1(9)	2481.7(6)	31.6(4)
C00K 1788(3)	3199.6(10)	1084.5(5)	35.4(4)
C00L 7840(2)	1488.2(9)	2528.7(5)	26.7(3)
C00M 1930(2)	2637.5(9)	2762.4(5)	26.0(3)
C00N -1858(2)	4086.7(9)	2280.5(5)	26.9(3)
C00O 3111(2)	3692.0(9)	3698.0(5)	27.4(3)
C00P 2746(3)	2919.9(10)	5169.1(6)	34.2(4)
C00Q -2767(3)	5366.7(10)	4071.6(6)	33.6(4)
C00R 6130(3)	3494.8(10)	5107.6(6)	34.8(4)
C00S -3807(3)	4349.8(9)	2404.1(5)	28.9(3)
C00T -1080(3)	4350.7(9)	1893.1(6)	30.0(3)
C00U -786(2)	3523.8(9)	2542.1(5)	26.9(3)
C00V 526(3)	4882.0(9)	4418.2(5)	30.0(3)
C00W10736(3)	1610.4(10)	4104.9(6)	34.7(4)
C00X 3518(2)	2463.3(8)	1826.1(5)	24.9(3)
C00Y -1096(2)	4383.0(9)	3743.5(5)	26.2(3)
C00Z 542(3)	2714.0(10)	1285.7(6)	33.9(4)
C010 -2749(3)	4871.4(9)	3737.8(5)	30.0(3)
C011 -2233(3)	4848.6(10)	1639.5(6)	33.5(4)
C012 5715(3)	2678.4(9)	3926.1(5)	28.8(3)
C013 6368(3)	1244.4(9)	1788.6(5)	30.1(3)
C014 11915(3)	1182.0(10)	4401.4(7)	38.3(4)
C015 9531(3)	633.3(9)	2091.5(6)	34.2(4)
C016 1387(2)	2349.2(9)	1656.4(5)	28.3(3)
C017 -4181(3)	5090.4(10)	1771.4(6)	33.3(4)
C018 4788(3)	2934.2(9)	1611.8(5)	28.6(3)
C019 4839(3)	3068.5(10)	5340.1(6)	36.7(4)
C01A 9108(3)	1273.1(10)	4897.7(6)	36.2(4)
C01B -4969(3)	4853.7(10)	2155.6(6)	32.8(4)
C01C -1120(3)	5371.1(9)	4409.2(5)	33.9(4)
C01D 7639(3)	2379.3(9)	3888.6(5)	30.1(4)
C01E 7985(3)	756.8(10)	1744.3(6)	34.5(4)

Table S3 Anisotronic Displacement Parameters ($Å^2 \times 10^3$) for 3b. The	Anisotropic displacement f	actor exponent
rubie be rimber opie Displacement i arameters (inson opic displacement i	actor exponent
takes the form: $-2\pi^2 [h^2 a^{*2} U_{11} + 2hka^* b^* U_{12} +]$.			

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cl01	49.9(3)	50.4(3)	42.4(3)	13.1(2)	8.5(2)	17.2(2)
Cl02	50.0(3)	47.6(3)	52.4(3)	-2.3(2)	-4.7(2)	13.7(2)
O003	23.9(5)	48.7(7)	22.7(5)	-5.9(5)	5.5(4)	-5.4(5)
O004	23.0(5)	42.4(7)	22.3(5)	-2.6(5)	4.1(4)	-0.7(5)
C005	19.1(7)	29.2(8)	24.4(7)	-4.1(6)	1.8(5)	-3.0(6)
C006	23.3(7)	29.6(8)	21.3(7)	-2.5(6)	4.4(5)	-6.6(6)
C007	27.0(7)	30.4(8)	19.1(7)	1.5(6)	4.6(6)	-4.8(6)

C008 26.7(7)	28.1(8)	20.1(7)	-2.7(6)	4.6(6)	0.3(6)
C009 22.3(7)	38.0(9)	23.8(7)	-7.5(6)	3.4(6)	-8.5(6)
C00A 20.4(7)	30.2(8)	25.8(7)	-0.6(6)	2.3(6)	-3.7(6)
C00B 26.8(8)	36.1(9)	34.6(9)	-6.8(7)	5.0(7)	-1.4(7)
C00C 21.5(7)	35.1(8)	23.8(7)	-1.4(6)	0.4(6)	-0.6(6)
C00D 43.5(10)	36.0(9)	26.4(8)	-1.9(7)	11.8(7)	-2.7(7)
C00E 35.5(9)	36.4(9)	41.9(10)	-8.3(8)	-2.5(7)	2.0(7)
C00F 26.5(8)	34.2(8)	31.2(8)	-10.4(7)	4.4(6)	-3.8(7)
C00G 30.6(8)	30.7(8)	24.7(7)	-3.0(6)	7.9(6)	-1.9(6)
C00H 28.3(8)	35.3(9)	24.8(7)	-1.4(7)	3.2(6)	-3.3(7)
C00I 24.2(7)	33.8(8)	22.1(7)	-5.8(6)	5.7(6)	-2.8(6)
C00J 24.6(7)	37.5(9)	32.9(8)	7.0(7)	3.8(6)	0.5(7)
C00K 43.0(10)	41.5(10)	21.5(7)	-1.3(7)	1.7(7)	10.2(8)
C00L 21.5(7)	33.9(8)	25.0(7)	0.1(6)	3.6(6)	-3.3(6)
C00M 19.4(7)	36.0(8)	22.6(7)	-5.6(6)	1.2(5)	-3.6(6)
C00N 25.1(7)	31.8(8)	24.1(7)	-5.3(6)	3.4(6)	-2.5(6)
C00O 24.3(7)	36.4(8)	21.6(7)	-1.2(6)	3.2(6)	-5.3(6)
C00P 46.0(10)	31.9(9)	26.0(8)	2.5(6)	11.1(7)	0.1(7)
C00Q 38.1(9)	35.8(9)	27.3(8)	4.5(7)	5.1(7)	6.8(7)
C00R 31.8(8)	42.7(10)	29.0(8)	-3.0(7)	-2.9(6)	2.5(7)
C00S 25.3(8)	34.9(9)	26.6(8)	-4.8(6)	4.1(6)	-0.3(6)
C00T 26.0(8)	34.8(9)	29.9(8)	-2.6(7)	6.6(6)	-0.8(6)
C00U 23.8(7)	36.1(9)	21.2(7)	-6.0(6)	4.9(6)	-2.0(6)
C00V 35.9(8)	33.6(8)	20.2(7)	-1.0(6)	1.3(6)	-1.5(7)
C00W27.8(8)	39.7(9)	37.1(9)	-12.2(7)	5.7(7)	-3.6(7)
C00X 23.6(7)	30.5(8)	20.7(7)	-5.2(6)	3.4(6)	1.7(6)
C00Y 26.2(7)	32.5(8)	20.2(7)	-1.4(6)	3.8(6)	-6.4(6)
C00Z 27.7(8)	48.1(10)	25.1(8)	-5.0(7)	-1.9(6)	6.3(7)
C010 28.3(7)	38.5(9)	23.6(7)	2.7(7)	3.2(6)	-2.2(7)
C011 35.7(9)	36.9(9)	28.9(8)	0.5(7)	8.3(7)	-0.1(7)
C012 26.2(7)	35.2(9)	25.9(7)	-6.3(6)	7.9(6)	-4.8(6)
C013 26.7(8)	34.3(9)	29.3(8)	-6.1(7)	2.3(6)	0.2(6)
C014 28.1(8)	40.7(10)	45.9(10)	-13.1(8)	2.9(7)	2.9(7)
C015 28.3(8)	33.0(9)	42.3(9)	1.2(7)	8.7(7)	5.7(7)
C016 23.0(7)	38.1(9)	24.0(7)	-2.6(6)	2.5(6)	-0.4(6)
C017 33.9(8)	33.8(9)	31.7(8)	0.6(7)	1.0(7)	2.9(7)
C018 25.7(7)	35.2(9)	25.6(7)	-6.8(6)	5.9(6)	-2.3(6)
C019 48.6(10)	38.2(9)	23.0(8)	0.8(7)	2.5(7)	9.3(8)
C01A 36.3(9)	38.6(9)	34.0(9)	-5.0(7)	4.4(7)	-0.2(7)
C01B 28.3(8)	36.5(9)	34.1(8)	-2.3(7)	5.3(6)	4.5(7)
C01C 45.5(10)	32.3(9)	24.1(8)	-3.9(6)	3.5(7)	3.5(7)
C01D 26.1(8)	37.4(9)	27.6(8)	-9.1(7)	6.4(6)	-4.2(6)
C01E 31.4(8)	36.4(9)	36.1(9)	-7.8(7)	5.7(7)	2.8(7)

Table S4 Bond Lengths for 3b.

Atom Atom Length/Å	Atom Atom Length/Å
Cl01 C017 1.7409(18)	C00G C00P 1.386(2)
Cl02 C00E 1.737(2)	C00H C00R 1.391(2)
O003 C009 1.228(2)	C00I C00M1.476(2)
O004 C00M 1.231(2)	C00I C00U 1.341(2)
C005 C00A 1.488(2)	C00J C00L 1.387(2)
C005 C00C 1.349(2)	C00J C015 1.389(3)
C005 C00X 1.491(2)	C00K C00Z 1.387(3)
C006 C007 1.481(2)	C00N C00S 1.398(2)

C006 C008 1.493(2)	C00N C00T 1.410(2)
C006 C00O 1.349(2)	C00N C00U 1.463(2)
C007 C00V 1.397(2)	COOP CO19 1.389(3)
C007 C00Y 1.402(2)	C00Q C010 1.390(3)
C008 C00G 1.396(2)	C00Q C01C 1.387(2)
C008 C00H 1.395(2)	COOR CO19 1.383(3)
C009 C00O 1.474(2)	C00S C01B 1.387(2)
C009 C012 1.475(2)	C00T C011 1.384(3)
C00AC00L 1.402(2)	C00V C01C 1.385(2)
C00AC013 1.393(2)	C00WC014 1.380(3)
C00B C00F 1.403(2)	C00X C016 1.398(2)
C00B C01A 1.380(3)	C00X C018 1.397(2)
C00C C00M 1.479(2)	C00Y C010 1.387(2)
C00D C00K 1.393(3)	C00Z C016 1.390(2)
C00DC018 1.384(3)	C011 C017 1.391(2)
C00E C014 1.386(3)	C012 C01D 1.342(2)
C00E C01A 1.391(3)	C013 C01E 1.386(2)
C00F C00W 1.402(2)	C015 C01E 1.387(3)
C00F C01D 1.461(3)	C017 C01B 1.387(3)

Table S5 Bond Angles for 3b.

Atom Atom Angle/°	Atom Atom Atom Angle/°
C00A C005 C00X 116.30(13)	C00I C00M C00C 121.67(14)
C00C C005 C00A 119.76(14)	C00S C00N C00T 118.11(16)
C00C C005 C00X 123.90(14)	C00S C00N C00U118.78(15)
C007 C006 C008 116.18(13)	C00T C00N C00U123.01(15)
C000 C006 C007 119.20(14)	C006 C000 C009 130.15(15)
C000 C006 C008 124.61(15)	C00G C00P C019 120.03(16)
C00V C007 C006 120.67(14)	C01C C00Q C010 119.61(16)
C00V C007 C00Y 118.55(15)	C019 C00R C00H120.39(16)
C00Y C007 C006 120.77(14)	C01B C00S C00N 121.65(16)
C00G C008 C006 118.58(14)	C011 C00T C00N 120.87(15)
C00H C008 C006 122.46(14)	C00I C00U C00N 127.03(15)
C00H C008 C00G 118.97(15)	C01C C00V C007 120.54(15)
O003 C009 C00O 117.26(16)	C014 C00W C00F 121.10(17)
O003 C009 C012 120.83(15)	C016 C00X C005 121.28(14)
C000 C009 C012 121.91(14)	C018 C00X C005 119.65(14)
C00L C00A C005 120.86(14)	C018 C00X C016 119.06(15)
C013 C00A C005 120.39(14)	C010 C00Y C007 120.64(15)
C013 C00A C00L 118.74(15)	C00K C00Z C016 120.51(16)
C01A C00B C00F 121.12(16)	C00Y C010 C00Q 120.11(15)
C005 C00C C00M129.56(15)	C00T C011 C017 119.20(16)
C018 C00D C00K 120.20(17)	C01D C012 C009 120.27(15)
C014 C00E Cl02 119.44(15)	C01E C013 C00A 120.83(16)
C014 C00E C01A 121.35(18)	C00W C014 C00E 119.13(17)
C01A C00E Cl02 119.21(16)	C01E C015 C00J 119.77(16)
C00B C00F C01D 122.82(15)	C00Z C016 C00X120.06(16)
C00WC00F C00B 118.29(17)	C011 C017 Cl01 119.45(14)
C00W C00F C01D 118.80(16)	C01B C017 Cl01 119.11(13)
C00P C00G C008 120.59(16)	C01B C017 C011 121.44(16)
C00R C00H C008 120.19(16)	C00D C018 C00X 120.53(15)
C00U C00I C00M120.13(15)	COOR C019 C00P 119.79(16)
C00L C00J C015 120.33(16)	C00B C01A C00E 118.99(18)
C00Z C00K C00D 119.57(16)	C00S C01B C017 118.70(16)

C00J	COOL COOA	120.23(15)	C00V	C01C	C00Q	120.55(16)
O004	$\rm C00MC00C$	117.59(15)	C012	C01D	C00F	126.14(16)
O004	C00M C00I	120.74(14)	C013	C01E	C015	120.06(16)

Atom x	y	τ τ ζ	U(eq)
H00B 6595	1882	4668	39
H00C 4383	1906	2861	32
H00D 4785	3637	1111	42
H00G 513	3106	4655	34
H00H 6266	4049	4539	35
H00I 2050	3449	2292	32
H00J 10545	928	2717	38
H00K 1191	3457	836	42
H00L 7803	1739	2797	32
H00O 2375	3903	3445	33
H00P 1855	2628	5328	41
H00Q -3900	5700	4069	40
H00R 7549	3605	5228	42
H00S -4351	4179	2665	35
H00T 253	4185	1805	36
H00U -1552	3332	2769	32
H00V 1634	4886	4654	36
H00W 11283	1720	3832	42
H00Y -1095	4046	3514	31
H00Z -901	2630	1169	41
H010 -3871	4867	3505	36
H011 -1700	5023	1379	40
H012 4889	2544	4159	35
H013 5328	1332	1548	36
H014 13266	999	4335	46
H015 10631	295	2063	41
H016 515	2022	1795	34
H018 6257	2999	1716	34
H019 5381	2878	5616	44
H01A 8551	1149	5167	43
H01B -6280	5033	2247	39
H01C -1121	5712	4636	41
H01D 8351	2499	3636	36
H01E 8033	507	1476	41

Table S6 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 3b.

Experimental

Single crystals of $C_{23}H_{17}ClO$ [3b] were [obtained at slow evaporation of solution of 3d in hexanes - chloroform]. A suitable crystal was selected and studied on a Xcalibur, Eos diffractometer The crystal was kept at 100(2) K during data collection. Using Olex2 [1], the structure was solved with the Superflip [2] structure solution program using Charge Flipping and refined with the ShelXL [3] refinement package using Least Squares minimisation.

1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst., 40, 786-790; Palatinus, L. & van der Lee, A. (2008). J.
 Appl. Cryst. 41, 975-984; Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.
 Sheldrick, G.M. (2015). ActaCryst. C71, 3-8.

Crystal structure determination of [3b]

Crystal Data for C₂₃H₁₇ClO (M =344.82 g/mol): monoclinic, space group P2₁/c (no. 14), a = 6.23180(10) Å, b = 19.0611(3) Å, c = 30.5102(4) Å, $\beta = 95.1740(10)^\circ$, V = 3609.39(9) Å³, Z = 8, T = 100(2) K, μ (CuK α) = 1.911 mm⁻¹, Dcalc = 1.269 g/cm³, 7095 reflections measured (5.474° $\leq 2\Theta \leq 144.42^\circ$), 7095 unique ($R_{int} = ?$, $R_{sigma} = 0.0115$) which were used in all calculations. The final R_1 was 0.0525 (I > 2 σ (I)) and wR_2 was 0.1576 (all data).

