# Brønsted Acid-Catalysed Regiodivergent Phosphorylation of 2-Indolylmethanols to Synthesize Benzylic Site or C3-Phosphorylated Indole Derivatives 

Long Chen, ${ }^{\text {a* }}$ Yun-Xiang Zou, ${ }^{\text {a }}$ Xin-Yue Fang, ${ }^{\text {a }}$ Jie $\mathbf{W u}{ }^{\text {a }}$ and Xiao-Hua Sun ${ }^{\text {a }}$<br>${ }^{\text {a }}$ Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, 168 Hua Guan Road, Chengdu 610052, P. R. China<br>E-mail: chenlong@cdu.edu.cn

## Table of Contents <br> page

1. General information 2
2. General procedure for $\mathrm{HOTs}^{\prime} \mathrm{H}_{2} \mathrm{O}$-catalyzed regioselective benzylic phosphorylation of $\mathbf{3 - 1 1}$

2-indolylmethanols
3. General procedure for HOTf-catalyzed synthesis of C3-phosphorylated indoles 11-15
4. 1 mmol scale synthesis 16
5. Control experiments 16-18
6. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectra $\quad 19-152$

## 1. General information:

Reactions were monitored by thin layer chromatography using UV light to visualize the reaction course. Purification of reaction products were carried out by flash chromatography on silica gel. Chemical yields refer to pure isolated substances. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained using a Bruker DPX-400 or JEOL-600 spectrometer. The ${ }^{31} \mathrm{P}$ NMR spectra were recorded at JEOL 243 MHz with $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as external standard. The ${ }^{19} \mathrm{~F}$ NMR spectra were recorded at JEOL 564 MHz . Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{h}=$ heptet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad.

All reactions were run under an atmosphere of air. Anhydrous THF and toluene were prepared by distillation over sodium-benzophenone ketyl prior to use. Anhydrous halogenated solvents and $\mathrm{CH}_{3} \mathrm{CN}$ were prepared by first distillation over $\mathrm{P}_{2} \mathrm{O}_{5}$ and then from $\mathrm{CaH}_{2}$. Anhydrous ethyl acetate was prepared by first dried in anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then distilled over $\mathrm{P}_{2} \mathrm{O}_{5}$ and stored over MS $4 \AA$. Anhydrous $\mathrm{CH}_{3} \mathrm{NO}_{2}$ was prepared by first dried in anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then distilled under reduced pressure. 2-Indolylmethanols $\mathbf{1}^{1}$ and diarylphosphine oxides $\mathbf{2}^{2}$ were prepared according to the literature report. Commercially available $\mathrm{HOTs}^{s} \mathrm{H}_{2} \mathrm{O}$ (4-methylbenzenesulfonic acid hydrate) and HOTf (trifluoromethanesulfonic acid) were used as received.

[^0]
## 2. General procedure for $\mathrm{HOTs}^{\prime} \mathbf{H}_{2} \mathrm{O}$-catalyzed regioselective benzylic phosphorylation of 2-indolylmethanols



The reaction was carried out under an air atmosphere. To a $10-\mathrm{mL}$ vial were added 2 -indolylmethanols 1 ( $0.25 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Ar}_{2} \mathrm{P}(\mathrm{O}) \mathrm{H} 2$ ( $0.3 \mathrm{mmol}, 1.2$ equivs) and 2.5 mL of anhydrous $\mathrm{CH}_{3} \mathrm{NO}_{2}$. After adding $\mathrm{HOTs}^{*} \mathrm{H}_{2} \mathrm{O}(6.8 \mathrm{mg}, 10 \mathrm{~mol} \%)$, the reaction mixture was stirred at room temperature till almost full conversion of $\mathbf{1}$ by TLC analysis. The reaction mixture was directly subjected to column chromatography using petrol ether/ethyl acetate (generally $10: 1$ to $5: 1, \mathrm{v}: \mathrm{v}$ ) as the eluent to afford the desired products 3 .


Column chromatography afforded the desired product $\mathbf{3 a}^{3}$ in $98 \%$ yield ( 118.3 mg ) as white solid; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=10.26$ (brs, 1 H ), 7.53-7.50 (m, 1H), 7.47-7.43 (m, 3H), 7.28-7.23 (m, 7H), 7.19-7.08 (m, 9H), 7.03-7.00 (m, 4H), $6.28(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=139.0,136.2,132.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.0 \mathrm{~Hz}\right)$, $132.0,131.4,130.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=1.5 \mathrm{~Hz}\right), 130.8,128.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 127.9,127.6,127.0,122.1,120.3$, $119.6,111.4,105.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.0 \mathrm{~Hz}\right), 60.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=63.0 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 37.3.


Column chromatography afforded $\mathbf{3} \mathbf{b}^{3}$ in $93 \%$ yield $(118.8 \mathrm{mg})$ as white solid; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=10.31$ (brs, 1 H ), 7.51-7.50 (m, 1H), 7.46-7.44 $(\mathrm{m}, 3 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.11-7.08$ $(\mathrm{m}, 1 \mathrm{H}), 6.96-6.95(\mathrm{~m}, 4 \mathrm{H}), 6.87-6.86(\mathrm{~m}, 4 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=139.3,137.3,136.2,136.1,133.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=7.5 \mathrm{~Hz}\right), 131.9,131.1$, $130.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.5 \mathrm{~Hz}\right), 128.6,128.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.2 \mathrm{~Hz}\right), 127.1,122.0,120.3,119.5,111.5,105.6,60.2(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=63.0 \mathrm{~Hz}\right), 21.0 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=31.8$.

