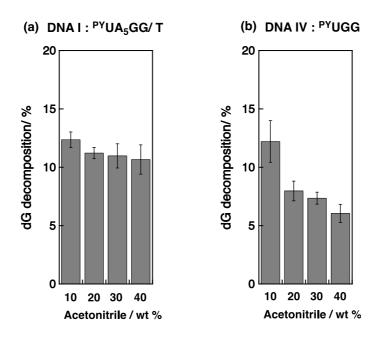

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information


Attenuation of guanine oxidation via DNA-mediated electron transfer in crowded environment using small cosolutes

Makiko Tanaka,* Takayuki Matsumoto and Hiroki Iida

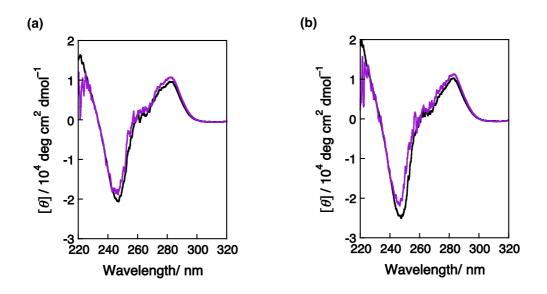

Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 Japan

Fig. S1 Absorption spectra of DNA I in aqueous buffer solution (blue line), 10 wt % (purple line), 20 wt % (green line), 30 wt % (black line), 40 wt % glycerol (red line). Aliquots were prepared under the conditions: [DNA duplex] = 4.0 μ M, and [NaCl] = 100 mM in pH 7.4 Tris-HCl buffer (50 mM).

Fig. S2 dG decomposition percentages of pyrene-modified oligonucleotides (a) DNA I from photoirradiation ($\lambda_{ex} > 350$ nm, 10 min), and (b) DNA IV obtained from photoirradiation ($\lambda_{ex} > 350$ nm, 1 min) in 10 – 40 wt % acetonitrile. The conditions were as follows: [DNA] = 4.0 μ M in pH 7.4 Tris-HCl buffer (50 mM), and [NaCl] = 100 mM.

Fig. S3 (a) CD spectra of DNA I in aqueous buffer solution (black line) and in 40 wt % acetonitrile solution (purple line). (b) CD spectra of DNA IV in aqueous buffer solution (black line) and in 40 wt % acetonitrile solution (purple line). These spectra were obtained using a micro cell holder with a micro cylindrical cel. Experimental conditions: [DNA duplex] = 4.0 μ M, and [NaCl] = 100 mM in pH 7.4 Tris-HCl buffer (50 mM).

Cosolute	η / mPa∙sª	Cosolute	η / mPa∙sª
none	0.98	none	0.98
10 wt % glycerol	1.28	10 wt % ethylene glycol	1.28
20 wt % glycerol	1.72	20 wt % ethylene glycol	1.67
30 wt % glycerol	2.47	30 wt % ethylene glycol	2.14
40 wt % glycerol	3.60	40 wt % ethylene glycol	2.80

Table S1. Viscosities (η) of aqueous glycerol and ethylene glycol solutions.

Table S2. Melting temperatures (T_m) for dsDNA I and IV in the absence and presence of acetonitrile.

Cosolute	osolute <u>T</u> m, °C	<i>T</i> _m , °C	
	DNA I	DNA IV	
none	53.7	54.8	
10 wt % acetonitrile	49.4	50.5	
20 wt % acetonitrile	44.2	45.6	
30 wt % acetonitrile	40.3	41.6	
40 wt % acetonitrile	38.0	39.3	
Experimental conditions HCl, pH7.4, 100 mM Na UV absorption at 260 nm	Cl. $T_{\rm m}$ is determ	ined by monitoring the	e