Refinement model description

Number of restraints - 0, number of constraints - unknown. Details: 1. Twinned data refinement Scales: 0.37(5) 0.63(5)2. Fixed Uiso At 1.2 times of: All C(H) groups 3.a Aromatic/amide H refined with riding coordinates: C00B(H00B), C00C(H00C), C00D(H00D), C00G(H00G), C00H(H00H), C00I(H00I), C00J(H00J), C00K(H00K), C00L(H00L), C00O(H00O), C00P(H00P), C00Q(H00Q), COOR(HOOR), COOS(HOOS), COOT(HOOT), COOU(HOOU), COOV(HOOV), COOW(HOOW), C00Y(H00Y), C00Z(H00Z), C010(H010), C011(H011), C012(H012), C013(H013), C014(H014), C015(H015), C016(H016), C018(H018), C019(H019), C01A(H01A), C01B(H01B), C01C(H01C), C01D(H01D), C01E(H01E)

3d

CCDC 1847451	
Table S7 Crystal data and s	tructure refinement for 3d.
Identificationcode	7072-8496_vasilev073
Empiricalformula	C ₂₃ H ₁₇ FO
Formulaweight	328.36
Temperature/K	100(2)
Crystalsystem	monoclinic
Spacegroup	$P2_1/c$
a/Å	8.47709(19)
b/Å	19.3161(4)
c/Å	10.6412(2)
α/°	90
β/°	96.210(2)
γ/°	90
Volume/Å ³	1732.22(7)
Ζ	4
$\rho_{calc}g/cm^3$	1.259
μ/mm^{-1}	0.083
F(000)	688.0
Crystalsize/mm ³	0.2 imes 0.2 imes 0.2
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	5.274 to 54.986
Indexranges	$\textbf{-11} \leq h \leq 11, \textbf{-25} \leq k \leq 25, \textbf{-13} \leq l \leq 13$
Reflectionscollected	30881
Independentreflections	$3969 [R_{int} = 0.0422, R_{sigma} = 0.0219]$
Data/restraints/parameters	3969/0/226
Goodness-of-fit on F ²	1.032
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0399$, $wR_2 = 0.0972$
Final R indexes [all data]	$R_1 = 0.0477, wR_2 = 0.1018$
Largest diff. peak/hole / e Å ⁻³	0.39/-0.20

Table S8 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 3d. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Aton	1 <i>x</i>	У	Z	U(eq)
F1	-1061.6(11)	5910.6(4)	5047.4(8)	41.2(2)
02	1074.9(10)	4707.1(4)	1610.2(8)	25.3(2)
C1	4117.4(13)	6262.6(6)	541.9(10)	17.1(2)
C2	3753.5(13)	5738.6(5)	-1659(1)	18.0(2)
C3	3324.8(12)	5743.6(5)	-343.1(10)	16.6(2)
C4	1529.2(13)	5261.9(6)	1210.0(11)	19.5(2)
C5	4865.3(13)	6061.0(6)	1718.7(11)	20.5(2)
C6	2276.8(13)	5276.8(6)	15.5(11)	18.7(2)
C7	5313.2(14)	5869.6(6)	-1907.0(11)	20.7(2)
C8	1193.9(13)	5929.7(6)	1822.5(11)	20.4(2)
C9	95.8(13)	6588.2(6)	3542.0(11)	22.8(2)
C10	548.5(13)	5955.3(6)	2912.3(11)	21.8(2)
C11	5726.3(16)	5826.1(6)	-3131.4(12)	26.7(3)
C12	4095.6(14)	6963.5(6)	211.8(11)	22.4(2)
C13	2608.3(15)	5586.7(6)	-2667.8(11)	23.2(3)
C14	5562.2(15)	6553.7(7)	2558.1(12)	25.5(3)
C15	4581.9(18)	5676.4(6)	-4124.0(12)	30.2(3)
C16	4760.8(16)	7452.8(6)	1067.6(13)	29.6(3)
C17	-738.0(15)	6549.0(7)	4598.7(12)	29.1(3)
C18	5497.0(16)	7249.8(7)	2235.9(13)	28.8(3)
C19	413.1(15)	7259.7(7)	3128.6(12)	28.0(3)
C20	3025.8(17)	5558.4(6)	-3893.8(12)	29.3(3)
C21	-1287.2(16)	7117.0(8)	5200.2(13)	35.7(3)
C22	-988.4(16)	7768.8(8)	4744.8(14)	36.2(3)
C23	-127.7(17)	7841.8(7)	3716.3(13)	34.2(3)

Table S9 Anisotropic Displacement Parameters (Å²×10³) for 3d. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Aton	nU ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
F1	51.0(5)	41.8(5)	35.2(5)	-5.0(4)	24.6(4)	-14.5(4)
02	21.8(4)	21.9(4)	33.3(5)	5.5(3)	7.9(4)	-2.5(3)
C1	15.8(5)	15.3(5)	21.0(5)	-1.8(4)	5.5(4)	-1.1(4)
C2	22.7(6)	10.3(5)	21.8(5)	-0.4(4)	5.8(4)	1.8(4)
C3	15.7(5)	13.9(5)	20.4(5)	-0.4(4)	2.4(4)	2.2(4)
C4	13.6(5)	22.3(6)	22.5(6)	2.6(4)	1.2(4)	-0.9(4)
C5	20.4(5)	16.9(5)	24.3(6)	0.6(4)	3.5(4)	-1.1(4)
C6	17.7(5)	16.8(5)	21.5(5)	-2.4(4)	1.6(4)	-0.7(4)
C7	23.4(6)	12.3(5)	27.3(6)	2.4(4)	7.1(5)	1.8(4)
C8	17.0(5)	21.2(6)	23.1(6)	2.4(4)	2.9(4)	0.0(4)
C9	17.6(5)	30.2(6)	20.3(6)	-3.3(5)	0.4(4)	-1.6(5)
C10	18.1(5)	25.6(6)	21.4(6)	0.5(4)	1.0(4)	-3.2(4)
C11	34.1(7)	13.9(5)	35.5(7)	5.6(5)	18.9(6)	4.6(5)
C12	25.0(6)	17.1(5)	25.1(6)	1.7(4)	3.3(5)	-1.3(4)
C13	27.8(6)	17.6(5)	24.3(6)	-2.5(4)	3.4(5)	-1.0(4)
C14	25.7(6)	28.4(6)	22.1(6)	-2.1(5)	0.9(5)	-4.7(5)
C15	55.6(9)	13.6(5)	24.5(6)	0.7(5)	18.5(6)	3.7(5)
C16	35.9(7)	15.6(5)	37.8(7)	-2.9(5)	6.0(6)	-5.0(5)
C17	24.6(6)	36.7(7)	26.4(6)	-5.7(5)	5.1(5)	-7.8(5)
C18	31.7(7)	24.1(6)	31.0(7)	-10.7(5)	5.5(5)	-9.1(5)
C19	27.5(6)	30.8(7)	25.7(6)	-2.0(5)	2.1(5)	-1.4(5)
C20	46.7(8)	19.4(6)	21.5(6)	-3.2(5)	2.2(5)	-1.8(5)

C21	26.8(7)	50.2(9)	31.2(7)	-16.8(6)	8.0(5)	-6.3(6)
C22	28.5(7)	41.1(8)	37.9(8)	-20.4(6)	-1.6(6)	3.1(6)
C23	35.6(7)	30.2(7)	35.4(7)	-7.0(6)	-3.3(6)	0.1(6)

Table S10 Bond Lengths for 3d.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
F1	C17	1.3609(16)	C9	C10	1.4650(17)
O2	C4	1.2304(14)	C9	C17	1.3934(17)
C1	C3	1.4854(15)	C9	C19	1.4051(18)
C1	C5	1.3965(16)	C11	C15	1.385(2)
C1	C12	1.3984(15)	C12	C16	1.3891(17)
C2	C3	1.4842(15)	C13	C20	1.3893(17)
C2	C7	1.3990(16)	C14	C18	1.3872(18)
C2	C13	1.3984(16)	C15	C20	1.386(2)
C3	C6	1.3496(15)	C16	C18	1.386(2)
C4	C6	1.4807(15)	C17	C21	1.3764(19)
C4	C8	1.4865(16)	C19	C23	1.3883(19)
C5	C14	1.3923(16)	C21	C22	1.382(2)
C7	C11	1.3878(17)	C22	C23	1.387(2)
C8	C10	1.3357(16)			

Table S11 Bond Angles for 3d.

Aton	Atom Atom Atom Angle/°			Atom Atom Atom Angle/°			
C5	C1	C3	120.71(10)	C19	C9	C10	123.96(11)
C5	C1	C12	119.19(10)	C8	C10	C9	125.47(11)
C12	C1	C3	120.08(10)	C15	C11	C7	120.10(12)
C7	C2	C3	120.64(10)	C16	C12	C1	120.04(11)
C13	C2	C3	120.34(10)	C20	C13	C2	120.19(12)
C13	C2	C7	119.00(11)	C18	C14	C5	120.08(12)
C2	C3	C1	117.54(9)	C11	C15	C20	120.06(11)
C6	C3	C1	122.56(10)	C18	C16	C12	120.47(12)
C6	C3	C2	119.88(10)	F1	C17	C9	118.12(11)
02	C4	C6	119.54(10)	F1	C17	C21	117.90(12)
02	C4	C8	121.48(10)	C21	C17	C9	123.96(13)
C6	C4	C8	118.65(10)	C16	C18	C14	119.86(11)
C14	C5	C1	120.30(11)	C23	C19	C9	121.53(12)
C3	C6	C4	127.71(10)	C15	C20	C13	120.22(12)
C11	C7	C2	120.39(12)	C17	C21	C22	118.62(13)
C10	C8	C4	121.91(11)	C21	C22	C23	120.09(13)
C17	C9	C10	120.31(11)	C22	C23	C19	120.05(14)
C17	C9	C19	115.71(11)				

Table S12 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 3d.

Atom	x	У	Z	U(eq)
H5	4899	5585	1948	25
H6	1984	4915	-568	22
H7	6094	5989	-1233	25
H8	1446	6350	1427	24
H10	368	5527	3313	26
H11	6796	5899	-3289	32
H12	3625	7105	-598	27
H13	1542	5503	-2514	28
H14	6083	6413	3352	31

4864	5655	-4963	36
4711	7930	851	36
5956	7587	2815	35
1012	7317	2431	34
2242	5458	-4577	35
-1860	7062	5913	43
-1373	8167	5137	43
92	8290	3414	41
	4864 4711 5956 1012 2242 -1860 -1373 92	4864565547117930595675871012731722425458-18607062-13738167928290	48645655-49634711793085159567587281510127317243122425458-4577-186070625913-1373816751379282903414

Experimental

Single crystals of $C_{23}H_{17}FO$ [3d] were [obtained at slow evaporation of solution of 3d in hexanes - chloroform]. A suitable crystal was selected and studied on a Xcalibur, Eos diffractometer. The crystal was kept at 100(2) K during data collection. Using Olex2 [1], the structure was solved with the Superflip [2] structure solution program using Charge Flipping and refined with the ShelXL [3] refinement package using Least Squares minimisation.

1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. &Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst., 40, 786-790; Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975-984; Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.
 Sheldrick, G.M. (2015). ActaCryst. C71, 3-8.

Crystal structure determination of [3d]

Crystal Data for C₂₃H₁₇FO (M=328.36 g/mol): monoclinic, space group P2₁/c (no. 14), a = 8.47709(19) Å, b = 19.3161(4) Å, c = 10.6412(2) Å, β = 96.210(2)°, V = 1732.22(7) Å³, Z = 4, T = 100(2) K, μ (MoK α) = 0.083 mm⁻¹, *Dcalc* = 1.259 g/cm³, 30881 reflections measured (5.274° ≤ 2 Θ ≤ 54.986°), 3969 unique (R_{int} = 0.0422, R_{sigma} = 0.0219) which were used in all calculations. The final R_1 was 0.0399 (I > 2 σ (I)) and wR_2 was 0.1018 (all data).

Refinement model description

Number of restraints - 0, number of constraints - unknown.

Details:

1. Fixed Uiso

At 1.2 times of:

All C(H) groups

2.a Aromatic/amide H refined with riding coordinates:

C5(H5), C6(H6), C7(H7), C8(H8), C10(H10), C11(H11), C12(H12), C13(H13),

C14(H14), C15(H15), C16(H16), C18(H18), C19(H19), C20(H20), C21(H21), C22(H22), C23(H23)

3e

CCDC 1847452

Table S13 Crystal data and structure refinement for	3e.
---	-----

Identificationcode	7071-8325_ima063
Empiricalformula	$C_{23}H_{18}O$
Formulaweight	310.37
Temperature/K	100.01(10)
Crystalsystem	orthorhombic
Spacegroup	Pna2 ₁
a/Å	7.75140(10)
b/Å	12.0257(2)
c/Å	17.7094(3)
$\alpha/^{\circ}$	90
β/°	90
γ/°	90

Volume/Å ³	1650.80(4)
Z	4
$\rho_{calc}g/cm^3$	1.249
μ/mm^{-1}	0.578
F(000)	656.0
Crystalsize/mm ³	0.2 imes 0.2 imes 0.2
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
20 range for data collection/°	8.888 to 139.92
Indexranges	$-9 \le h \le 6, -14 \le k \le 14, -21 \le l \le 21$
Reflectionscollected	14542
Independentreflections	$3045 [R_{int} = 0.0369, R_{sigma} = 0.0235]$
Data/restraints/parameters	3045/1/218
Goodness-of-fit on F ²	1.060
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0305, wR_2 = 0.0747$
Final R indexes [all data]	$R_1 = 0.0313, wR_2 = 0.0756$
Largest diff. peak/hole / e Å-3	0.15/-0.21
Flackparameter	0.2(3)

Table S14 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 3e. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom <i>x</i>		У	Z	U(eq)
012	3773.8(18)	8844.3(12)	4911.6(9)	27.4(3)
C7	2730(2)	6468.6(16)	6064.7(11)	19.0(4)
C10	2863(2)	7169.0(16)	4345.4(12)	19.8(4)
C19	2935(2)	5437.8(16)	5612.6(11)	19.2(4)
C11	3555(2)	7384.8(16)	3672.8(11)	20.1(4)
C8	2950(2)	7502.8(17)	5787.3(11)	21.6(4)
C9	3260(2)	7885.1(16)	5003.2(11)	19.7(4)
C6	2861(2)	5391.7(16)	7279.6(12)	21.5(4)
C1	2269(2)	6320.5(17)	6878.1(11)	19.5(4)
C13	3288(2)	6753.3(16)	2972.5(11)	19.5(4)
C24	1606(2)	4654.5(17)	5599.4(11)	22.6(4)
C14	3931(2)	7180.5(17)	2296.3(12)	24.0(4)
C4	1363(2)	6006.6(19)	8394.9(11)	26.1(4)
C5	2426(2)	5245.6(17)	8033.8(12)	24.2(4)
C18	2399(2)	5737.7(16)	2953.8(11)	22.1(4)
C2	1227(2)	7091.4(17)	7253.6(12)	22.1(4)
C20	4409(2)	5242.0(18)	5177.2(11)	25.5(4)
C3	768(2)	6932.0(18)	8002.5(12)	26.5(4)
C17	2119(2)	5194.5(18)	2273.7(13)	24.9(4)
C16	2748(2)	5640.4(17)	1602.8(11)	24.3(4)
C15	3665(3)	6631.6(18)	1617.0(12)	26.8(4)
C23	1713(3)	3731.3(18)	5139.1(13)	30.2(5)
C21	4519(3)	4301(2)	4732.4(12)	35.7(5)
C22	3171(3)	3552.3(19)	4702.0(13)	36.1(5)

Table S15 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 3e. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom U ₁₁		U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
012	33.9(7)	20.5(7)	27.7(7)	0.8(6)	-0.8(6)	-4.6(6)
C7	15.1(7)	22.6(10)	19.3(9)	-2.2(8)	-2.6(7)	-0.3(6)
C10	19.0(8)	18.0(9)	22.4(9)	1.2(7)	-1.9(7)	0.0(7)
C19	21.3(8)	20.3(9)	15.9(8)	1.1(7)	-0.6(7)	3.0(7)
C11	18.0(8)	18.6(9)	23.7(9)	2.5(8)	-2.7(7)	-1.1(7)

C8	22.9(8)	22.0(9)	20.0(9)	-4.9(8)	-2.1(7)	-1.9(7)
C9	16.7(8)	19.0(9)	23.3(10)	1.3(8)	-1.7(7)	0.9(6)
C6	22.0(8)	21(1)	21.6(9)	-4.0(8)	1.7(7)	0.0(7)
C1	17.6(8)	22.6(10)	18.3(9)	-4.5(7)	-2.1(7)	-3.4(7)
C13	16.3(8)	20.6(9)	21.7(9)	2.3(8)	-1.3(7)	2.5(7)
C24	25.5(8)	22.1(10)	20.1(9)	1.2(8)	-1.2(7)	-1.0(7)
C14	25.5(9)	22.3(10)	24.2(10)	2.9(8)	0.8(8)	-3.0(7)
C4	26.3(9)	35.7(12)	16.3(9)	-4.9(8)	1.6(7)	-7.6(8)
C5	27.9(9)	24.6(10)	20.2(9)	1.6(8)	-2.1(8)	-5.7(7)
C18	22.0(9)	22.4(9)	21.9(10)	2.3(8)	2.8(7)	-2.0(7)
C2	20.0(9)	22.3(9)	23.9(10)	-4.1(8)	-3.8(7)	-0.8(7)
C20	24.9(9)	30.1(11)	21.3(10)	6.9(8)	3.5(8)	7.9(8)
C3	22.2(8)	32.9(11)	24.5(10)	-12.1(9)	0.3(8)	0.0(7)
C17	22.0(8)	23.5(10)	29.3(10)	-3.5(9)	1.2(8)	-3.0(7)
C16	22.3(9)	28.5(11)	22.2(10)	-5.0(8)	-2.7(8)	2.6(7)
C15	30.6(9)	28.5(11)	21.2(10)	5.1(8)	2.9(8)	0.6(8)
C23	46.4(12)	20.6(11)	23.5(10)	2.1(8)	-9.0(9)	-2.1(9)
C21	46.8(12)	38.7(13)	21.7(10)	5.8(9)	11.0(9)	21.1(10)
C22	67.3(15)	22.7(11)	18.3(10)	-3.9(8)	-2.9(10)	13.1(11)

Table S16 Bond Lengths for 3e.