[^1]

Column chromatography afforded $\mathbf{3} \mathbf{c}^{3}$ in $90 \%$ yield ( 122.7 mg ) as white solid; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=10.32$ (brs, 1 H ), 7.51-7.43 (m, 4H), 7.29-7.18 $(\mathrm{m}, 10 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.91-6.89(\mathrm{~m}, 3 \mathrm{H}), 6.69-6.67(\mathrm{~m}, 4 \mathrm{H}), 6.22(\mathrm{~s}$, $1 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=158.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=1.0\right.$ $\mathrm{Hz}), 139.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.0 \mathrm{~Hz}\right), 136.2,133.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.0 \mathrm{~Hz}\right), 132.0\left(\mathrm{~m}, J_{\mathrm{C}-\mathrm{P}}=5.0 \mathrm{~Hz}\right), 131.7(1.2 \mathrm{~Hz})$, $131.1,130.8,128.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.0 \mathrm{~Hz}\right), 127.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}\right), 122.0,120.3,119.5,113.1,111.5,105.5$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=6.0 \mathrm{~Hz}\right), 59.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=63.0 \mathrm{~Hz}\right), 55.2 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=31.8$.


Column chromatography afforded 3d in $74 \%$ yield ( 104.9 mg ) as white solid; Mp: 120-122 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=10.18$ (brs, 1 H ), 7.52-7.51 $(\mathrm{m}, 1 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 5 \mathrm{H}), 7.01-7.00$ $(\mathrm{m}, 4 \mathrm{H}), 6.90-6.89(\mathrm{~m}, 4 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 2.89-2.83(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.21(\mathrm{~m}$, $12 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.2,139.2,136.4,136.2,133.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.0 \mathrm{~Hz}\right), 131.8$, $131.7,131.1,130.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.0 \mathrm{~Hz}\right), 128.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.5 \mathrm{~Hz}\right), 127.1,125.9,119.5,111.4,105.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=6.0 \mathrm{~Hz}), 60.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=63.0 \mathrm{~Hz}\right), 33.6,23.9,23.8 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=37.3$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}: 568.2764$, Found: 568.2755.


Column chromatography afforded the desired product $3 \mathbf{e}^{3}$ in $54 \%$ yield ( 74.4 mg ) as white solid; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=10.34$ (brs, 1 H ), 7.52-7.46 (m, $4 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 5 \mathrm{H})$, 6.93-6.92 (m, 4H), $6.18(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=137.4$, $136.3,133.9,133.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=7.5 \mathrm{~Hz}\right), 132.4,132.2,130.8,130.1,128.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 128.2,126.9$, $122.6,120.5,120.0,111.6,105.8,59.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=61.5 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=37.1$.


Column chromatography afforded the desired product $\mathbf{3 f}^{3}$ in $90 \%$ yield ( 116.8 mg ) as white solid; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=10.31$ (brs, 1 H ), 7.53-7.46 (m, $4 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 1 \mathrm{H})$, 6.97-6.95 (m, 4H), 6.88-6.85 (m, 4H), 6.20( $\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=162.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=247.5 \mathrm{~Hz}\right), 136.3,134.8,132.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.0 \mathrm{~Hz}\right), 132.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{P}}=7.5 \mathrm{~Hz}\right)$, $132.3,130.9,130.3,128.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 126.9,122.5,120.5,119.9,114.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.0 \mathrm{~Hz}\right), 111.6$, 105.6, $59.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=61.5 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=37.3 ;{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(565 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=-113.8$.


Column chromatography afforded the desired product $\mathbf{3 g}$ in $28 \%$ yield ( 43.4 mg ) as white solid; $\mathrm{Mp}: 130-132{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=10.36$ (brs, $1 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.25(\mathrm{~m}$, $1 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 9 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $142.8,136.3,132.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=7.5 \mathrm{~Hz}\right), 132.7,131.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.5 \mathrm{~Hz}\right), 130.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=93.0 \mathrm{~Hz}\right), 130.0(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=33.0 \mathrm{~Hz}\right), 128.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.5 \mathrm{~Hz}\right), 126.9,125.0,123.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=270.0 \mathrm{~Hz}\right), 122.8,120.6,120.1$, 111.6, 106.0, $60.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=60.0 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=37.4 ;{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (565 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=-62.6$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{35} \mathrm{H}_{24} \mathrm{~F}_{6} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}: 620.1572$, Found: 620.1564.


Column chromatography afforded the desired product $\mathbf{3 i}$ in $62 \%$ yield ( 84.2 mg ) as white solid; Mp: $188-190{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=11.95(\mathrm{~s}, 1 \mathrm{H})$, $7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ (brs, 5 H ), 7.19-7.12 (m, $7 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.71(\mathrm{~m}, 4 \mathrm{H}), 6.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H})$, $2.99(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=156.0$, $143.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.0\right.$ $\mathrm{Hz}), 136.5,131.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.0 \mathrm{~Hz}\right), 128.8,127.8,120.8,119.9,119.1,112.1,110.0,105.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=7.0\right.$ Hz ), 58.9 (d, $J_{\mathrm{C}-\mathrm{P}}=60.0 \mathrm{~Hz}$ ), $53.3 ;{ }^{31} \mathrm{P}\left\{{ }^{〔} \mathrm{H}\right\}$ NMR ( $243 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=51.6$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$: 544.2036, Found: 544.2029.


Column chromatography afforded $\mathbf{3 j}^{3}$ in $82 \%$ yield ( 104.8 mg ) as white solid; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=10.34(\mathrm{brs}, 1 \mathrm{H}), 7.53-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.44$ $(\mathrm{m}, 3 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.10$ $(\mathrm{m}, 1 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 4 \mathrm{H}), 6.80-6.77(\mathrm{~m}, 4 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=138.8,137.1,136.2,133.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=7.5 \mathrm{~Hz}\right), 131.9,131.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=6.0 \mathrm{~Hz}), 131.5,130.8,128.3,128.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.5 \mathrm{~Hz}\right), 128.0,127.8,127.1,122.0,120.4,119.5,105.6$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=6.0 \mathrm{~Hz}\right), 60.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=63.0 \mathrm{~Hz}\right), 21.5 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=37.5$.


Column chromatography afforded the desired product $\mathbf{3 k}$ in $56 \%$ yield (76.0 mg ) as white solid; $\mathrm{Mp}: 198-200{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=10.37$ (brs, 1H), 7.53-7.52 (m, 1H), 7.48-7.45 (m, 3H), 7.30-7.27 (m, 4H), 7.23-7.17 $(\mathrm{m}, 5 \mathrm{H}), 7.12-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 2 \mathrm{H})$, 6.53-6.51 (m, 2H), $6.31(\mathrm{~s}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 150 MHz ,
$\left.\mathrm{CDCl}_{3}\right): \delta=158.8,140.4,136.2,133.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=7.5 \mathrm{~Hz}\right), 132.0,131.7,131.1,128.9,128.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $12.0 \mathrm{~Hz}), 127.0,123.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.0 \mathrm{~Hz}\right), 122.2,120.4,119.6,116.3,113.9,111.6,106.0,61.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ 61.5 Hz ), $54.8 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $243 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=37.6$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 544.2036$, Found: 544.2028.


Column chromatography afforded the desired product $\mathbf{3 1}$ in 86\% yield (115.8 mg ) as white solid; $\mathrm{Mp}: 150-152^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=10.35$ (brs, 1 H ), 7.52-7.50 (m, 1H), 7.46-7.42 (m, 3H), 7.28-7.16 (m, 9H), 7.11-7.07 $(\mathrm{m}, 1 \mathrm{H}), 6.92-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 2 \mathrm{H}), 6.68-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 2.21$ (s, 6 H ), $1.99(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=139.4,136.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=7.0 \mathrm{~Hz}\right), 135.8(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}\right), 135.5,133.07\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.0 \mathrm{~Hz}\right), 132.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.0 \mathrm{~Hz}\right), 131.9,131.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}\right)$, $131.0,129.1,128.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.0 \mathrm{~Hz}\right), 128.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.0 \mathrm{~Hz}\right), 127.1,121.9,120.3,119.4,111.5,105.5$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=6.0 \mathrm{~Hz}\right), 60.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=64.0 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=37.4$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{37} \mathrm{H}_{34} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}: 540.2451$, Found: 540.2444.


Column chromatography afforded the desired product $\mathbf{3 m}$ in $59 \%$ yield ( 73.2 mg ) as white solid; $\mathrm{Mp}: 128-130{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=10.47(\mathrm{~s}, 1 \mathrm{H})$, 7.55-7.49 (m, 4H), 7.36-7.25 (m, 9H), 7.20-7.19 (m, 2H), 7.15-7.11 (m, 1H), 6.86-6.84 (m, 2H), $6.43(\mathrm{~s}, 2 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ $=144.0,138.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.0 \mathrm{~Hz}\right), 136.2,133.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.0 \mathrm{~Hz}\right), 132.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.0 \mathrm{~Hz}\right), 130.0,129.0(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=5.0 \mathrm{~Hz}\right), 128.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 126.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}\right), 126.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}\right), 126.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=2.0 \mathrm{~Hz}), 122.6,120.8,119.8,111.7,105.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.0 \mathrm{~Hz}\right), 54.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=63.0 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ( $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=37.7$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{NOPS}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 496.0953$, Found: 496.0941.


Column chromatography afforded $\mathbf{3 n}$ in $85 \%$ yield ( 119.5 mg ) as white solid; Mp : $248-250{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=10.43($ brs, 1 H$), 7.63(\mathrm{~s}, 1 \mathrm{H})$, 7.48-7.45 (m, 2H), 7.32-7.27 (m, 2H), 7.27-7.26 (m, 5H), 7.18-7.13 (m, 9H), 6.99-6.98 (m, 4H), $6.24(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=140.4$, 138.7, 134.8, $133.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.0 \mathrm{~Hz}\right), 132.1,131.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=93.0 \mathrm{~Hz}\right), 130.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.5 \mathrm{~Hz}\right), 128.7$, $128.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 128.0,127.7,125.1,122.8,113.0,112.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=15.0 \mathrm{~Hz}\right), 105.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.0\right.$ $\mathrm{Hz}), 60.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=61.5 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $243 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=37.4$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{33} \mathrm{H}_{25} \mathrm{BrNOP}[\mathrm{M}+\mathrm{H}]^{+}: 562.0930$, Found: 562.0927.