Aton	1 Aton	1 Length/Å	Aton	1 Aton	ı Length/Å
012	C9	1.231(2)	C13	C14	1.395(3)
C7	C19	1.484(3)	C13	C18	1.403(3)
C7	C8	1.348(3)	C24	C23	1.380(3)
C7	C1	1.495(3)	C14	C15	1.387(3)
C10	C11	1.332(3)	C4	C5	1.387(3)
C10	C9	1.481(3)	C4	C3	1.391(3)
C19	C24	1.396(3)	C18	C17	1.387(3)
C19	C20	1.398(3)	C2	C3	1.387(3)
C11	C13	1.469(3)	C20	C21	1.381(3)
C8	C9	1.482(3)	C17	C16	1.392(3)
C6	C1	1.401(3)	C16	C15	1.388(3)
C6	C5	1.389(3)	C23	C22	1.386(4)
C1	C2	1.398(3)	C21	C22	1.381(4)

Table S17 Bond Angles for 3e.

Atom Atom Angle/°			Atom Atom Atom Angle/°					
C19	C7	C1	116.48(17)		C14	C13	C18	118.41(18)
C8	C7	C19	124.09(18)		C18	C13	C11	122.62(17)
C8	C7	C1	119.43(18)		C23	C24	C19	120.54(19)
C11	C10	C9	120.45(17)		C15	C14	C13	121.07(18)
C24	C19	C7	119.57(16)		C5	C4	C3	119.64(19)
C24	C19	C20	118.68(18)		C4	C5	C6	120.3(2)
C20	C19	C7	121.72(17)		C17	C18	C13	120.49(18)
C10	C11	C13	126.72(17)		C3	C2	C1	120.78(19)
C7	C8	C9	130.39(18)		C21	C20	C19	120.2(2)
012	C9	C10	120.56(18)		C2	C3	C4	120.22(18)
012	C9	C8	117.80(18)		C18	C17	C16	120.33(19)
C10	C9	C8	121.54(16)		C15	C16	C17	119.65(19)
C5	C6	C1	120.62(18)		C14	C15	C16	120.02(19)
C6	C1	C7	120.37(18)		C24	C23	C22	120.3(2)
C2	C1	C7	121.17(18)		C22	C21	C20	120.6(2)
C2	C1	C6	118.45(19)		C21	C22	C23	119.6(2)

	. 0		A A	()
Atom	x	у	z	U(eq)
H10	2127	6564	4402	24
H11	4281	7999	3643	24
H8	2900	8067	6146	26
H6	3552	4868	7039	26
H24	640	4756	5903	27
H14	4547	7844	2301	29
H4	1051	5899	8897	31
H5	2848	4635	8298	29
H18	1995	5426	3401	27
H2	838	7719	6998	26
H20	5318	5747	5187	31
H3	60	7446	8243	32
H17	1508	4529	2266	30
H16	2554	5276	1147	29
H15	4102	6928	1171	32
H23	805	3227	5122	36
H21	5511	4171	4451	43
H22	3240	2932	4390	43

Table S18 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 3e.

Experimental

Single crystals of $C_{23}H_{18}O$ [3e] were [obtained at slow evaporation of solution of 3e in hexanes - chloroform]. A suitable crystal was selected and on a Xcalibur, Eos diffractometer. The crystal was kept at 100.01(10) K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Intrinsic Phasing and refined with the ShelXL [3] refinement package using Least Squares minimisation.

1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

2. Sheldrick, G.M. (2015). ActaCryst. A71, 3-8.

3. Sheldrick, G.M. (2015). ActaCryst. C71, 3-8.

Crystal structure determination of 3e

Crystal Data for C₂₃H₁₈O (*M*=310.37 g/mol): orthorhombic, space group Pna2₁ (no. 33), *a* = 7.75140(10) Å, *b* = 12.0257(2) Å, *c* = 17.7094(3) Å, *V* = 1650.80(4) Å³, *Z* = 4, *T* = 100.01(10) K, μ (CuK α) = 0.578 mm⁻¹, *Dcalc* = 1.249 g/cm³, 14542 reflections measured (8.888° ≤ 2Θ ≤ 139.92°), 3045 unique (R_{int} = 0.0369, R_{sigma} = 0.0235) which were used in all calculations. The final R_1 was 0.0305 (I > 2 σ (I)) and wR_2 was 0.0756 (all data).

Refinement model description

Number of restraints - 1, number of constraints - unknown.

Details:

1. Twinned data refinement

Scales: 0.8(4)

0.2(4)

2. Fixed Uiso

At 1.2 times of:

All C(H) groups

3.a Aromatic/amide H refined with riding coordinates:

C10(H10), C11(H11), C8(H8), C6(H6), C24(H24), C14(H14), C4(H4), C5(H5),

C18(H18), C2(H2), C20(H20), C3(H3), C17(H17), C16(H16), C15(H15), C23(H23),

C21(H21), C22(H22)

CCDC 1847453 Table S19 Crystal data and structure refinement for 3l. Identificationcode 9137 AVV363 Empiricalformula C₂₃H₁₇FO Formulaweight 328.36 Temperature/K 293(2) Crystalsystem monoclinic Spacegroup $P2_1/c$ a/Å 6.20717(15) b/Å 38.6061(11) c/Å 14.5881(3) $\alpha/^{\circ}$ 90 β/° 99.406(2) γ/° 90 Volume/Å³ 3448.81(15) Ζ 8 $\rho_{calc}g/cm^3$ 1.265 μ/mm^{-1} 0.668 F(000) 1376.0 Crystalsize/mm³ $0.4 \times 0.2 \times 0.1$ Radiation CuK α (λ = 1.54184) 20 range for data collection/° 4.578 to 143.934 Indexranges $-6 \le h \le 7, -47 \le k \le 45, -17 \le l \le 17$ Reflectionscollected 27840 Independentreflections $6752 [R_{int} = 0.0428, R_{sigma} = 0.0353]$ Data/restraints/parameters 6752/0/451 Goodness-of-fit on F² 1.073 Final R indexes $[I \ge 2\sigma(I)]$ $R_1 = 0.0418$, $wR_2 = 0.1103$ Final R indexes [all data] $R_1 = 0.0472$, $wR_2 = 0.1144$ Largest diff. peak/hole / e Å⁻³ 0.22/-0.27

Table S20 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$)
for 31. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.	

Atomx	У	Z	U(eq)
F25 1051.8(14)	1730.8(2)	3517.3(6)	34.1(2)
F50 13617.9(14)	3181.2(2)	5909.5(6)	32.9(2)
O37 7400.4(14)	5120.7(2)	5473.2(6)	23.9(2)
012 7223.2(15)	3675.6(3)	4015.2(6)	26.2(2)
C12 2901.1(19)	5058.1(3)	7797.5(9)	18.3(3)
C18 5489(2)	4553.0(3)	7753.4(8)	17.3(2)
C12A11853.4(19)	3620.6(3)	1723.3(9)	18.3(3)
C18A9322(2)	3110.6(3)	1752.7(8)	17.4(2)
C19A10738(2)	2831.8(3)	1700.6(8)	19.4(3)
C2A 9589(2)	3582.4(3)	2958.4(9)	19.7(3)
C1A 10219.8(18)	3440.2(3)	2195.9(8)	17.6(2)

C1	4521.1(19)	4880.1(3)	7316.7(8)	17.2(2)
C4	7398(2)	4536.9(3)	5965.9(8)	19.3(3)
C6	10268(2)	4111.0(3)	5686.7(8)	19.5(3)
C5	9235(2)	4452.7(3)	5647.9(8)	20.3(3)
C13A	.11715(2)	3595.8(3)	757.5(9)	21.5(3)
C3A	7967(2)	3461.2(3)	3525.6(8)	20.4(3)
C4A	7228(2)	3095.3(3)	3504.6(8)	20.5(3)
C19	7691(2)	4530.8(3)	8149.2(8)	20.6(3)
C3	6678.8(19)	4902.2(3)	5962.1(8)	18.9(3)
C17	1190.0(19)	5253.7(3)	7298.3(9)	20.4(3)
C17A	13530(2)	3823.6(3)	2219.5(9)	20.9(3)
C2	5080(2)	5022.5(3)	6543.3(9)	19.8(3)
C6A	4314(2)	2667.0(3)	3737.0(8)	20.3(3)
C5A	5348(2)	3009.6(3)	3783.5(8)	20.7(3)
C11	12144(2)	4067.0(3)	5275.4(8)	20.8(3)
C7	9536(2)	3829.2(3)	6162.3(9)	22.2(3)
C23	4155(2)	4261.6(3)	7762.0(9)	21.6(3)
C10	13275(2)	3754.8(3)	5337.4(9)	22.7(3)
C23A	7112(2)	3073.6(3)	1374.8(9)	21.1(3)
C11A	.2417(2)	2620.6(4)	4128.7(9)	22.1(3)
C10A	1318(2)	2305.9(4)	4068.1(9)	24.0(3)
C20A	.9949(2)	2517.0(3)	1320.1(9)	22.7(3)
C21A	7742(2)	2481.0(4)	958.1(9)	24.9(3)
C9	12496(2)	3488.2(3)	5820.3(9)	23.9(3)
C13	3077(2)	5042.5(3)	8767.3(9)	22.1(3)
C16A	14989(2)	3999.8(3)	1758.6(10)	25.6(3)
C7A	5096(2)	2385.1(4)	3277.8(9)	23.0(3)
C22	5031(2)	3950.4(4)	8128.2(9)	27.3(3)
C16	-249(2)	5433.7(3)	7757(1)	25.2(3)
C15	-16(2)	5424.9(4)	8721.1(10)	27.4(3)
C22A	.6338(2)	2761.3(4)	976.0(9)	25.0(3)
C8	10645(2)	3516.6(4)	6230.4(9)	24.9(3)
C14	1647(2)	5227.6(4)	9226.5(10)	26.9(3)
C9A	2140(2)	2038.3(4)	3602.8(9)	25.1(3)
C20	8547(2)	4220.9(4)	8542.5(9)	27.0(3)
C15A	14811(2)	3976.7(3)	797.5(11)	27.4(3)
C8A	4011(2)	2069.9(4)	3206.7(10)	26.8(3)
C14A	13174(2)	3774.1(4)	300.2(10)	25.7(3)
C21	7223(3)	3929.9(4)	8527.1(10)	30.5(3)

Table S21 Anisotropic Displacement Parameters (Å²×10³) for 3l. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

	~ ~ 12].			
U_{22}	U ₃₃	U_{23}	U ₁₃	U ₁₂
25.8(4)	36.0(5)	-0.1(4)	7.0(4)	-11.5(4)
21.9(4)	37.7(5)	1.8(3)	12.8(4)	7.6(3)
26.6(5)	25.2(5)	8.2(4)	5.0(4)	-0.8(4)
29.8(5)	23.8(5)	-8.1(4)	6.6(4)	-2.3(4)
15.0(6)	24.4(6)	-1.7(5)	3.5(5)	-2.9(4)
17.1(6)	15.1(5)	-0.9(5)	6.0(4)	1.0(5)
14.1(6)	25.5(6)	0.7(5)	3.1(5)	2.6(4)
17.5(6)	15.8(5)	1.3(5)	3.4(4)	-0.5(5)
21.3(6)	18.7(6)	1.0(5)	2.9(4)	1.5(5)
19.0(6)	21.7(6)	-1.0(5)	1.5(5)	-2.0(5)
17.0(6)	20.3(6)	1.9(5)	-0.4(4)	1.8(4)
	$\begin{array}{c} U_{22} \\ 25.8(4) \\ 21.9(4) \\ 26.6(5) \\ 29.8(5) \\ 15.0(6) \\ 17.1(6) \\ 14.1(6) \\ 17.5(6) \\ 21.3(6) \\ 19.0(6) \\ 17.0(6) \end{array}$	$\begin{array}{c cccc} U_{22} & U_{33} \\ 25.8(4) & 36.0(5) \\ 21.9(4) & 37.7(5) \\ 26.6(5) & 25.2(5) \\ 29.8(5) & 23.8(5) \\ 15.0(6) & 24.4(6) \\ 17.1(6) & 15.1(5) \\ 14.1(6) & 25.5(6) \\ 17.5(6) & 15.8(5) \\ 21.3(6) & 18.7(6) \\ 19.0(6) & 21.7(6) \\ 17.0(6) & 20.3(6) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

C1 14.9(5)	16.8(6)	19.3(6)	-1.6(5)	0.8(4)	-1.8(4)
C4 19.5(6)	21.4(6)	17.1(6)	-0.2(5)	2.8(4)	-3.3(5)
C6 18.8(6)	22.7(7)	16.8(5)	-1.8(5)	2.4(4)	-2.8(5)
C5 20.1(6)	23.6(7)	16.7(5)	1.4(5)	2.0(5)	-3.8(5)
C13A 20.5(6)	19.2(6)	24.8(6)	0.6(5)	3.7(5)	-0.3(5)
C3A 17.6(6)	25.0(7)	17.6(6)	-0.7(5)	0.0(4)	1.5(5)
C4A 19.9(6)	23.0(7)	18.4(6)	1.3(5)	2.7(5)	2.4(5)
C19 19.7(6)	22.8(7)	19.6(6)	1.0(5)	4.2(5)	1.4(5)
C3 15.4(6)	23.6(7)	17.2(6)	2.8(5)	0.8(4)	-2.3(5)
C17 17.0(6)	17.1(6)	26.8(6)	0.5(5)	2.7(5)	-2.4(5)
C17A17.1(6)	17.3(6)	27.9(6)	-2.3(5)	2.3(5)	2.7(5)
C2 17.6(6)	18.7(6)	22.6(6)	2.1(5)	2.0(5)	1.6(5)
C6A 18.7(6)	23.4(7)	17.9(6)	3.5(5)	0.1(5)	2.2(5)
C5A 20.7(6)	22.8(7)	18.2(6)	-0.1(5)	1.8(5)	3.0(5)
C11 22.0(6)	22.8(6)	18.0(6)	-1.2(5)	4.0(5)	-4.5(5)
C7 22.9(6)	24.3(7)	20.1(6)	-0.9(5)	5.6(5)	-3.3(5)
C23 23.3(6)	22.4(7)	20.1(6)	-1.9(5)	6.9(5)	-3.3(5)
C10 22.2(6)	25.1(7)	21.7(6)	-4.6(5)	6.7(5)	-1.3(5)
C23A17.5(6)	22.9(7)	22.5(6)	-1.8(5)	2.3(5)	1.2(5)
C11A 20.3(6)	25.9(7)	19.4(6)	0.9(5)	0.9(5)	2.1(5)
C10A 19.8(6)	31.1(7)	20.4(6)	3.6(5)	1.5(5)	-1.4(5)
C20A 28.9(7)	18.6(6)	21.7(6)	-0.6(5)	6.9(5)	2.5(5)
C21A31.4(7)	20.6(7)	23.5(6)	-4.3(5)	6.8(5)	-6.7(5)
C9 30.3(7)	18.0(6)	23.1(6)	-3.2(5)	3.8(5)	2.4(5)
C13 18.2(6)	23.9(7)	24.2(6)	-3.4(5)	3.1(5)	-0.3(5)
C16A17.3(6)	16.1(6)	43.3(8)	-3.7(6)	5.1(5)	-1.1(5)
C7A 22.1(6)	24.3(7)	23.0(6)	3.1(5)	4.9(5)	3.0(5)
C22 40.7(8)	18.6(7)	25.7(7)	0.9(5)	14.3(6)	-2.7(6)
C16 19.2(6)	16.1(6)	39.9(8)	-0.8(6)	4.0(5)	0.7(5)
C15 21.6(6)	21.3(7)	41.2(8)	-10.4(6)	11.0(6)	-1.1(5)
C22A 20.2(6)	30.6(7)	23.5(6)	-4.2(5)	1.3(5)	-5.2(5)
C8 31.0(7)	21.8(7)	22.7(6)	-0.1(5)	6.8(5)	-4.2(5)
C14 25.0(7)	30.3(7)	26.0(7)	-9.3(6)	6.6(5)	-3.1(5)
C9A 29.0(7)	21.6(7)	23.1(6)	3.3(5)	-0.1(5)	-4.3(5)
C20 25.9(7)	31.9(8)	23.8(6)	5.2(6)	6.0(5)	10.6(6)
C15A22.8(6)	19.2(7)	42.9(8)	4.8(6)	13.4(6)	0.1(5)
C8A 31.9(7)	22.4(7)	26.3(7)	0.7(5)	5.4(5)	3.6(6)
C14A27.7(7)	23.1(7)	27.9(7)	5.0(5)	9.3(5)	2.6(5)
C21 43.5(8)	23.1(7)	27.7(7)	8.8(6)	14.4(6)	12.6(6)

Table S22 Bond Lengths for 3l.