Column chromatography afforded the desired product $\mathbf{3 0}^{\mathbf{3}}$ in $82 \%$ yield (101.8 mg ) as white solid; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=10.20($ brs, 1 H$), 7.46-7.43$ $(\mathrm{m}, 2 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 9 \mathrm{H}), 7.06-7.04(\mathrm{~m}$, 1H), 7.01-6.99 (m, 4H), $6.19(\mathrm{~s}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 150 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=139.1,134.6,133.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.0 \mathrm{~Hz}\right), 132.0,131.4,130.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.5 \mathrm{~Hz}\right), 130.8,128.8$, $128.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.5 \mathrm{~Hz}\right), 127.9,127.6,127.3,123.8,120.0,111.2,105.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=7.5 \mathrm{~Hz}\right), 60.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=61.5 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $243 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=37.4$.


Column chromatography afforded the desired product $\mathbf{3} \mathbf{p}^{3}$ in $76 \%$ yield ( 98.2 mg ) as white solid; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=10.37$ (brs, 1 H ), 7.48-7.44 (m, 3H), 7.41-7.39 (m, 1H), 7.29-7.27 (m, 6H), 7.17-7.14 (m, 8H), 7.07-7.06 (m, 1H), 6.99-6.98 (m, 4H), $6.28(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=139.9$, $138.8,136.6,132.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.0 \mathrm{~Hz}\right), 132.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}\right), 131.4,130.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.0 \mathrm{~Hz}\right), 130.4$, $128.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 128.0,127.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}\right), 125.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}\right), 121.2,120.5,111.4$, $105.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.0 \mathrm{~Hz}\right), 60.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=62.0 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=37.5$.


Column chromatography afforded the desired product $\mathbf{3} \mathbf{q}^{3}$ in $95 \%$ yield (121.4 mg ) as white solid; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.36($ brs, 1 H$), 7.52-7.50$ $(\mathrm{m}, 1 \mathrm{H}), 7.45-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.13$ $(\mathrm{m}, 4 \mathrm{H}), 7.10-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 12 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=142.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.0 \mathrm{~Hz}\right.$ ), 139.3, 136.2, $133.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.0 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.5 \mathrm{~Hz}\right), 128.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 128.3,127.8,127.7,127.5$, 127.1, 122.0, 120.3, 119.5, 111.5, 105.6, $60.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=61.5 \mathrm{~Hz}\right.$ ), 21.5; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 243 MHz , $\mathrm{CDCl}_{3}$ ): $\delta=37.8$.


Column chromatography afforded the desired product $3 \mathbf{r}^{3}$ in $87 \%$ yield ( 118.2 mg ) as white solid; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=10.38$ (brs, 1 H ), $7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 3 \mathrm{H})$, 7.21-7.13 (m, 5H), 7.12-7.01 (m, 8H), 6.77-6.74 (m, 4H), $6.28(\mathrm{~s}, 1 \mathrm{H}), 3.76$ $(\mathrm{s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=162.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.0 \mathrm{~Hz}\right)$, 139.4, 136.2, $134.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.0 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.0 \mathrm{~Hz}\right), 127.8,127.4,127.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}\right)$, $122.8,122.0,121.8,120.3,119.5,113.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.0 \mathrm{~Hz}\right), 111.5,105.5,60.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=63.0 \mathrm{~Hz}\right), 55.2$; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=37.6$.


Column chromatography afforded the desired product 3 s in $84 \%$ yield (119.2 mg ) as white solid; $\mathrm{Mp}: 134-136{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=10.41$ (brs, 1H), 7.53-7.51 (m, 1H), 7.46-7.44 (m, 1H), 7.26-7.19 (m, 3H), 7.16-7.02 $(\mathrm{m}, 17 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 2.90-2.83(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.19(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=153.0,139.3,136.2,133.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.0 \mathrm{~Hz}\right), 131.0(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=4.5 \mathrm{~Hz}\right), 128.7,128.0,127.8,127.4,127.1,126.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 122.0,120.3,119.5,111.5$, 105.5, $60.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=61.5 \mathrm{~Hz}\right.$ ), 34.0, 23.6, 23.5; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $243 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=37.9$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{39} \mathrm{H}_{38 \mathrm{~N}} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 568.2764$, Found: 568.2757.


Column chromatography afforded the desired product $\mathbf{3 t}$ in $88 \%$ yield (130.9 mg ) as white solid; $\mathrm{Mp}: 141-143{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=10.37$ (brs, 1H), 7.53-7.51 (m, 1H), 7.46-7.44 (m, 1H), 7.26-7.20 (m, 3H), 7.16-7.10 $(\mathrm{m}, 5 \mathrm{H}), 7.08-7.00(\mathrm{~m}, 12 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 2.60-2.56(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.51(\mathrm{~m}$, 4H), 1.35-1.26 (m, 4H), 0.91-0.87 (m, 6H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=147.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.0 \mathrm{~Hz}\right), 139.3,136.2,133.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.0 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.0 \mathrm{~Hz}\right), 128.6,128.3$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 127.8,127.7,127.4,127.1,122.0,120.3,119.5,111.5,105.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=7.0 \mathrm{~Hz}\right), 60.8$ (d, $J_{\mathrm{C}-\mathrm{P}}=62.0 \mathrm{~Hz}$ ), 35.5, 33.0, 22.2, 13.8; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=38.0$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{41} \mathrm{H}_{42} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}: 596.3077$, Found: 596.3074.