		8					
Atom Atom Length/Å			Atom Atom Length/Å				
F25	C9A	1.3616(15)	C4A	C5A	1.3386(18)		
F50	C9	1.3701(15)	C19	C20	1.3940(18)		
O37	C3	1.2348(15)	C3	C2	1.4814(17)		
O12	C3A	1.2314(16)	C17	C16	1.3872(18)		
C12	C1	1.4853(17)	C17A	C16A	1.3906(19)		
C12	C17	1.4057(17)	C6A	C5A	1.4669(18)		
C12	C13	1.4022(18)	C6A	C11A	1.4018(18)		
C18	C1	1.4954(17)	C6A	C7A	1.4054(18)		
C18	C19	1.3966(17)	C11	C10	1.3905(18)		
C18	C23	1.3983(17)	C7	C8	1.3850(19)		
C12A	C1A	1.4891(17)	C23	C22	1.3893(19)		
C12A	C13A	1.4008(18)	C10	C9	1.3786(19)		

C12A	C17A	1.4051(17)	C23A	C22A	1.3898(19)
C18A	C19A	1.3993(17)	C11A	C10A	1.3889(19)
C18A	C1A	1.4932(17)	C10A	C9A	1.379(2)
C18A	C23A	1.3999(17)	C20A	C21A	1.3921(19)
C19A	C20A	1.3916(18)	C21A	C22A	1.393(2)
C2A	C1A	1.3544(17)	C9	C8	1.3836(19)
C2A	C3A	1.4799(17)	C13	C14	1.3934(18)
C1	C2	1.3504(17)	C16A	C15A	1.391(2)
C4	C5	1.3395(18)	C7A	C8A	1.3867(19)
C4	C3	1.4790(18)	C22	C21	1.392(2)
C6	C5	1.4640(18)	C16	C15	1.390(2)
C6	C11	1.4047(17)	C15	C14	1.393(2)
C6	C7	1.4052(18)	C9A	C8A	1.3845(19)
C13A	C14A	1.3915(18)	C20	C21	1.390(2)
C3A	C4A	1.4839(18)	C15A	C14A	1.389(2)

Table S23 Bond Angles for 3l.

Aton	1 Aton	Atom	Angle/°	Aton	1 Atom	Atom	Angle/°
C17	C12	C1	121.09(11)	C16A	AC17A	C12A	120.63(12)
C13	C12	C1	120.62(11)	C1	C2	C3	129.65(12)
C13	C12	C17	118.26(11)	C11A	AC6A	C5A	119.13(12)
C19	C18	C1	121.72(11)	C11A	AC6A	C7A	118.30(12)
C19	C18	C23	119.21(12)	C7A	C6A	C5A	122.51(11)
C23	C18	C1	119.06(11)	C4A	C5A	C6A	127.27(12)
C13A	AC12A	C1A	119.95(11)	C10	C11	C6	121.47(12)
C13A	AC12A	C17A	118.35(12)	C8	C7	C6	120.86(12)
C17A	C12A	C1A	121.69(11)	C22	C23	C18	120.26(12)
C19A	C18A	C1A	119.05(11)	C9	C10	C11	117.69(12)
C19A	C18A	C23A	118.95(11)	C22 <i>A</i>	C23A	C18A	120.19(12)
C23A	C18A	C1A	122.00(11)	C10A	C11A	C6A	121.48(12)
C20A	A C19A	C18A	120.68(11)	C9A	C10A	C11A	118.00(12)
C1A	C2A	C3A	130.19(12)	C19A	C20A	C21A	119.93(12)
C12A	AC1A	C18A	115.62(10)	C20A	C21A	C22A	119.70(12)
C2A	C1A	C12A	120.04(11)	F50	C9	C10	118.63(12)
C2A	C1A	C18A	124.31(11)	F50	C9	C8	118.18(12)
C12	C1	C18	116.45(10)	C10	C9	C8	123.19(12)
C2	C1	C12	119.49(11)	C14	C13	C12	120.82(12)
C2	C1	C18	124.02(11)	C17A	C16A	C15A	120.35(12)
C5	C4	C3	120.23(11)	C8A	C7A	C6A	120.92(12)
C11	C6	C5	118.74(11)	C23	C22	C21	120.28(13)
C11	C6	C7	118.36(12)	C17	C16	C15	120.45(12)
C7	C6	C5	122.81(11)	C16	C15	C14	119.63(12)
C4	C5	C6	126.70(12)	C23A	AC22A	C21A	120.48(12)
C14A	AC13A	C12A	120.71(12)	C9	C8	C7	118.43(12)
012	C3A	C2A	117.75(12)	C15	C14	C13	120.08(13)
012	C3A	C4A	120.51(11)	F25	C9A	C10A	118.71(12)
C2A	C3A	C4A	121.74(11)	F25	C9A	C8A	118.42(12)
C5A	C4A	C3A	120.74(12)	C10A	AC9A	C8A	122.86(13)
C20	C19	C18	120.29(12)	C21	C20	C19	120.14(13)
O37	C3	C4	121.05(11)	C14A	C15A	C16A	119.55(12)
O37	C3	C2	117.17(11)	C9A	C8A	C7A	118.44(13)
C4	C3	C2	121.79(11)	C15A	C14A	C13A	120.39(13)
C16	C17	C12	120.72(12)	C20	C21	C22	119.74(13)

Table S2	Table S24 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement Parameters (Å ² ×10 ³) for 31					
Atom	x	у	Z	U(eq)		
H19A	12221	2857	1923	23		
H2A	10286	3789	3157	24		
H4	6571	4365	6190	23		
H5	9925	4630	5374	24		
H13A	10637	3459	418	26		
H4A	8080	2924	3295	25		
H19	8590	4724	8150	25		
H17	1021	5263	6653	24		
H17A	13665	3840	2862	25		
H2	4353	5227	6346	24		
H5A	4615	3187	4035	25		
H11	12641	4251	4954	25		
H7	8290	3853	6435	27		
H23	2675	4276	7522	26		
H10	14515	3727	5063	27		
H23A	6158	3259	1391	25		
H11A	1881	2805	4436	27		
H10A	66	2277	4333	29		
H20A	10895	2331	1308	27		
H21A	7208	2271	705	30		
H13	4162	4907	9108	27		
H16A	16089	4134	2095	31		
H7A	6359	2410	3018	28		
H22	4149	3755	8107	33		
H16	-1378	5561	7417	30		
H15	-965	5550	9027	33		
H22A	4871	2739	719	30		
H8	10158	3330	6544	30		
H14	1803	5219	9871	32		
H20	10008	4209	8816	32		
H15A	15781	4096	490	33		
H8A	4528	1884	2900	32		
H14A	13052	3758	-342	31		
H21	7800	3722	8782	37		

Experimental

Single crystals of $C_{23}H_{17}FO$ [31] were [obtained at slow evaporation of solution of 3e in hexanes - chloroform]. A suitable crystal was selected and on a Xcalibur, Eos diffractometer. The crystal was kept at 293(2) K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Intrinsic Phasing and refined with the ShelXL [3] refinement package using Least Squares minimisation.

1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

2. Sheldrick, G.M. (2015). ActaCryst. A71, 3-8.

Sheldrick, G.M. (2015). ActaCryst. C71, 3-8. 3.

Crystal structure determination of 31

Crystal Data for C₂₃H₁₇FO (M = 328.36 g/mol): monoclinic, space group P2₁/c (no. 14), a = 6.20717(15) Å, b =38.6061(11) Å, c = 14.5881(3) Å, $\beta = 99.406(2)^{\circ}$, V = 3448.81(15) Å³, Z = 8, T = 293(2) K, μ (CuK α) = 0.668 mm⁻ ¹, $Dcalc = 1.265 \text{ g/cm}^3$, 27840 reflections measured (4.578° $\leq 2\Theta \leq 143.934^\circ$), 6752 unique ($R_{int} = 0.0428$, $R_{sigma} = 0.0428$, R_{sigma 0.0353) which were used in all calculations. The final R_1 was 0.0418 (I > 2 σ (I)) and wR_2 was 0.1144 (all data).

Refinement model description

Number of restraints - 0, number of constraints - unknown.

Details:

1. Fixed Uiso

At 1.2 times of:

All C(H) groups

2.a Aromatic/amide H refined with riding coordinates:

C19A(H19A), C2A(H2A), C4(H4), C5(H5), C13A(H13A), C4A(H4A), C19(H19), C17(H17), C17A(H17A), C2(H2), C5A(H5A), C11(H11), C7(H7), C23(H23), C10(H10), C23A(H23A), C11A(H11A), C10A(H10A), C20A(H20A), C21A(H21A), C13(H13), C16A(H16A), C7A(H7A), C22(H22), C16(H16), C15(H15), C22A(H22A), C8(H8), C14(H14), C20(H20), C15A(H15A), C8A(H8A), C14A(H14A), C21(H21)

3p

Table S25 Crystal data and	structure refinement for 3p.
Identificationcode	9176_Z-6
Empiricalformula	$C_{21}H_{16}OS$
Formulaweight	316.40
Temperature/K	100(2)
Crystalsystem	orthorhombic
Spacegroup	Pna2 ₁
a/Å	7.6982(5)
b/Å	12.0382(7)
c/Å	17.5134(12)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	1623.01(18)
Ζ	4
$\rho_{calc}g/cm^3$	1.295
μ/mm^{-1}	1.768
F(000)	664.0
Crystalsize/mm ³	$0.21\times0.19\times0.15$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	8.914 to 143.88
Indexranges	$-9 \le h \le 9, -14 \le k \le 14, -21 \le l \le 21$
Reflectionscollected	11405
Independentreflections	2925 [$R_{int} = 0.0464$, $R_{sigma} = 0.0476$]
Data/restraints/parameters	2925/2/201
Goodness-of-fit on F ²	1.042
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0508, wR_2 = 0.1173$
Final R indexes [all data]	$R_1 = 0.0566, wR_2 = 0.1205$
Largest diff. peak/hole / e Å ⁻³	0.49/-0.49
Flackparameter	0.30(2)

Table S26 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 3p. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atomx		У	Z	U(eq)
S1A	7697.8(16)	5565.2(7)	7125.3(11)	37.7(18)
S 1	6299(3)	7254.0(17)	7907.5(17)	35(2)
01	6259(4)	8806(2)	5092(2)	40.6(8)

C3	6793(5)	7841(3)	5014(3)	30.3(9)
C5	6496(5)	7416(4)	6377(3)	29.8(9)
C4	7147(5)	7144(3)	5691(3)	28.0(9)
C16	7072(5)	5359(4)	2719(3)	28.3(9)
C17	7102(5)	5370(3)	4414(3)	25.8(8)
C1	7324(5)	6406(3)	3950(3)	26.7(9)
C13	9359(5)	6791(4)	1992(3)	36.5(11)
C15	7478(5)	5208(4)	1951(3)	31.4(10)
C6	6775(2)	6800.5(8)	7078.0(19)	32.1(9)
C14	8638(6)	5910(4)	1592(3)	35.5(10)
C2	7137(6)	7442(4)	4238(3)	31.2(9)
C11	7786(5)	6245(3)	3127(3)	27.7(9)
C18	8425(6)	4580(3)	4408(3)	29.2(9)
C12	8925(6)	6961(4)	2753(3)	34.0(11)
C22	5630(6)	5163(4)	4849(3)	35.6(10)
C19	8320(7)	3630(4)	4855(3)	38.6(11)
C21	5538(8)	4194(4)	5291(3)	48.5(14)
C20	6884(8)	3451(4)	5297(3)	44.7(13)
C8	6904(8)	6321(5)	8390(4)	60.2(17)
C9	7644(7)	5456(5)	8015(4)	58.3(18)
C10	7697.8(16)	5565.2(7)	7125.3(11)	35(10)
C7	6299(3)	7254.0(17)	7907.5(17)	41(7)

Table S27 Anisotropic Displacement Parameters (Å²×10³) for3p. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

unc			<u> </u>			
Aton	n U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	43.5(18)	25.3(15)	53(2)	-2.6(15)	-7.3(16)	8.6(14)
C3	27(2)	24(2)	40(3)	-3.3(19)	-5.6(19)	-0.4(16)
C5	22(2)	24.1(19)	44(3)	-4.5(19)	-4.3(17)	0.3(15)
C4	25(2)	22.7(19)	36(2)	-4.3(18)	-3.6(17)	0.4(16)
C16	27.7(19)	27(2)	31(2)	6.6(18)	-1.2(17)	2.7(16)
C17	26.3(18)	25(2)	27(2)	-2.1(17)	-0.4(16)	-5.0(17)
C1	20.2(18)	27(2)	32(2)	3.1(18)	-5.3(16)	-1.9(15)
C13	27.2(19)	45(3)	37(3)	21(2)	-4.7(19)	-2.6(18)
C15	32(2)	28(2)	34(3)	0.5(18)	-2.9(18)	5.2(17)
C6	27.0(19)	27(2)	42(2)	-2(2)	-6(2)	-6.1(15)
C14	33(2)	41(3)	32(2)	7(2)	-2.5(18)	8.3(19)
C2	32(2)	23(2)	39(2)	4.2(18)	-7.1(19)	0.2(17)
C11	24.5(19)	26(2)	32(2)	7.1(17)	-2.6(16)	0.8(15)
C18	33(2)	24(2)	30(2)	2.8(18)	-3.9(17)	-1.8(17)
C12	28(2)	33(2)	41(3)	13(2)	-8.3(19)	-2.5(17)
C22	34(2)	37(2)	36(3)	-12(2)	7.8(19)	-9.8(18)
C19	53(3)	24(2)	39(3)	3(2)	-13(2)	-4.5(19)
C21	60(3)	52(3)	34(3)	-8(2)	15(2)	-36(3)
C20	65(3)	33(3)	35(3)	5(2)	-5(2)	-17(3)
C8	71(4)	75(4)	35(3)	-3(3)	4(3)	-48(3)
C9	49(3)	40(3)	86(5)	22(3)	-30(3)	-18(2)

Table S28 Bond Lengths for 3p.

1 40014		bona Bengens	iorep.		
Atom	n Aton	n Length/Å	Aton	1 Aton	ı Length/Å
S1A	C6	1.65000(8)	C1	C11	1.497(6)
S1A	C9	1.565(7)	C13	C14	1.387(7)
S1	C6	1.595(5)	C13	C12	1.389(7)
S1	C8	1.481(7)	C15	C14	1.381(6)

O1	C3	1.240(5)	C6	C10	1.65000(8)
C3	C4	1.477(6)	C6	C7	1.595(5)
C3	C2	1.465(7)	C11	C12	1.394(6)
C5	C4	1.343(6)	C18	C19	1.388(6)
C5	C6	1.450(6)	C22	C21	1.402(7)
C16	C15	1.393(7)	C19	C20	1.366(8)
C16	C11	1.397(6)	C21	C20	1.369(8)
C17	C1	1.498(6)	C8	C9	1.355(9)
C17	C18	1.393(6)	C8	C7	1.481(7)
C17	C22	1.388(6)	C9	C10	1.565(7)
C1	C2	1.353(6)			

Table S29 Bond Angles for3p.