Column chromatography afforded the desired product $3 \mathbf{u}^{3}$ in $61 \%$ yield (84.2 mg ) as white powder; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=10.01$ (brs, 1 H ), 7.53-7.51 (m, 1H), 7.44-7.42 (m, 1H), 7.31-7.17 (m, 11H), 7.13-7.09 (m, 1H), 7.05-7.00 (m, 8H), $6.32(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=139.0$, 138.6, 136.2, $134.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.0 \mathrm{~Hz}\right), 130.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.5 \mathrm{~Hz}\right), 129.6,129.0$, $128.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 128.1,127.9,126.9,122.5,120.5,119.9,111.5,106.0,60.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=63.0 \mathrm{~Hz}\right)$; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $243 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=36.2$.


Column chromatography afforded the desired product 3v in $84 \%$ yield (114.0 $\mathrm{mg})$ as white powder; $\mathrm{Mp}: 140-142{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=11.02$ (brs, 1H), 7.53 (s, 2H), 7.45-7.43 (m, 2H), 7.40-7.37 (m, 2H), 7.15-7.09 (m, $7 \mathrm{H}), ~ 7.03-6.99(\mathrm{~m}, 5 \mathrm{H}), 6.87-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.64-6.62(\mathrm{~m}, 2 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H})$, $3.20(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{\{1} \mathrm{H}\right\}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=160.1,142.4,141.1,136.5,134.8,133.6,131.1(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=6.0 \mathrm{~Hz}\right), 127.0,126.6,126.4,121.4,121.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=94.5 \mathrm{~Hz}\right), 120.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.5 \mathrm{~Hz}\right), 120.2$,
$119.0,111.3,110.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.0 \mathrm{~Hz}\right), 105.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.0 \mathrm{~Hz}\right), 64.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=63.0 \mathrm{~Hz}\right), 54.5 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $243 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=47.5$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 544.2036$, Found: 544.2025.


Column chromatography afforded the desired product $\mathbf{3 w}$ in $85 \%$ yield (108.6 mg ) as white powder; Mp: 221-223 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=10.22$ (brs, 1H), 7.52-7.51 (m, 1H), 7.48-7.47 (m, 1H), 7.28-7.21 (m, 6H), 7.18-7.14 $(\mathrm{m}, 6 \mathrm{H}), 7.11-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.02-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.97-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.80$ $(\mathrm{m}, 2 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $139.2,138.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.5 \mathrm{~Hz}\right), 136.2,133.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.0 \mathrm{~Hz}\right), 132.6,131.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.5 \mathrm{~Hz}\right), 130.4$, $130.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.0 \mathrm{~Hz}\right), 128.0,127.9,127.5,127.0,122.2,120.3,119.6,111.4,105.8,61.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ 61.5 Hz ), 21.2; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (243 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=37.8$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}: 512.2138$, Found: 512.2131.


Column chromatography afforded the desired product $\mathbf{3 x}$ in $73 \%$ yield (100.6 mg ) as white powder; $\mathrm{Mp}: 211-213{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=9.91$ (brs, 1H), 7.54-7.52 (m, 1H), 7.46-7.44 (m, 3H), 7.33-7.31 (m, 2H), 7.25-7.20 $(\mathrm{m}, 7 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.03(\mathrm{~m}, 6 \mathrm{H}), 6.96-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=138.4,136.2,134.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=15.0 \mathrm{~Hz}\right)$, $133.1,132.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.0 \mathrm{~Hz}\right), 132.5,132.4,130.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.0 \mathrm{~Hz}\right), 130.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.0 \mathrm{~Hz}\right), 129.7(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=13.5 \mathrm{~Hz}\right), 128.2,128.1,126.9,122.6,120.5,119.9,111.5,106.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.0 \mathrm{~Hz}\right), 61.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $63.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $243 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=35.2$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}: 552.1045$, Found: 552.1042 .


Column chromatography afforded the desired product $\mathbf{3 y}$ in $90 \%$ yield (121.2 mg ) as white powder; $\mathrm{Mp}: 236-238{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=10.13$ (brs, 1 H ), 7.51-7.50 (m, 1H), 7.47-7.46 (m, 1H), 7.29-7.25 (m, 2H), 7.24-7.19 $(\mathrm{m}, 1 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.10-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 2 \mathrm{H}), 7.03-7.02(\mathrm{~m}, 4 \mathrm{H})$, 6.69-6.62 (m, 4H), $6.31(\mathrm{~s}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 150 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=139.3,137.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 136.2,133.4,131.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.5 \mathrm{~Hz}\right), 130.9,130.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=7.5 \mathrm{~Hz}), 130.3,127.8,127.4,127.1,122.1,120.2,119.6,111.3,105.7,61.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=60.0 \mathrm{~Hz}\right), 21.1$; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $243 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=38.0$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{37} \mathrm{H}_{34} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}$: 540.2451, Found: 540.2443.