Aton	Atom	Atom	Angle/°	Aton	1 Aton	Atom	n Angle/°
C9	S1A	C6	96.6(3)	C5	C6	C7	124.22(19)
C8	S 1	C6	100.8(3)	C15	C14	C13	119.9(5)
01	C3	C4	120.3(4)	C1	C2	C3	131.8(4)
01	C3	C2	118.0(4)	C16	C11	C1	119.9(4)
C2	C3	C4	121.7(4)	C12	C11	C16	118.6(4)
C4	C5	C6	125.3(4)	C12	C11	C1	121.5(4)
C5	C4	C3	120.8(4)	C19	C18	C17	121.0(4)
C15	C16	C11	120.4(4)	C13	C12	C11	120.8(4)
C18	C17	C1	118.8(4)	C17	C22	C21	119.6(5)
C22	C17	C1	122.7(4)	C20	C19	C18	119.8(5)
C22	C17	C18	118.5(4)	C20	C21	C22	120.6(5)
C2	C1	C17	123.6(4)	C19	C20	C21	120.3(5)
C2	C1	C11	120.2(4)	C9	C8	S 1	116.0(5)
C11	C1	C17	116.2(4)	C9	C8	C7	116.0(5)
C14	C13	C12	120.0(4)	C8	C9	S1A	115.4(5)
C14	C15	C16	120.3(4)	C8	C9	C10	115.4(5)
C5	C6	S1A	124.5(3)	C9	C10	C6	96.6(3)
C5	C6	S 1	124.22(19)	C8	C7	C6	100.8(3)
C5	C6	C10	124.5(3)				

Table S30 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for3p.

Atom	x	У	Z	U(eq)
H5	5796	8064	6406	36
H4	7842	6497	5640	34
H16	6304	4857	2966	34
H13	10150	7279	1745	44
H15	6954	4619	1672	38
H14	8941	5790	1073	43
H2	7249	8017	3870	37
H18	9414	4693	4093	35
H12	9410	7573	3021	41
H22	4690	5674	4846	43
H19	9243	3106	4853	46
H21	4532	4052	5590	58
H20	6820	2808	5610	54
H8A	6780	6327	8929	72
H8B	6780	6327	8929	72
H9A	8100	4828	8275	70
H9B	8100	4828	8275	70
H10	8121	5081	6740	42

H7	5773	7936	8052	49
----	------	------	------	----

Table S31 Atomic Occupancy for3p.

Atom Occupan	cy Ato	m Occupancy	Atom	Occupancy
S1A 0.596(5)	S1	0.404(5)	H8A	0.404(5)
H8B 0.404(5)	H9A	0.596(5)	H9B	0.596(5)
C10 0.404(5)	H10	0.596(5)	C7	0.596(5)
H7 0.404(5)				

Experimental

Single crystals of $C_{21}H_{16}OS$ [**3p**] were [obtained at slow evaporation of solution of 3e in hexanes - chloroform]. A suitable crystal was selected andon a **SuperNova**, **Single source at offset/far**, **HyPix3000** diffractometer. The crystal was kept at 100(2) K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Intrinsic Phasing and refined with the ShelXL [3] refinement package using Least Squares minimisation.

1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

2. Sheldrick, G.M. (2015). ActaCryst. A71, 3-8.

3. Sheldrick, G.M. (2015). ActaCryst. C71, 3-8.

Crystal structure determination of [3p]

Crystal Data for C₂₁H₁₆OS (M=316.40 g/mol): orthorhombic, space group Pna2₁ (no. 33), a = 7.6982(5) Å, b = 12.0382(7) Å, c = 17.5134(12) Å, V = 1623.01(18) Å³, Z = 4, T = 100(2) K, μ (CuK α) = 1.768 mm⁻¹, *Dcalc* = 1.295 g/cm³, 11405 reflections measured (8.914° ≤ 2 Θ ≤ 143.88°), 2925 unique (R_{int} = 0.0464, R_{sigma} = 0.0476) which were used in all calculations. The final R_1 was 0.0508 (I > 2 σ (I)) and wR_2 was 0.1205 (all data).

Refinement model description

Number of restraints - 2, number of constraints - unknown.

Details: 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups 2. Shared sites {S1A, C10} {S1, C7} 3. Restrained distances C6-S1A 1.65 with sigma of 0.00002 4. Others Sof(S1)=Sof(H8A)=Sof(H8B)=Sof(C10)=Sof(H7)=1-FVAR(1)Sof(S1A)=Sof(H9A)=Sof(H9B)=Sof(H10)=Sof(C7)=FVAR(1) 5.a Aromatic/amide H refined with riding coordinates: C5(H5), C4(H4), C16(H16), C13(H13), C15(H15), C14(H14), C2(H2), C18(H18), C12(H12), C22(H22), C19(H19), C21(H21), C20(H20), C8(H8A), C8(H8B), C9(H9A), C9(H9B), C10(H10), C7(H7)

CCDC 1847456**Table S32 Crystal data and structure refinement for 4.**Identificationcode4EmpiricalformulaC17H13FO2Formulaweight268.27

Temperature/K	100(3)

Crystalsystem	monoclinic
Spacegroup	Cc
a/Å	30.335(6)
b/Å	5.7303(10)
c/Å	7.3960(18)
α/°	90
β/°	92.47(2)
γ/°	90
Volume/Å ³	1284.4(5)
Z	4
$\rho_{calc}g/cm^3$	1.387
μ/mm^{-1}	0.823
F(000)	560.0
Crystalsize/mm ³	$0.2\times0.08\times0.07$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	5.832 to 139.692
Indexranges	$-36 \le h \le 36, -5 \le k \le 6, -8 \le l \le 9$
Reflectionscollected	3924
Independentreflections	1996 [$R_{int} = 0.1108$, $R_{sigma} = 0.0985$]
Data/restraints/parameters	1996/2/182
Goodness-of-fit on F ²	1.032
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0982, wR_2 = 0.2545$
Final R indexes [all data]	$R_1 = 0.1187$, $wR_2 = 0.2959$
Largest diff. peak/hole / e Å ⁻³	0.48/-0.45
Flackparameter	-0.2(6)

Table S33 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 4. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Aton	n <i>x</i>	У	Z	U(eq)	
F1	-5221.7(17)	591(8)	-2104(8)	41.9(13)	
01	-2397(2)	-10233(10)	-2769(11)	46.9(17)	
02	-3158.1(19)	-8803(10)	-3414(9)	43.2(16)	
C1	-2293(3)	-8273(14)	-2076(12)	36.0(18)	
C6	-1824(3)	-7899(14)	-1381(13)	37(2)	
C15	-4874(3)	-870(13)	-2312(11)	32.0(17)	
C3	-3038(3)	-6818(14)	-2624(12)	36.1(18)	
C14	-4950(3)	-2985(14)	-3146(12)	33.5(17)	
C12	-4161(3)	-3784(13)	-2778(12)	31.3(17)	
C7	-1683(3)	-5924(14)	-447(13)	37.2(19)	
C2	-2614(3)	-6454(14)	-1968(12)	36.3(19)	
C5	-3796(2)	-5397(13)	-2994(11)	32.4(18)	
C11	-1520(3)	-9669(14)	-1734(13)	36.3(19)	
C9	-944(3)	-7449(14)	-214(12)	33.7(18)	
C4	-3375(3)	-5068(15)	-2450(13)	37.7(19)	
C13	-4589(3)	-4443(12)	-3375(11)	30.8(17)	
C10	-1082(3)	-9409(13)	-1137(12)	35.1(19)	
C16	-4461(3)	-154(14)	-1722(11)	34.0(18)	
C8	-1245(3)	-5669(14)	169(12)	36.4(19)	
C17	-4104(3)	-1583(13)	-1955(11)	32.5(17)	

Table S34 Anisot	ropic Displaceme	ent Parameters (Å	² ×10 ³) for 4. The <i>A</i>	Anisotropic displa	acement factor ex	ponent
takes the form: -2	$\pi^{2}[h^{2}a^{*2}U_{11}+2hk]$	a*b*U ₁₂ +].				
Atom U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	

F1	37(3)	24(3)	64(3)	3(2)	-2(2)	9.2(19)
01	34(3)	25(3)	81(5)	-19(3)	-3(3)	5(2)
O2	28(3)	28(3)	73(5)	-3(3)	-1(3)	3(2)
C1	34(4)	24(4)	51(5)	-4(4)	5(3)	-3(3)
C6	33(4)	22(4)	56(5)	3(3)	2(4)	-2(3)
C15	36(4)	18(4)	42(5)	6(3)	2(3)	1(3)
C3	38(4)	24(4)	47(5)	0(3)	3(3)	-1(3)
C14	30(4)	23(4)	48(4)	3(3)	3(3)	-2(3)
C12	31(4)	18(4)	46(5)	0(3)	2(3)	-1(3)
C7	36(4)	23(4)	52(5)	6(4)	9(4)	8(3)
C2	37(4)	17(4)	55(5)	-6(3)	-3(4)	2(3)
C5	32(4)	20(4)	46(5)	3(3)	2(4)	-1(3)
C11	30(4)	24(4)	55(5)	2(4)	2(4)	-3(3)
C9	29(4)	25(4)	46(4)	13(3)	-4(3)	0(3)
C4	32(4)	25(4)	56(5)	1(4)	0(4)	0(3)
C13	36(4)	13(3)	43(4)	0(3)	-4(3)	-2(3)
C10	32(4)	24(4)	50(5)	0(3)	3(3)	6(3)
C16	43(5)	17(4)	42(5)	4(3)	3(4)	0(3)
C8	43(5)	18(4)	48(5)	4(3)	4(4)	-3(3)
C17	32(4)	20(4)	45(4)	7(3)	-6(3)	-5(3)

Table S35 Bond Lengths for 4.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
F1	C15	1.361(9)	C14	C13	1.394(11)
01	C1	1.269(10)	C12	C5	1.456(10)
02	C3	1.323(10)	C12	C13	1.404(11)
C1	C6	1.505(11)	C12	C17	1.408(11)
C1	C2	1.432(11)	C7	C8	1.393(12)
C6	C7	1.384(12)	C5	C4	1.335(11)
C6	C11	1.404(11)	C11	C10	1.390(12)
C15	C14	1.375(11)	C9	C10	1.370(12)
C15	C16	1.371(12)	C9	C8	1.406(11)
C3	C2	1.368(12)	C16	C17	1.374(11)
C3	C4	1.444(11)			

Table S36 Bond Angles for 4.

Atom Atom Angle/°			Atom Atom Atom Angle/°				
01	C1	C6	118.6(7)	C13	C12	C17	118.1(7)
01	C1	C2	120.6(8)	C17	C12	C5	122.4(7)
C2	C1	C6	120.9(7)	C6	C7	C8	121.3(7)
C7	C6	C1	123.7(7)	C3	C2	C1	120.0(7)
C7	C6	C11	119.4(7)	C4	C5	C12	126.8(7)
C11	C6	C1	116.9(7)	C10	C11	C6	119.4(8)
F1	C15	C14	118.5(7)	C10	C9	C8	120.6(7)
F1	C15	C16	118.8(7)	C5	C4	C3	123.2(8)
C16	C15	C14	122.7(8)	C14	C13	C12	121.4(7)
02	C3	C2	121.6(7)	C9	C10	C11	120.8(7)
02	C3	C4	116.9(7)	C15	C16	C17	119.7(7)
C2	C3	C4	121.4(7)	C7	C8	C9	118.4(8)
C15	C14	C13	117.8(7)	C16	C17	C12	120.4(7)
C13	C12	C5	119.4(7)				

Table S	37 Hydrogen Atom Coo	rdinates (Å×10 ⁴) and Iso	otropic Displacement Pa	rameters (Å ² ×10 ³) for 4.
Atom	x	у	z	U(eq)
H2	-3410	-9180	-3090	65
H14	-5239	-3437	-3551	40
H7	-1889	-4719	-221	45
H2A	-2534	-4995	-1442	44
H5	-3865	-6834	-3583	39
H11	-1613	-11033	-2374	44
H9	-643	-7292	172	40
H4	-3294	-3609	-1922	45
H13	-4633	-5914	-3947	37
H10	-875	-10605	-1373	42
H16	-4422	1323	-1154	41
H8	-1152	-4323	832	44
H17	-3818	-1083	-1559	39

Experimental

Single crystals of $C_{17}H_{13}FO_2$ [4] were [obtained at slow evaporation of solution of 3e in hexanes - chloroform]. A suitable crystal was selected andon a SuperNova, Single source at offset/far, HyPix3000 diffractometer. The crystal was kept at 100(2) K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Intrinsic Phasing and refined with the ShelXL [3] refinement package using Least Squares minimisation.

4. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

5. Sheldrick, G.M. (2015). ActaCryst. A71, 3-8.

6. Sheldrick, G.M. (2015). ActaCryst. C71, 3-8.

Crystal structure determination of [4]

Crystal Data for C₁₇H₁₃FO₂ (M = 268.27 g/mol): monoclinic, space group Cc (no. 9), a = 30.335(6) Å, b = 5.7303(10) Å, c = 7.3960(18) Å, $\beta = 92.47(2)^{\circ}$, V = 1284.4(5) Å³, Z = 4, T = 100(3) K, μ (CuK α) = 0.823 mm⁻¹, *Dcalc* = 1.387 g/cm³, 3924 reflections measured ($5.832^{\circ} \le 2\Theta \le 139.692^{\circ}$), 1996 unique ($R_{int} = 0.1108$, $R_{sigma} = 0.0985$) which were used in all calculations. The final R_1 was 0.0982 (I > 2σ (I)) and wR_2 was 0.2959 (all data).

Refinement model description

Number of restraints - 2, number of constraints - unknown.

Details:

1. Fixed Uiso

At 1.2 times of:

All C(H) groups

At 1.5 times of:

All O(H) groups

2.a Aromatic/amide H refined with riding coordinates:

C14(H14), C7(H7), C2(H2A), C5(H5), C11(H11), C9(H9), C4(H4), C13(H13),

C10(H10), C16(H16), C8(H8), C17(H17)

2.b Idealised tetrahedral OH refined as rotating group:

O2(H2)

III. Data of DFT calculations

1a

Energy $E(RM06) = -729.843502613h, G^{298} = -729.653887h, \mu = 5.49 D$

Cartesian coordinates, Å

Ν	atom	X	У	Z
1	С	-4.767011	-0.843217	0.000223
2	С	-3.688162	0.046727	-0.000001
3	С	-3.931206	1.423448	-0.000253
4	С	-5.230048	1.896458	-0.000285
5	С	-6.295578	1.006596	-0.000057
6	С	-6.062244	-0.361809	0.000197
7	С	-2.359476	-0.455318	0.000018
8	С	-1.242651	-0.910696	0.000036
9	С	0.082426	-1.481175	0.000018
10	Н	-3.093340	2.109875	-0.000424
11	Н	-4.573825	-1.909025	0.000414
12	Н	-5.413927	2.963603	-0.000486
13	Н	-6.894181	-1.054951	0.000372
14	Н	-7.311823	1.381243	-0.000079
15	С	3.657711	-0.125252	0.000041
16	С	3.632423	1.273663	0.000315
17	С	4.896738	-0.771753	-0.000247
18	С	4.809026	1.995762	0.000289
19	С	6.075786	-0.047522	-0.000284
20	С	6.034424	1.337782	-0.000015
21	Н	2.683792	1.797704	0.000559
22	Н	4.924461	-1.855907	-0.000455
23	Н	4.776321	3.078268	0.000513
24	Н	7.028041	-0.563574	-0.000509
25	Н	6.954871	1.908870	-0.000023
26	С	1.183692	-0.516537	0.000043
27	Н	0.916453	0.534412	0.000014
28	С	2.456112	-0.936274	0.000046
29	Н	2.611475	-2.013310	0.000027
30	Ο	0.234990	-2.695315	-0.000054

Summary of Natural Population Analysis: Natural Population

				1 wear at 1	opulation		
	1	Nati	ıral				
Ator	n N	lo	Charge	Core	Valence	Rydberg	Total
 С	1	-0.	13642	1.99886	4.11812	0.01944	6.13642
С	2	-0.	16632	1.99893	4.15082	0.01657	6.16632
С	3	-0.	15056	1.99905	4.13384	0.01767	6.15056
С	4	-0.2	20473	1.99911	4.18583	0.01978	6.20473
С	5	-0.	17399	1.99913	4.15579	0.01907	6.17399
С	6	-0.2	21199	1.99914	4.19221	0.02064	6.21199
С	7	0.0)7599	1.99842	3.91201	0.01358	5.92401
С	8	-0.0	09089	1.99829	4.07915	0.01344	6.09089
С	9	0.4	48712	1.99911	3.48336	0.03041	5.51288
Н	10	0.	21983	0.00000	0.77862	0.00155	0.78017