Column chromatography afforded the desired product $\mathbf{3 z}$ in $92 \%$ yield (134.0 mg ) as white powder; Mp: 200-202 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=$ 10.34 (brs, 1 H ), 7.81-7.79 (m, 2H), 7.73-7.69 (m, 3H), 7.66 (s, 1 H$)$, $7.57-7.43(\mathrm{~m}, 8 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.07(\mathrm{~m}, 11 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=139.2,136.3,135.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.0 \mathrm{~Hz}\right), 134.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}\right)$, $132.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.0 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.0 \mathrm{~Hz}\right), 129.1,128.8,128.4,128.0,127.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.0 \mathrm{~Hz}\right)$, $127.8,127.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.0 \mathrm{~Hz}\right), 127.5,127.1,126.7,122.3,120.4,119.8,111.5,106.1,61.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ 62.0 Hz ); ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (162 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=38.1$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{41} \mathrm{H}_{3} 0 \mathrm{NOP}$ $[\mathrm{M}+\mathrm{H}]^{+}: 584.2138$, Found: 584.2127.

Column chromatography afforded the desired product $\mathbf{3 z a}^{3}$ in $89 \%$ yield (110.7 mg ) as white powder; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=10.09($ brs, 1 H$), 7.65(\mathrm{~s}$, $2 \mathrm{H}), 7.57-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{brs}, 1 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H})$, 7.23-7.20 (m, 4H), 7.16-7.14 (m, 1H), 7.05 (brs, 6H), $6.85(\mathrm{~s}, 2 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=138.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.0 \mathrm{~Hz}\right), 136.2,135.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.5 \mathrm{~Hz}\right), 130.8$, $128.1,128.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=15.0 \mathrm{~Hz}\right), 127.9,127.3,122.4,120.5,119.9,111.7,106.4,61.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=72.0 \mathrm{~Hz}\right)$; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=29.9$.


Column chromatography afforded $\mathbf{3 z b}$ in $64 \%$ yield ( 79.5 mg ) as white powder; Mp: $246-248{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.58-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 8 \mathrm{H})$, 7.28-7.25 (m, 4H), 7.24-7.18 (m, 5H), 7.15-7.11 (m, 2H), 7.08-7.04 (m, 1H), 7.00-6.96 (m, 4H), $2.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=138.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=2.0 \mathrm{~Hz}), 137.5,136.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.0 \mathrm{~Hz}\right), 133.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.0 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.0 \mathrm{~Hz}\right), 131.2,130.3$, $127.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}\right), 127.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}\right), 127.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}\right), 126.9,121.6,120.9,119.3$, 108.8, $106.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.0 \mathrm{~Hz}\right), 60.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=60.0 \mathrm{~Hz}\right), 32.2 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 34.4; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}$: 498.1981, Found: 498.1975.


Column chromatography afforded $\mathbf{3 z c}$ in $54 \%$ yield ( 77.4 mg ) as white powder; Mp : $170-172{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H})$, 7.40-7.36 (m, 6H), 7.21-7.17 (m, 6H), 7.16-7.10 (m, 4H), 7.06-7.02 (m, 1H), 6.99-6.91 (m, 6H), 6.87-6.83 (m, 2H), $6.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22-6.21(\mathrm{~m}, 2 \mathrm{H})$, $4.72(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=138.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.0 \mathrm{~Hz}\right), 137.3,136.1,135.6,133.7$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=8.0 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.0 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.0 \mathrm{~Hz}\right), 130.8,129.8,127.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.0\right.$
$\mathrm{Hz}), 127.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.0 \mathrm{~Hz}\right), 127.5,126.0,125.6,121.8,120.9,119.6,110.5,106.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.0 \mathrm{~Hz}\right)$, $60.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=60.0 \mathrm{~Hz}\right), 49.5 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=34.7$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}: 574.2294$, Found: 574.2289.

## 3. General procedure for HOTf-catalyzed synthesis of C3-phosphorylated indoles



The reaction was carried out under an air atmosphere. To a $10-\mathrm{mL}$ vial were added 2-indolylmethanols 1 ( $0.30 \mathrm{mmol}, 1.2$ equivs), $\mathrm{Ar}_{2} \mathrm{P}(\mathrm{O}) \mathrm{H} 2(0.25 \mathrm{mmol}, 1.0$ equiv) and 2.5 mL of anhydrous $\mathrm{CH}_{3} \mathrm{CN}$. After adding HOTf ( $7.5 \mathrm{mg}, 10 \mathrm{~mol} \%$ ) which was prepared as a solution in $\mathrm{CH}_{3} \mathrm{NO}_{2}$, the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 hours. The reaction mixture was directly subjected to column chromatography using dichloromethane/ethyl acetate (generally $10: 1$ to $6: 1$, v:v) as the eluent to afford the desired products 4 .


Column chromatography afforded the desired product $\mathbf{4 a}^{3}$ in $73 \%$ yield $(77.7 \mathrm{mg})$ as white powder; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ): $\delta=11.70(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.56$ $(\mathrm{m}, 6 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.41(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.20(\mathrm{~m}$, $2 \mathrm{H}), 7.13-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.79(\mathrm{~m}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (243 MHz, DMSO- $d_{6}$ ): $\delta=22.1$.


Column chromatography afforded the desired product $\mathbf{4 b}^{3}$ in $65 \%$ yield ( 83.2 mg ) as white powder; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.70(\mathrm{~s}, 1 \mathrm{H})$, 7.60-7.57 (m, $4 \mathrm{H}), 7.47-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.28(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.94(\mathrm{~m}, 8 \mathrm{H}), 6.90(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.48(\mathrm{~s}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=149.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $17.0 \mathrm{~Hz}), 138.7,136.1,135.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.0 \mathrm{~Hz}\right), 134.7,133.6,131.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.0 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $3.0 \mathrm{~Hz}), 129.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.0 \mathrm{~Hz}\right), 129.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=14.0 \mathrm{~Hz}\right), 128.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 111.2,100.9(\mathrm{~d}$, $J_{\mathrm{C}-\mathrm{P}}=126.0 \mathrm{~Hz}$ ), 47.4, 20.9; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=24.2$.