Н	11	0.21887	0.00000	0.77964	0.00149	0.78113
Η	12	0.21819	0.00000	0.78018	0.00163	0.78181
Η	13	0.21835	0.00000	0.78009	0.00157	0.78165
Н	14	0.21595	0.00000	0.78254	0.00151	0.78405
С	15	-0.11295	1.99897	4.09469	0.01929	6.11295
С	16	-0.16586	1.99904	4.14926	0.01756	6.16586
С	17	-0.16117	1.99905	4.14375	0.01837	6.16117
С	18	-0.20185	1.99913	4.18305	0.01967	6.20185
С	19	-0.20654	1.99912	4.18763	0.01980	6.20654
С	20	-0.17821	1.99913	4.15941	0.01968	6.17821
Н	21	0.21216	0.00000	0.78587	0.00197	0.78784
Н	22	0.21396	0.00000	0.78431	0.00174	0.78604
Н	23	0.21571	0.00000	0.78266	0.00162	0.78429
Η	24	0.21617	0.00000	0.78220	0.00164	0.78383
Н	25	0.21454	0.00000	0.78398	0.00148	0.78546
С	26	-0.30574	1.99899	4.28849	0.01827	6.30574
Н	27	0.21356	0.00000	0.78463	0.00181	0.78644
С	28	-0.06206	1.99885	4.04251	0.02069	6.06206
Н	29	0.21573	0.00000	0.78179	0.00248	0.78427
0		30	-0.62657		1.99977	6.60187

0.02494 8.62657

* Total * 0.00027 35.98209 85.64831 0.36933 121.99973

homo

A Contraction

lumo

A1 E(RM06) = -730.264096303h, $G=^{298}$ -730.063735h, $\mu=2.03$ D

Cartesian coordinates, Å

Ν	atom	X	у	Z
1	С	4.750242	0.852463	0.000021
2	С	3.691169	-0.066211	0.000056
3	С	3.955338	-1.442778	0.000072
4	С	5.261062	-1.886909	0.000052
5	С	6.306124	-0.971119	0.000028
6	С	6.051021	0.394769	0.000018
7	С	2.364156	0.397536	0.000060
8	С	1.224199	0.805180	0.000006
9	С	-0.079167	1.291592	-0.000077
10	Н	3.129190	-2.142489	0.000102
11	Η	4.533182	1.913167	0.000008
12	Н	5.470003	-2.948840	0.000058
13	Н	6.871430	1.100666	0.000000
14	Η	7.329512	-1.325281	0.000015
15	С	-3.655799	0.112948	-0.000012
16	С	-3.649556	-1.291779	-0.000252
17	С	-4.885768	0.789120	0.000230
18	С	-4.836200	-1.988644	-0.000220
19	С	-6.072435	0.086008	0.000281
20	С	-6.047671	-1.301565	0.000056
21	Η	-2.711004	-1.831864	-0.000514
22	Η	-4.890206	1.872891	0.000386
23	Н	-4.828622	-3.070779	-0.000422
24	Н	-7.017521	0.613364	0.000489
25	Η	-6.977954	-1.856276	0.000086
26	С	-1.180067	0.421636	0.000040
27	Н	-0.952321	-0.635616	0.000224
28	С	-2.458920	0.891755	-0.000047
29	Н	-2.593887	1.970110	-0.000126
30	Ο	-0.290797	2.586416	-0.000211
31	Н	0.538206	3.085599	-0.000479

]	Nat	ural								
Ator	m N	No	Charge	C	ore	Va	alence	Ry	dberg]	Total
С	1	-0.	12634	1.999	06	4.10)754	0.01	974	6.12	2634
С	2	-0	21524	1.998	94	4.17	7616	0.04	014	6.2	1524
С	3	-0.	12566	1.999	06	4.10)589	0.02	071	6.12	2566
С	4	-0.	20457	1.999	12	4.18	3592	0.01	953	6.2	0457
С	5	-0.	14055	1.999	13	4.12	2210	0.01	931	6.14	4055
С	6	-0.	20475	1.999	12	4.18	3599	0.01	964	6.2	0475
С	7	-0.	33374	1.998	39	4.21	422	0.12	113	6.3	3374
С	8	0.	77317	1.998	43	2.54	466	0.68	373	5.22	2683
С	9	0.	22893	1.998	72	3.61	327	0.15	908	5.77	7107
Η	10	0	.22350	0.000	000	0.7	7289	0.0	0360	0.7	7650
Η	11	0	.22438	0.000	000	0.7	7308	0.0	0255	0.7	7562
Η	12	0	.22397	0.000	000	0.7	7438	0.0	0165	0.7	7603

H 1	0.2239	3 0.00000	0.77441	0.00166	0.77607
H_{\perp}	0.2204	8 0.00000	0.77806	0.00146	0.77952
C 1	5 -0.1376	3 1.99898	4.11695	0.02170	6.13763
C 1	6 -0.1301	9 1.99904	4.11289	0.01826	6.13019
C 1	-0.1204	1 1.99906	4.10228	0.01907	6.12041
C 1	8 -0.2036	2 1.99913	4.18468	0.01982	6.20362
C 1	9 -0.2101	4 1.99911	4.19125	0.01978	6.21014
C 2	-0.1267	1 1.99914	4.10829	0.01928	6.12671
Н 2	0.2180	4 0.00000	0.78013	0.00183	0.78196
Н 2	0.2214	4 0.00000	0.77684	0.00173	0.77856
Н 2	0.2236	0.00000 0	0.77480	0.00160	0.77640
Н 2	0.2240	6 0.00000	0.77430	0.00164	0.77594
Н 2	0.2206	6 0.00000	0.77794	0.00140	0.77934
C 2	26 -0.3389	1 1.99905	4.29919	0.04066	6.33891
Н 2	0.2373	5 0.00000	0.75950	0.00315	0.76265
C 2	0.03684	4 1.99890	3.94487	0.01939	5.96316
Н 2	0.2260	5 0.00000	0.77132	0.00263	0.77395
0 3	30 -0.6334	6 1.99970	6.60612	0.02764	8.63346
Н	31	0.53533		0.00000	0.46202
* Tota	ul* 1.0098	35.98208	8 84.67194	4 1.33617	121.99018

0.00265

0.46467

lumo

homo

B1

Energy E(RM06) = -730. 640375158h, G^{298} = -730.428986h, µ=12.02 D

Ν	atom	X	у	Z
1	С	-4.409639	-0.010106	1.250245
2	С	-3.699151	0.304603	0.045079
3	С	-4.384183	0.356651	-1.213826
4	С	-5.722890	0.104904	-1.246909
5	С	-6.395997	-0.199283	-0.058210
6	С	-5.747667	-0.257742	1.180903
7	С	-2.389144	0.556694	0.094673
8	С	-1.126688	0.825677	0.138412
9	С	-0.040651	-0.136393	0.008839
10	Н	-3.822498	0.597079	-2.106459
11	Н	-3.867419	-0.042315	2.185631
12	Н	-6.265423	0.138783	-2.181023
13	Н	-6.309606	-0.497072	2.072497
14	Н	-7.460246	-0.397519	-0.098721
15	С	3.703294	-0.202220	-0.015577
16	С	4.160359	1.128957	0.071412
17	С	4.644410	-1.248446	-0.091533
18	С	5.507505	1.392953	0.081771
19	С	5.992973	-0.975654	-0.076856
20	С	6.422503	0.343082	0.008862
21	Н	3.453111	1.946525	0.124874
22	Н	4.289289	-2.269906	-0.160034
23	Н	5.860860	2.413422	0.145291
24	Н	6.714271	-1.779779	-0.133607
25	Н	7.483462	0.560489	0.018014
26	С	1.264295	0.323587	0.058242
27	Н	1.403130	1.388384	0.179406
28	С	2.332147	-0.542905	-0.036198
29	Н	2.103367	-1.600971	-0.133638
30	0	-0.273472	-1.407563	-0.153847
31	Н	-1.207851	-1.653592	-0.164866
32	Н	-0.855520	1.870827	0.287428

Natural									
Ator	m N	No	Charge	Core	Valence	Rydberg	Total		
 С	1	-0.	.01028	1.99907	3.99338	0.01784	6.01028		
С	2	-0.	.20410	1.99855	4.18451	0.02104	6.20410		
С	3	-0.	.00973	1.99907	3.99283	0.01782	6.00973		
С	4	-0.	.22032	1.99910	4.20202	0.01920	6.22032		
С	5	0.	02957	1.99917	3.95321	0.01805	5.97043		
С	6	-0.	.22020	1.99910	4.20190	0.01919	6.22020		
С	7	0.	43197	1.99897	3.55109	0.01797	5.56803		
С	8	-0.	.33069	1.99864	4.31632	0.01574	6.33069		
С	9	0.	53676	1.99890	3.43975	0.02459	5.46324		
Н	10	0	.24799	0.00000	0.75063	0.00138	0.75201		
Н	11	0	.24803	0.00000	0.75058	0.00138	0.75197		
Н	12	0	.24823	0.00000	0.75026	0.00151	0.75177		
Н	13	0	.24824	0.00000	0.75025	0.00151	0.75176		
Н	14	0	.23862	0.00000	0.76011	0.00127	0.76138		
С	15	-0	0.14168	1.99899	4.12382	0.01887	6.14168		
С	16	-0	0.10538	1.99905	4.08940	0.01693	6.10538		
С	17	-0	0.09121	1.99906	4.07434	0.01780	6.09121		
С	18	-0	0.20557	1.99912	4.18689	0.01955	6.20557		
С	19	-0	.21332	1.99911	4.19455	0.01966	6.21332		

	C 20	-0.08850	1.99915	4.07066	0.01870	6.08850		
	H 21	0.22235	0.00000	0.77581	0.00185	0.77765		
	Н 22	0.22632	0.00000	0.77208	0.00160	0.77368		
	Н 23	0.22893	0.00000	0.76949	0.00158	0.77107		
	Н 24	0.22963	0.00000	0.76877	0.00159	0.77037		
	Н 25	0.22496	0.00000	0.77369	0.00134	0.77504		
	C 26	-0.31782	1.99899	4.30030	0.01853	6.31782		
	Н 27	0.24285	0.00000	0.75539	0.00176	0.75715		
	C 28	0.08627	1.99891	3.89537	0.01945	5.91373		
	Н 29	0.23257	0.00000	0.76553	0.00189	0.76743		
	O 30	-0.62116	1.99969	6.59702	0.02445	8.62116		
	H 31	0.53543	0.00000	0.46221	0.00237	0.46457		
	Н	32	0.32123		0.00000	0.67688	0.00189	0.67877
=	* Total *	2 00000	35 08265	85 6490	5 0 36820	122 00000		
	TOTAL	2.00000	55.96205	05.0490	5 0.50629	122.00000		

C1

Energy E(RM06) = -730.632176537h, $G^{298} = -730.41923h$, $\mu = 8.46 D$

Ν	atom	X	у	Z
1	С	-6.056551	1.252843	-0.056061
2	С	-4.858619	1.979172	-0.038565
3	С	-3.668256	1.314635	-0.006104
4	С	-3.655975	-0.111052	0.014134
5	С	-4.892234	-0.822482	-0.005757
6	С	-6.077159	-0.140848	-0.040452
7	С	-2.499587	-0.846721	0.059492
8	С	-1.138279	-0.291564	0.102348
9	С	-0.022396	-1.269787	0.028384
10	0	-0.351748	-2.514765	-0.009358
11	С	1.270620	-0.836934	0.010643
12	С	2.414572	-0.418355	0.003072
13	С	3.725339	0.044266	-0.005464
14	С	4.788627	-0.875691	-0.059799
15	С	6.083454	-0.411420	-0.066911
16	С	6.327885	0.957463	-0.020675
17	С	5.282090	1.873558	0.033200
18	С	3.980897	1.427038	0.041107
19	Н	3.150211	2.119550	0.082342
20	Н	4.572300	-1.935584	-0.094967
21	Н	5.491471	2.934321	0.068388
22	Н	6.909176	-1.109057	-0.108210
23	Н	7.349666	1.316100	-0.026594
24	Н	-2.738278	1.867839	0.007702
25	Н	-4.870100	-1.905020	0.007317
26	Н	-4.885496	3.059493	-0.052429
27	Н	-7.019395	-0.670160	-0.055633
28	Н	-6.995444	1.792746	-0.083438
29	Н	-0.984375	0.459528	-0.682105
30	H	-2.601809	-1.928174	0.077089
31	H	0.413527	-3.113289	-0.050438
32	Н	-1.004038	0.285110	1.030298

		Natural				
Ator	n Ì	No Charge	Core	Valence	Rydberg	Total
С	1	0.00464	1.99917	3.97810	0.01809	5.99536
С	2	-0.21049	1.99912	4.19160	0.01977	6.21049
С	3	-0.05134	1.99905	4.03495	0.01734	6.05134
С	4	-0.16503	1.99895	4.14649	0.01959	6.16503
С	5	-0.01779	1.99908	4.00052	0.01819	6.01779
С	6	-0.22641	1.99911	4.20756	0.01974	6.22641
С	7	0.19742	1.99904	3.78411	0.01944	5.80258
С	8	-0.58851	1.99908	4.55523	0.03419	6.58851
С	9	0.33531	1.99887	3.50347	0.16235	5.66469
	Ator C C C C C C C C C C C C C C C C C C C	Atom 1 C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9	Atom No Charge C 1 0.00464 C 2 -0.21049 C 3 -0.05134 C 4 -0.16503 C 5 -0.01779 C 6 -0.22641 C 7 0.19742 C 8 -0.58851 C 9 0.33531	Atom No Charge Core C 1 0.00464 1.99917 C 2 -0.21049 1.99912 C 3 -0.05134 1.99905 C 4 -0.16503 1.99895 C 5 -0.01779 1.99908 C 6 -0.22641 1.99911 C 7 0.19742 1.99904 C 8 -0.58851 1.99908 C 9 0.33531 1.99887	Atom No Charge Core Valence C 1 0.00464 1.99917 3.97810 C 2 -0.21049 1.99912 4.19160 C 3 -0.05134 1.99905 4.03495 C 4 -0.16503 1.99895 4.14649 C 5 -0.01779 1.99908 4.00052 C 6 -0.22641 1.99911 4.20756 C 7 0.19742 1.99904 3.78411 C 8 -0.58851 1.99908 4.55523 C 9 0.33531 1.99887 3.50347	Atom No Charge Core Valence Rydberg C 1 0.00464 1.99917 3.97810 0.01809 C 2 -0.21049 1.99912 4.19160 0.01977 C 3 -0.05134 1.99905 4.03495 0.01734 C 4 -0.16503 1.99895 4.14649 0.01959 C 5 -0.01779 1.99908 4.00052 0.01819 C 6 -0.22641 1.99911 4.20756 0.01974 C 7 0.19742 1.99904 3.78411 0.01944 C 8 -0.58851 1.99908 4.55523 0.03419 C 9 0.33531 1.99887 3.50347 0.16235

O 10	-0.60127	1.99969	6.56451	0.03707	8.60127
C 11	0.73646	1.99850	2.53076	0.73427	5.26354
C 12	-0.23692	1.99842	4.12081	0.11769	6.23692
C 13	-0.23319	1.99894	4.19340	0.04085	6.23319
C 14	-0.09718	1.99906	4.07799	0.02013	6.09718
C 15	-0.20764	1.99911	4.18880	0.01972	6.20764
C 16	-0.10158	1.99914	4.08336	0.01908	6.10158
C 17	-0.20758	1.99911	4.18881	0.01966	6.20758
C 18	-0.09625	1.99906	4.07631	0.02088	6.09625
Н 19	0.22880	0.00000	0.76734	0.00387	0.77120
Н 20	0.23011	0.00000	0.76731	0.00258	0.76989
Н 21	0.22979	0.00000	0.76857	0.00164	0.77021
Н 22	0.22981	0.00000	0.76858	0.00161	0.77019
Н 23	0.22499	0.00000	0.77360	0.00141	0.77501
Н 24	0.23349	0.00000	0.76478	0.00173	0.76651
Н 25	0.23726	0.00000	0.76114	0.00160	0.76274
Н 26	0.24166	0.00000	0.75680	0.00154	0.75834
Н 27	0.24244	0.00000	0.75598	0.00158	0.75756
Н 28	0.23457	0.00000	0.76418	0.00125	0.76543
Н 29	0.31689	0.00000	0.68092	0.00219	0.68311
Н 30	0.24437	0.00000	0.75315	0.00248	0.75563
Н 31	0.55195	0.00000	0.44475	0.00330	0.44805
Н 32	0.32949	0.00000	0.66808	0.00242	0.67051
* Total *	2.00831	35.98251	84.62196	1.38723	121.99169

D1

Energy E(RM06) = -730.990786186h, $G^{298} = -730.765989h$, $\mu = 1.33 D$

Ν	atom	X	у	Z
1	С	4.387734	0.315807	1.226630
2	С	3.714185	0.311084	-0.045701
3	С	4.423159	-0.008281	-1.256818
4	С	5.747722	-0.305268	-1.176068
5	С	6.385116	-0.293064	0.072087
6	С	5.713269	0.014059	1.262734
7	С	2.426930	0.613525	-0.100386
8	С	1.168164	0.937166	-0.144069
9	С	0.130617	-0.054847	-0.022385
10	Η	3.889203	-0.003558	-2.197051
11	Н	3.826858	0.560444	2.118217
12	Η	6.310443	-0.549184	-2.065783
13	Н	6.249079	0.010425	2.201210
14	Н	7.440826	-0.531656	0.118064
15	С	-3.699633	-0.234827	0.018239
16	С	-4.173587	1.112261	-0.060880
17	С	-4.644037	-1.308096	0.087512
18	С	-5.512989	1.354976	-0.069186
19	С	-5.983380	-1.044757	0.077693
20	С	-6.412620	0.280736	-0.000476
21	Η	-3.474474	1.936116	-0.114475
22	Н	-4.274849	-2.324479	0.146992
23	Η	-5.888717	2.366474	-0.128569
24	Η	-6.705829	-1.846632	0.129715
25	Η	-7.475633	0.489367	-0.008541
26	С	-1.267932	0.415809	-0.037574
27	Η	-1.368605	1.055594	-0.927268
28	С	-2.373108	-0.558270	0.029861
29	Η	-2.150548	-1.620717	0.087350
30	0	0.509367	-1.253598	0.096264
31	Η	-0.184970	-1.929434	0.185553
32	Η	-1.342490	1.144277	0.786988
33	Н	0.897093	1.983661	-0.269801

]	Nat	ural				
Ator	m N	No	Charge	Core	Valence	Rydberg	Total
 С	1	0.	00061	1.99906	3.98280	0.01753	5.99939
С	2	-0.	20277	1.99854	4.18352	0.02071	6.20277
С	3	-0.	.00005	1.99906	3.98341	0.01758	6.00005
С	4	-0.	21700	1.99910	4.19873	0.01917	6.21700
С	5	0.	05360	1.99917	3.92933	0.01789	5.94640
С	6	-0.	21735	1.99910	4.19905	0.01920	6.21735
С	7	0.	54023	1.99896	3.44274	0.01807	5.45977
С	8	-0.	38905	1.99875	4.37284	0.01746	6.38905
С	9	0.	73544	1.99913	3.24050	0.02493	5.26456
Η	10	0	.25324	0.00000	0.74532	0.00144	0.74676
Η	11	0	.25311	0.00000	0.74546	0.00144	0.74689
Η	12	0	.25335	0.00000	0.74516	0.00149	0.74665
Η	13	0	.25342	0.00000	0.74509	0.00149	0.74658
Η	14	0	.24234	0.00000	0.75641	0.00126	0.75766
С	15	-0	.14876	1.99897	4.13069	0.01911	6.14876
С	16	-0	.04599	1.99906	4.03048	0.01646	6.04599
С	17	-0	.00878	1.99907	3.99216	0.01755	6.00878
С	18	-0	.20810	1.99912	4.18927	0.01971	6.20810
С	19	-0	.22563	1.99911	4.20674	0.01978	6.22563

C 20	0.02880	1.99917	3.95408	0.01794	5.97120		
Н 21	0.23595	0.00000	0.76228	0.00177	0.76405		
Н 22	0.24018	0.00000	0.75829	0.00153	0.75982		
Н 23	0.24561	0.00000	0.75286	0.00153	0.75439		
Н 24	0.24654	0.00000	0.75190	0.00156	0.75346		
Н 25	0.23780	0.00000	0.76096	0.00123	0.76220		
C 26	-0.59615	1.99904	4.57956	0.01755	6.59615		
Н 27	0.34085	0.00000	0.65753	0.00162	0.65915		
C 28	0.17890	1.99889	3.80410	0.01811	5.82110		
Н 29	0.22696	0.00000	0.77088	0.00216	0.77304		
O 30	-0.53950	1.99964	6.51363	0.02623	8.53950		
Н 31	0.55877	0.00000	0.43890	0.00233	0.44123		
Н 32	0.34587	0.00000	0.65254	0.00159	0.65413		
Н	33	0.32758		0.00000	0.67072	0.00170	0.67242
* Total *	3.00001	35.98295	85.6479	1 0.36913	121.99999	:	

Energy $E(RM06) = -962.020121211h, G^{298} = -961.735215h, \mu=4.42 D$

Ν	atom	X	у	Z
1	С	-4.159333	-0.978788	-0.000032
2	С	-2.804057	-1.324357	-0.000028
3	С	-2.483411	-2.688543	-0.000081
4	С	-3.469448	-3.654387	-0.000118
5	С	-4.810229	-3.290351	-0.000125
6	С	-5.149054	-1.948533	-0.000087
7	С	-1.769360	-0.270295	0.000016
8	С	-0.453241	-0.557704	0.000157
9	С	0.662847	0.400456	-0.000001
10	Н	-1.450385	-3.010817	-0.000121
11	Н	-4.448066	0.064632	0.000022
12	Н	-3.191496	-4.701279	-0.000156
13	Н	-6.190121	-1.649657	-0.000097
14	Н	-5.581884	-4.050494	-0.000163
15	С	4.485854	0.032154	0.000293
16	С	4.819405	-1.326668	0.000739
17	С	5.520613	0.971074	-0.000388
18	С	6.141226	-1.725806	0.000401
19	С	6.846009	0.571071	-0.000765
20	С	7.159570	-0.779016	-0.000396
21	Н	4.037873	-2.077157	0.001437
22	Н	5.271795	2.026862	-0.000646
23	Н	6.384643	-2.781317	0.000774
24	Н	7.634556	1.313634	-0.001342
25	Н	8.195102	-1.096639	-0.000665
26	С	1.996648	-0.230348	-0.000218
27	Н	2.038179	-1.314344	-0.000918
28	С	3.113248	0.507116	0.000447
29	Н	2.985120	1.587947	0.001078
30	0	0.526391	1.616903	0.000018
31	С	-2.256189	1.132637	-0.000048
32	С	-2.511480	1.784661	-1.199666
33	С	-2.510999	1.784743	1.199672
34	С	-2.994392	3.083619	-1.199709
35	С	-2.993928	3.083671	1.199852
36	С	-3.234646	3.737237	0.000092
37	Н	-2.321877	1.270811	-2.136546
38	Н	-2.320959	1.270917	2.136475
39	Н	-3.185212	3.586750	-2.140397
40	Н	-3.184384	3.586851	2.140588
41	H	-3.612042	4.752673	0.000134
42	Н	-0.145899	-1.596423	0.000362

Summary of Natural Population Analysis:

Natural Population							
Ator	m l	Nat No	ural Charge	Core	Valence	Rydberg	 Total
С	1	-0.	.17516	1.99904	4.15875	0.01738	6.17516
С	2	-0.	.10317	1.99891	4.07819	0.02607	6.10317
С	3	-0.	.17115	1.99903	4.14905	0.02308	6.17115
С	4	-0.	.20078	1.99912	4.18193	0.01973	6.20078
С	5	-0.	18249	1.99912	4.16362	0.01975	6.18249

(C 6 -0.20287	1.99912	4.18371	0.02005	6.20287		
(C 7 -0.03855	1.99879	3.95480	0.08496	6.03855		
(C 8 0.50456	1.99898	2.31156	1.18490	5.49544		
(C 9 -0.14576	1.99914	3.29292	0.85369	6.14576		
H	H 10 0.20727	0.00000	0.78939	0.00334	0.79273		
H	H 11 0.21946	0.00000	0.77801	0.00252	0.78054		
H	H 12 0.21470	0.00000	0.78371	0.00159	0.78530		
H	H 13 0.21452	0.00000	0.78384	0.00163	0.78548		
H	H 14 0.21393	0.00000	0.78454	0.00153	0.78607		
(C 15 -0.39472	1.99898	4.19335	0.20239	6.39472		
(C 16 -0.19581	1.99902	4.15428	0.04252	6.19581		
(C 17 -0.19132	1.99902	4.15124	0.04106	6.19132		
(C 18 -0.21100	1.99912	4.18272	0.02916	6.21100		
(C 19 -0.23942	1.99911	4.18724	0.05307	6.23942		
(C 20 -0.19521	1.99912	4.16548	0.03060	6.19521		
H	H 21 0.20965	0.00000	0.78771	0.00264	0.79035		
H	H 22 0.19296	0.00000	0.78607	0.02097	0.80704		
H	H 23 0.21036	0.00000	0.78399	0.00565	0.78964		
H	H 24 0.20584	0.00000	0.78339	0.01076	0.79416		
H	H 25 0.21342	0.00000	0.78494	0.00164	0.78658		
(26 -1.46263	1.99907	4.17957	1.28399	7.46263		
H	H 27 0.19178	0.00000	0.80047	0.00775	0.80822		
(C 28 0.08715	1.99906	2.77635	1.13744	5.91285		
H	H 29 0.05943	0.00000	0.82499	0.11558	0.94057		
() 30 -0.70000	1.99980	6.63334	0.06686	8.70000		
(C 31 -0.06884	1.99885	4.03122	0.03877	6.06884		
(C 32 -0.20038	1.99895	4.18171	0.01972	6.20038		
(C 33 -0.20035	1.99895	4.18168	0.01972	6.20035		
(C 34 -0.19629	1.99911	4.17745	0.01973	6.19629		
(C 35 -0.19630	1.99911	4.17745	0.01973	6.19630		
(C 36 -0.21481	1.99912	4.19523	0.02046	6.21481		
H	H 37 0.21111	0.00000	0.78621	0.00269	0.78889		
H	H 38 0.21110	0.00000	0.78621	0.00269	0.78890		
H	H 39 0.21205	0.00000	0.78622	0.00174	0.78795		
H	H 40 0.21205	0.00000	0.78621	0.00174	0.78795		
H	H 41 0.21110	0.00000	0.78729	0.00161	0.78890		
ŀ	H 42	-0.43013		0.00000	1.29622	0.13391	1.4301
						=	

* Total * -2.31468 47.97763 112.74225 5.59480 166.31468

Energy $E(RM06) = -962,45235954h, G^{298} = -962.153634h, \mu = 0.46 D$

Ν	atom	X	У	Z
1	С	4.053322	-1.103569	-0.528655
2	С	2.763316	-1.319615	-0.026932
3	С	2.444016	-2.584454	0.485429
4	С	3.381409	-3.596437	0.487973
5	С	4.649884	-3.372368	-0.032257
6	С	4.982487	-2.125802	-0.541624
7	С	1.779760	-0.244060	-0.054099
8	С	0.444940	-0.540257	-0.126508
9	С	-0.668608	0.313938	0.072103
10	Η	1.467929	-2.760678	0.920002
11	Н	4.314593	-0.135066	-0.937465
12	Н	3.128143	-4.563348	0.904035
13	Н	5.969772	-1.950905	-0.949867
14	Н	5.382189	-4.170321	-0.033328
15	С	-4.447948	0.034454	0.052382
16	С	-4.772727	-1.285400	-0.294584
17	С	-5.485485	0.939972	0.311406
18	С	-6.090185	-1.679796	-0.373794
19	С	-6.805458	0.540808	0.232058
20	С	-7.108657	-0.768875	-0.109877
21	Н	-3.989586	-2.003578	-0.502935
22	Н	-5.238725	1.961860	0.576933
23	Н	-6.333234	-2.700214	-0.641453
24	Н	-7.598911	1.248530	0.435341
25	Н	-8.142741	-1.084760	-0.172076
26	С	-1.970978	-0.233769	-0.043892
27	Н	-2.020799	-1.282304	-0.305725
28	С	-3.092903	0.499507	0.155360
29	Н	-2.971471	1.546118	0.421771
30	0	-0.590936	1.578384	0.403553
31	С	2.292236	1.137616	-0.034122
32	С	3.118220	1.563033	1.009607
33	С	1.996607	2.018895	-1.077513
34	С	3.605551	2.856698	1.025858
35	С	2.510027	3.305159	-1.067333
36	С	3.306134	3.726348	-0.013170
37	Н	3.358686	0.876818	1.813311
38	Н	1.380852	1.681396	-1.904092
39	Н	4.227774	3.185909	1.848342
40	Н	2.289614	3.977350	-1.886728
41	Н	3.699556	4.735117	-0.003619
42	Н	0.165350	-1.571572	-0.299950
43	Н	0.328754	1.890415	0.442177

			Nat	ural				
	Ator	n l	No	Charge	Core	Valence	Rydberg	Total
-	С	1	-0.	16641	1.99902	4.13058	0.03681	6.16641
	С	2	-0.	14576	1.99891	4.09241	0.05444	6.14576
	С	3	-0.	16637	1.99903	4.13427	0.03307	6.16637
	С	4	-0.	21149	1.99912	4.18080	0.03158	6.21149
	С	5	-0.	15798	1.99913	4.13155	0.02730	6.15798
	С	6	-0.	20782	1.99911	4.18290	0.02581	6.20782
	С	7	-0.	04819	1.99894	3.88723	0.16201	6.04819

C 8	-0.34860	1.99884	4.29905	0.05071	6.34860
C 9	0.49850	1.99889	3.45343	0.04918	5.50150
H 10	0.21941	0.00000	0.77863	0.00196	0.78059
H 11	0.20744	0.00000	0.77515	0.01741	0.79256
Н 12	0.22028	0.00000	0.77735	0.00237	0.77972
Н 13	0.22086	0.00000	0.77724	0.00190	0.77914
H 14	0.21834	0.00000	0.77988	0.00179	0.78166
C 15	-0.13103	1.99898	4.10954	0.02251	6.13103
C 16	-0.14409	1.99904	4.12571	0.01934	6.14409
C 17	-0.12242	1.99889	4.10374	0.01978	6.12242
C 18	-0.20238	1.99912	4.18352	0.01974	6.20238
C 19	-0.21472	1.99914	4.19504	0.02055	6.21472
C 20	-0.14431	1.99913	4.12642	0.01876	6.14431
Н 21	0.21529	0.00000	0.78284	0.00187	0.78471
Н 22	0.21785	0.00000	0.78057	0.00158	0.78215
Н 23	0.22076	0.00000	0.77762	0.00162	0.77924
Н 24	0.22144	0.00000	0.77700	0.00156	0.77856
Н 25	0.21867	0.00000	0.77989	0.00144	0.78133
C 26	-0.29265	1.99884	4.27149	0.02232	6.29265
Н 27	0.22348	0.00000	0.77142	0.00510	0.77652
C 28	-0.01636	1.99905	3.98977	0.02753	6.01636
Н 29	0.22428	0.00000	0.77336	0.00237	0.77572
O 30	-0.68054	1.99970	6.62483	0.05601	8.68054
C 31	0.08919	1.99896	2.74418	1.16767	5.91081
C 32	-0.67767	1.99869	4.48118	0.19779	6.67767
C 33	-0.70537	1.99872	4.51170	0.19496	6.70537
C 34	-0.20511	1.99897	4.16526	0.04088	6.20511
C 35	-0.20654	1.99897	4.16544	0.04214	6.20654
C 36	-0.18559	1.99916	4.15564	0.03079	6.18559
Н 37	0.21178	0.00000	0.77801	0.01021	0.78822
H 38	0.21377	0.00000	0.77570	0.01053	0.78623
Н 39	0.21706	0.00000	0.77696	0.00598	0.78294
H 40	0.21861	0.00000	0.77579	0.00560	0.78139
H 41	0.21907	0.00000	0.77817	0.00276	0.78093
Н 42	0.23526	0.00000	0.76191	0.00282	0.76474
Н 43	0.52285	0.00000	0.46645	0.01071	0.47715
* Total *	-0.32719	47.97634	114.889	61 2.46124	4 165.32719