Column chromatography afforded the desired product $\mathbf{4 c}$ in $57 \%$ yield ( 80.8 mg ) as white powder; $\mathrm{Mp}: 268-270{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.51(\mathrm{~s}, 1 \mathrm{H})$, 7.59-7.56 (m, 4H), 7.46-7.43 (m, 2H), 7.33-7.28 (m, 5H), 7.11-7.08 (m, 1H), 7.04 $(\mathrm{AB}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.98(\mathrm{AB}, J=12.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.92-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.84$ $(\mathrm{m}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 2.87-2.80(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=150.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=17.0 \mathrm{~Hz}\right), 147.1,138.9,135.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.0 \mathrm{~Hz}\right), 134.7$, $133.6,131.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.0 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.0 \mathrm{~Hz}\right), 129.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 128.9,128.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=12.0 \mathrm{~Hz}), 126.4,122.1,120.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 111.1,100.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=125.0 \mathrm{~Hz}\right), 47.4,33.6,24.0$, 23.9; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (243 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=24.4$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{NOP}$ $[\mathrm{M}+\mathrm{H}]^{+}: 568.2764$, Found: 568.2758.


Column chromatography afforded the desired product $\mathbf{4 d}^{3}$ in $68 \%$ yield ( 88.2 mg ) as white powder; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.19(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.54(\mathrm{~m}$, $4 \mathrm{H}), 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.03(\mathrm{~m}$, $1 \mathrm{H}), 7.02-7.00(\mathrm{~m}, 4 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.78(\mathrm{~m}, 4 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.64$ $(\mathrm{d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=161.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=244.5\right.$ $\mathrm{Hz}), 149.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=16.5 \mathrm{~Hz}\right), 137.1,135.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 134.2,133.5,131.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.5 \mathrm{~Hz}\right)$, $130.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=7.5 \mathrm{~Hz}\right), 129.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.5 \mathrm{~Hz}\right), 128.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 122.3,121.1,120.5,115.2$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=21.0 \mathrm{~Hz}\right), 111.4,101.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=124.5 \mathrm{~Hz}\right), 46.6 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=24.5 ;$ ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $565 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=-115.7$.


Column chromatography afforded the desired product $4 \mathbf{e}^{3}$ in $56 \%$ yield (71.5 mg ) as white powder; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}$ ): $\delta=11.55(\mathrm{~d}, J$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.39(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.03-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.97(\mathrm{~m}, 2 \mathrm{H})$, 6.94-6.93 (m, 2H), $6.88(\mathrm{~s}, 2 \mathrm{H}), 6.78-6.75(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}\right): \delta=149.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=17.0 \mathrm{~Hz}\right)$, $141.6,137.2,136.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 135.1,134.0,131.5,131.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.0 \mathrm{~Hz}\right), 129.4,128.3(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 128.0,127.0,125.7,121.5,120.1,119.6,111.9,99.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=125.0 \mathrm{~Hz}\right), 47.0,21.1$; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (243 MHz, $\left.\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}\right): \delta=23.2$.


Column chromatography afforded the desired product $\mathbf{4 f}$ in $75 \%$ yield ( 76.8 mg ) as white powder; $\mathrm{Mp}: 176-178{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.17(\mathrm{~s}, 1 \mathrm{H})$, $7.56-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 5 \mathrm{H})$, 6.98-6.93 (m, 3H), 6.87-6.86 (m, 2H), 6.66-6.65 (m, 2H), $2.20(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=149.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=16.5 \mathrm{~Hz}\right), 139.9,137.4,135.2(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 134.3,133.6,131.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.5 \mathrm{~Hz}\right), 131.3,130.6,129.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 128.2$, $128.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.5 \mathrm{~Hz}\right), 126.9,125.9,122.1,120.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=42.0 \mathrm{~Hz}\right), 111.1,100.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=124.5 \mathrm{~Hz}\right)$, 43.2, 19.7; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $243 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=23.7$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{NOP}$ $[\mathrm{M}+\mathrm{H}]^{+}: 512.2138$, Found: 512.2133.


Column chromatography afforded the desired product $\mathbf{4 g}$ in $78 \%$ yield (105.8 mg ) as white powder; Mp: 278-280 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}\right): \delta=10.75(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.43$ (m, 2H), 7.40 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{td}, J=7.8 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.16(\mathrm{td}, J$ $=7.8 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.00-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.76(\mathrm{~m}, 4 \mathrm{H}), 6.68-6.67(\mathrm{~m}$, $2 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{〔} \mathrm{H}\right\}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}$ ): $\delta=156.4,148.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=18.0 \mathrm{~Hz}), 136.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 135.2,134.1,131.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.0 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}\right)$, $130.1,129.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.0 \mathrm{~Hz}\right), 128.8,127.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 127.5,121.0,120.1,119.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=7.0\right.$ Hz ), 111.8, 110.3, $98.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=127.0 \mathrm{~Hz}\right), 54.9 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $243 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}$ ): $\delta=$ 22.0; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 544.2036$, Found: 544.2029.