Energy E(RM06) = -962.827557261 h, G^{298} = -962.516801 h, µ=12.9 D

Ν	atom	X	У	Z
1	С	3.327877	3.715420	0.095891
2	С	3.589659	2.801946	1.106300
3	С	3.112033	1.508907	1.011486
4	С	2.328060	1.129532	-0.084972
5	С	2.063224	2.062078	-1.096755
6	С	2.573675	3.342735	-1.008620
7	С	1.821068	-0.238340	-0.193954
8	С	0.481204	-0.508514	-0.468427
9	С	-0.604040	0.333115	-0.296909
10	0	-0.602234	1.545999	0.166499
11	С	2.751318	-1.329599	-0.036401
12	С	4.118912	-1.135283	-0.296987
13	С	5.010315	-2.178934	-0.166303
14	С	4.560951	-3.425034	0.247551
15	С	3.213135	-3.633412	0.519706
16	С	2.313608	-2.602263	0.369680
17	С	-1.970801	-0.154524	-0.651547
18	С	-3.080664	0.462828	0.086266
19	С	-4.387141	0.037143	0.085382
20	С	-4.833639	-1.098038	-0.649994
21	С	-6.151089	-1.452266	-0.612765
22	С	-7.048906	-0.700606	0.155075
23	С	-6.641529	0.412395	0.887570
24	С	-5.324896	0.784096	0.855099
25	Н	1.271330	-2.762634	0.614311
26	Н	4.468459	-0.170684	-0.642161
27	Н	2.870848	-4.602912	0.857346
28	Н	6.057955	-2.024763	-0.389218
29	Н	5.264624	-4.240440	0.360495
30	Н	-4.133576	-1.674983	-1.239766
31	Н	-4.974744	1.645957	1.409708
32	Н	-6.505155	-2.309073	-1.168659
33	Н	-7.359318	0.972271	1.470235
34	Н	-8.091115	-0.994767	0.179026
35	Н	-2.010360	-1.244692	-0.623828
36	Н	-2.851591	1.351909	0.668812
37	Н	3.314092	0.792202	1.798269
38	Н	1.486216	1.762216	-1.964322
39	Н	4.174668	3.096089	1.967961
40	Н	2.387205	4.051551	-1.804823
41	Н	3.716865	4.723396	0.166473
42	Н	0.293808	1.874091	0.360798
43	Н	0.220886	-1.513159	-0.773986
44	Н	-2.117231	0.100141	-1.716890

		Nat	ural				
Ator	n Ì	No	Charge	Core	Valence	Rydberg	Total
 С	1	-0.	12984	1.99893	4.11031	0.02061	6.12984
С	2	-0.	19573	1.99913	4.17638	0.02021	6.19573
С	3	-0.	14754	1.99901	4.13095	0.01758	6.14754
С	4	-0.	16378	1.99890	4.14160	0.02327	6.16378
С	5	-0.	18682	1.99902	4.16953	0.01827	6.18682

	С	6	-0.19268	1.99913	4.17326	0.02029	6.19268
	С	7	0.23397	1.99891	3.74496	0.02215	5.76603
	С	8	-0.36476	1.99886	4.34782	0.01808	6.36476
	С	9	0.59195	1.99896	3.38458	0.02452	5.40805
	Ο	10	-0.63083	1.99969	6.60698	0.02417	8.63083
	С	11	-0.11636	1.99872	4.09544	0.02220	6.11636
	С	12	-0.12460	1.99905	4.10791	0.01764	6.12460
	С	13	-0.20443	1.99911	4.18611	0.01921	6.20443
	С	14	-0.11640	1.99913	4.09861	0.01865	6.11640
	С	15	-0.20007	1.99912	4.18194	0.01900	6.20007
	С	16	-0.12851	1.99905	4.11197	0.01749	6.12851
	С	17	-0.55444	1.99906	4.53725	0.01813	6.55444
	С	18	0.21391	1.99905	3.76979	0.01725	5.78609
	С	19	-0.17582	1.99896	4.15784	0.01903	6.17582
	С	20	-0.05192	1.99906	4.03637	0.01650	6.05192
	С	21	-0.21144	1.99912	4.19253	0.01980	6.21144
	С	22	-0.00395	1.99917	3.98718	0.01761	6.00395
	С	23	-0.23228	1.99913	4.21270	0.02045	6.23228
	С	24	-0.01041	1.99892	3.99256	0.01893	6.01041
	Η	25	0.22405	0.00000	0.77425	0.00170	0.77595
	Η	26	0.22746	0.00000	0.77038	0.00216	0.77254
	Η	27	0.22599	0.00000	0.77246	0.00155	0.77401
	Η	28	0.22619	0.00000	0.77226	0.00156	0.77381
	Η	29	0.22264	0.00000	0.77594	0.00141	0.77736
	Η	30	0.23283	0.00000	0.76544	0.00173	0.76717
	Η	31	0.23479	0.00000	0.76374	0.00146	0.76521
	Η	32	0.24006	0.00000	0.75837	0.00157	0.75994
	Н	33	0.24107	0.00000	0.75742	0.00151	0.75893
	Н	34	0.23355	0.00000	0.76518	0.00127	0.76645
	Η	35	0.28815	0.00000	0.71033	0.00152	0.71185
	Η	36	0.24194	0.00000	0.75598	0.00208	0.75806
	Η	37	0.23102	0.00000	0.76740	0.00158	0.76898
	Η	38	0.23145	0.00000	0.76626	0.00229	0.76855
	Η	39	0.22701	0.00000	0.77145	0.00154	0.77299
	Η	40	0.22799	0.00000	0.77045	0.00155	0.77201
	Η	41	0.22263	0.00000	0.77600	0.00137	0.77737
	Η	42	0.54011	0.00000	0.45640	0.00349	0.45989
	Η	43	0.25137	0.00000	0.74701	0.00162	0.74863
_	H	44	0.33258	0.00000	0.66577	0.00166	0.66742
=	* To	tal *	2.00008	47.97718	115.517(08	5 163.99992

_

G1

Energy E(RM06) = -962.837028254h, G²⁹⁸ = -962.526181h, μ =4.14 D

Ν	atom	X	У	Z
1	С	4.332300	-0.071611	-0.667609
2	С	3.222658	-0.823683	-0.206414
3	С	3.444987	-2.149564	0.237343
4	С	4.714784	-2.668058	0.264870
5	С	5.788360	-1.905257	-0.187913
6	С	5.593697	-0.614126	-0.664378
7	С	1.928043	-0.247978	-0.233296
8	С	0.731429	-1.126763	-0.432204
9	С	-0.466862	-0.828200	0.407587
10	Н	2.629112	-2.746677	0.622506
11	Н	4.169382	0.907821	-1.096652
12	Н	4.880664	-3.668882	0.639704
13	Н	6.429006	-0.043397	-1.046669
14	Н	6.784696	-2.329438	-0.181270
15	С	-4.197173	-0.506793	0.200403
16	C	-4.562374	-0.565974	-1.158619
17	C	-5.201207	-0.356707	1.174924
18	С	-5.885383	-0.481047	-1.518817
19	С	-6.525638	-0.275792	0.806601
20	C	-6.865644	-0.337565	-0.538639
21	Н	-3.805099	-0.674984	-1.924148
22	Н	-4.917172	-0.309492	2.219654
23	Н	-6.167647	-0.523892	-2.562348
24	Н	-7.295332	-0.163156	1.558394
25	Н	-7.906434	-0.272948	-0.831150
26	С	-1.737125	-0.774345	-0.143968
27	Н	-1.811109	-0.890491	-1.216728
28	С	-2.852579	-0.591711	0.639015
29	Н	-2.698276	-0.506064	1.711372
30	0	-0.324324	-0.663374	1.690079
31	С	1.725488	1.158790	-0.127853
32	С	2.594661	1.950911	0.654314
33	С	0.625407	1.779649	-0.759973
34	С	2.374222	3.303208	0.785387
35	С	0.435642	3.134382	-0.648747
36	С	1.304748	3.896567	0.128592
37	Н	3.391899	1.477566	1.212147
38	Н	-0.030951	1.204611	-1.400043
39	Н	3.026851	3.897706	1.410291
40	Н	-0.385086	3.609726	-1.168744
41	Н	1.138997	4.961974	0.227846
42	Н	0.984681	-2.179879	-0.276941
43	Н	0.583302	-0.761002	2.010984
44	Н	0.458457	-1.072104	-1.492467

Natural Atom No Charge	Core	Valence	Rydberg	 Total
C 1 -0.08894	1.99904	4.07250	0.01739	6.08894
C 2 -0.14572	1.99885	4.12494	0.02194	6.14572
C 3 -0.09623	1.99904	4.08030	0.01689	6.09623
C 4 -0.20080	1.99912	4.18242	0.01926	6.20080
C 5 -0.06590	1.99914	4.04867	0.01808	6.06590
C 6 -0.20657	1.99910	4.18818	0.01929	6.20657
C 7 0.30836	1.99891	3.66913	0.02360	5.69164
C 8 -0.54194	1.99893	4.52032	0.02268	6.54194
C 9 0.59941	1.99897	3.37636	0.02526	5.40059
Н 10 0.22597	0.00000	0.77219	0.00184	0.77403

Н 11 0.23431	0.00000	0.76342	0.00227	0.76569
H 12 0.23438	0.00000	0.76412	0.00150	0.76562
Н 13 0.23505	0.00000	0.76344	0.00151	0.76495
Н 14 0.22907	0.00000	0.76957	0.00135	0.77093
C 15 -0.14622	1.99898	4.12820	0.01904	6.14622
C 16 -0.10940	1.99905	4.09370	0.01665	6.10940
C 17 -0.08542	1.99890	4.06725	0.01927	6.08542
C 18 -0.20540	1.99912	4.18659	0.01969	6.20540
C 19 -0.21897	1.99913	4.19935	0.02049	6.21897
C 20 -0.09895	1.99914	4.08154	0.01826	6.09895
Н 21 0.22129	0.00000	0.77695	0.00176	0.77871
Н 22 0.22390	0.00000	0.77456	0.00154	0.77610
Н 23 0.22741	0.00000	0.77099	0.00160	0.77259
H 24 0.22819	0.00000	0.77027	0.00154	0.77181
Н 25 0.22383	0.00000	0.77479	0.00137	0.77617
C 26 -0.35108	1.99891	4.33383	0.01834	6.35108
H 27 0.24183	0.00000	0.75648	0.00170	0.75817
C 28 0.08219	1.99906	3.89946	0.01929	5.91781
Н 29 0.23145	0.00000	0.76637	0.00218	0.76855
O 30 -0.62129	1.99967	6.59632	0.02530	8.62129
C 31 -0.15501	1.99886	4.13392	0.02222	6.15501
C 32 -0.09898	1.99904	4.08253	0.01742	6.09898
C 33 -0.12435	1.99903	4.10723	0.01809	6.12435
C 34 -0.20249	1.99911	4.18396	0.01943	6.20249
C 35 -0.19023	1.99911	4.17189	0.01923	6.19023
C 36 -0.08177	1.99914	4.06448	0.01815	6.08177
Н 37 0.23537	0.00000	0.76304	0.00159	0.76463
H 38 0.22531	0.00000	0.77194	0.00275	0.77469
Н 39 0.23407	0.00000	0.76443	0.00150	0.76593
Н 40 0.23369	0.00000	0.76479	0.00153	0.76631
Н 41 0.22839	0.00000	0.77023	0.00138	0.77161
Н 42 0.29337	0.00000	0.70474	0.00189	0.70663
Н 43 0.53551	0.00000	0.46237	0.00212	0.46449
Н 44 0.30333	0.00000	0.69501	0.00166	0.69667
* Total * 2.00003	47.97737	115.51278	.50983 0.50983	163.99997

H1

Energy **E(RM06) = -963.192797138 h**, G^{298} =-962,869389 h, µ=8.88 D

Ν	atom	X	у	Z
1	С	2.816049	3.944489	0.129452
2	С	3.555400	2.996373	0.825113
3	С	3.279849	1.660048	0.663169
4	С	2.240131	1.241110	-0.204771
5	С	1.478681	2.231268	-0.872941
6	С	1.778476	3.559400	-0.718402
7	С	1.950882	-0.140622	-0.365076
8	С	0.560273	-0.535714	-0.768916
9	С	-0.574611	-0.146767	0.090335
10	Ο	-0.461904	0.254222	1.275455
11	С	2.925474	-1.151571	-0.199877
12	С	4.291493	-0.872871	-0.462564
13	С	5.245087	-1.845291	-0.291992
14	С	4.872041	-3.107385	0.156560
15	С	3.535670	-3.410763	0.409226
16	С	2.568638	-2.460154	0.208927
17	С	-1.944974	-0.261964	-0.445733
18	С	-3.048349	-0.133630	0.528483
19	С	-4.378243	-0.219788	0.226873
20	С	-4.867103	-0.447650	-1.096332
21	С	-6.209471	-0.521121	-1.315307
22	С	-7.096163	-0.371966	-0.239361
23	С	-6.651458	-0.147415	1.063812
24	С	-5.308896	-0.071434	1.302151
25	Н	1.540070	-2.706982	0.436717
26	Н	4.569073	0.087010	-0.876941
27	Η	3.260408	-4.395418	0.761550
28	Н	6.279911	-1.634877	-0.525033
29	Н	5.627404	-3.870909	0.294281
30	Η	-4.176804	-0.562537	-1.921591
31	Η	-4.926998	0.101403	2.300605
32	Η	-6.596778	-0.693397	-2.309465
33	Η	-7.364221	-0.035585	1.868293
34	Η	-8.161212	-0.432731	-0.427948
35	Η	-2.013291	-1.195089	-1.019926
36	Η	-2.785638	0.042680	1.567732
37	Н	3.805997	0.925050	1.257698
38	Η	0.701594	1.949899	-1.571346
39	Η	4.333847	3.307894	1.508009
40	Η	1.216498	4.306431	-1.262007
41	Н	3.038248	4.996582	0.256159
42	Н	0.460187	-1.621244	-0.898420
43	Η	0.446511	0.330624	1.629610
44	Н	0.357566	-0.166086	-1.782663
45	Н	-2.030398	0.514020	-1.225930

	Natural							
_	Ato	m N	No	Charge	Core	Valence	Rydberg	Total
	С	1	-0.	06063	1.99915	4.04338	0.01810	6.06063
	С	2	-0.	20137	1.99910	4.18261	0.01965	6.20137
	С	3	-0.	09113	1.99905	4.07465	0.01744	6.09113
	С	4	-0.	15490	1.99887	4.13397	0.02206	6.15490
	С	5	-0.	11834	1.99904	4.10149	0.01780	6.11834
	С	6	-0.	18797	1.99911	4.16942	0.01943	6.18797
	С	7	0.	26367	1.99890	3.71237	0.02506	5.73633
	С	8	-0.	57795	1.99896	4.55915	0.01983	6.57795
	С	9	0.	79931	1.99917	3.17548	0.02604	5.20069
	0	10	-0	.54142	1.99962	6.51452	0.02727	8.54142
	С	11	-0	.13296	1.99886	4.11245	0.02165	6.13296
	С	12	-0	.08812	1.99904	4.07138	0.01769	6.08812
	С	13	-0	.20435	1.99910	4.18593	0.01931	6.20435
	С	14	-0	.05615	1.99915	4.03896	0.01805	6.05615
	С	15	-0	.19695	1.99912	4.17851	0.01933	6.19695
	С	16	-0	.09984	1.99904	4.08397	0.01684	6.09984
	С	17	-0	.59315	1.99901	4.57618	0.01796	6.59315
	С	18	0	.18262	1.99903	3.80009	0.01826	5.81738
	С	19	-0	.15795	1.99896	4.13999	0.01901	6.15795
	С	20	-0	.04624	1.99906	4.03086	0.01632	6.04624
	С	21	-0	.20999	1.99912	4.19101	0.01986	6.20999
	С	22	0	.02081	1.99917	3.96251	0.01751	5.97919
	С	23	-0	.23236	1.99913	4.21273	0.02050	6.23236
	С	24	0	.00055	1.99892	3.98156	0.01897	5.99945
	Η	25	0	.22707	0.00000	0.77115	0.00179	0.77293
	Н	26	0	.23636	0.00000	0.76123	0.00241	0.76364
	Η	27	0	.23666	0.00000	0.76185	0.00150	0.76334
	Η	28	0	.23727	0.00000	0.76122	0.00151	0.76273
	Η	29	0	.23096	0.00000	0.76770	0.00134	0.76904

30	0.23480	0.00000	0.76348	0.00173	0.76520
31	0.23786	0.00000	0.76068	0.00146	0.76214
<u> </u>	0.24396	0.00000	0.75449	0.00155	0.75604
Н 33	0.24490	0.00000	0.75361	0.00149	0.75510
Н 34	0.23647	0.00000	0.76228	0.00125	0.76353
Н 35	0.32967	0.00000	0.66879	0.00154	0.67033
Н 36	0.24773	0.00000	0.74993	0.00234	0.75227
Н 37	0.23901	0.00000	0.75934	0.00165	0.76099
H 38	0.22579	0.00000	0.77230	0.00191	0.77421
Н 39	0.23802	0.00000	0.76046	0.00152	0.76198
Н 40	0.23754	0.00000	0.76094	0.00152	0.76246
H 41	0.23162	0.00000	0.76704	0.00134	0.76838
Н 42	0.32786	0.00000	0.67044	0.00170	0.67214
Н 43	0.56258	0.00000	0.43420	0.00323	0.43742
Н 44	0.33233	0.00000	0.66606	0.00161	0.66767
Н 45	0.34636	0.00000	0.65200	0.00164	0.65364
* Total *	3.00001	47.97767	115.5123	5 0.5099 [°]	7 163.99999