4h

Column chromatography afforded the desired product $\mathbf{4 h}$ in $36 \%$ yield ( 50.5 mg ) as white powder; Mp: 284-286 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.96(\mathrm{~s}, 1 \mathrm{H})$, 7.55-7.52 (m, 4H), 7.49-7.47 (m, 2H), 7.34 (td, $J=7.8 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.17-7.11$ (m, 8H), 7.01-6.99 (m, 4H), $6.86(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=150.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=17.0 \mathrm{~Hz}\right), 141.1,134.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.0 \mathrm{~Hz}\right), 134.1,131.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.0 \mathrm{~Hz}\right)$, $131.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.0 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.0 \mathrm{~Hz}\right), 129.0,128.5,128.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.0 \mathrm{~Hz}\right), 126.8,125.2$, 123.2, 114.4, 112.7, $101.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{p}}=125.0 \mathrm{~Hz}\right.$ ), 48.1; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $243 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=23.9$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{33} \mathrm{H}_{25} \mathrm{BrNOP}[\mathrm{M}+\mathrm{H}]^{+}: 562.0930$, Found: 562.0922.

$4 i$

Column chromatography afforded the desired product $\mathbf{4 i}$ in $42 \%$ yield ( 54.3 mg ) as white powder; Mp: $276-278{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO- $d_{6}$ ): $\delta=11.82$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 6 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.42(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.29-7.27 (m, 4H), 7.23-7.21 (m, 2H), 7.10-7.09 (m, 4H), $6.87(\mathrm{dd}, J=9.0 \mathrm{~Hz}, 1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 100 MHz, DMSO- $\mathrm{d}_{6}$ ): $\delta=150.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=16.0 \mathrm{~Hz}), 141.4,137.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.0 \mathrm{~Hz}\right), 134.8,133.7,131.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.0 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.0\right.$ $\mathrm{Hz}), 128.8,128.7,128.5,127.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 126.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}\right), 121.0,120.7,111.7,100.9(\mathrm{~d}$, $J_{\mathrm{C}-\mathrm{P}}=124.0 \mathrm{~Hz}$ ), 47.1; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 242 MHz , DMSO- $d_{6}$ ): $\delta=22.3$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{33} \mathrm{H}_{25} \mathrm{ClNOP}[\mathrm{M}+\mathrm{H}]^{+}: 518.1435$, Found: 518.1430.


4j

Column chromatography afforded the desired product $\mathbf{4 j}^{\mathbf{3}}$ in $58 \%$ yield ( 80.2 mg ) as white powder; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}$ ): $\delta=11.76(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.55$ (m, 4H), 7.53-7.51 (m, 4H), 7.43 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.20$ $(\mathrm{m}, 2 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 4 \mathrm{H}), 7.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}$, $1 \mathrm{H}), 6.54(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}\right): \delta=$ $150.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=18.0 \mathrm{~Hz}\right), 141.5,137.1,133.5,133.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.5 \mathrm{~Hz}\right), 132.8$, $128.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.5 \mathrm{~Hz}\right), 128.7,128.4,127.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 126.6,122.0,120.6,119.4,112.3,99.1$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=127.5 \mathrm{~Hz}\right), 47.2 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}\right): \delta=22.6$.


Column chromatography afforded the desired product $\mathbf{4} \mathbf{k}^{3}$ in $34 \%$ yield ( 46.2 mg ) as white powder; ${ }^{1} \mathrm{H}$ NMR ( 600 MHz, DMSO- $d_{6}$ ): $\delta=11.63(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.50-7.46 (m, 4H), 7.39 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 2 \mathrm{H})$, 7.15-7.13 (m, 4H), $7.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.99(\mathrm{~m}, 4 \mathrm{H}), 6.83(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}(150$ MHz, DMSO- $d_{6}$ ): $\delta=161.8,149.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=18.0 \mathrm{~Hz}\right), 141.9,137.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $12.0 \mathrm{~Hz}), 133.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.5 \mathrm{~Hz}\right), 128.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=57.0 \mathrm{~Hz}\right), 128.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 126.8,126.6$, $126.0,121.8,120.3,119.9,114.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.5 \mathrm{~Hz}\right), 112.0,101.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=124.5 \mathrm{~Hz}\right), 55.4,47.0$; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 243 MHz, DMSO- $d_{6}$ ): $\delta=22.1$.


Column chromatography afforded the desired product $\mathbf{4 1}$ in $83 \%$ yield ( 112.6 mg ) as white powder; Mp: $230-232{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.79(\mathrm{~s}, 1 \mathrm{H})$, 7.41-7.36 (m, 4H), 7.19-7.18 (m, 1H), 7.15-7.13 (m, 10H), 7.00-6.98 (m, 1H), $6.94(\mathrm{~s}$, $1 \mathrm{H})$, 6.86-6.79 (m, 6H), $3.34(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=161.8$,
$148.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=18.0 \mathrm{~Hz}\right), 142.1,135.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 133.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.5 \mathrm{~Hz}\right), 133.1,129.1,128.2$, $126.3,122.3,121.6,121.5,120.9,120.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 120.0,110.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=15.0 \mathrm{~Hz}\right), 102.3(\mathrm{~d}$, $J_{\mathrm{C}-\mathrm{P}}=132.0 \mathrm{~Hz}$ ), 55.1, 47.6; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.5$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 544.2036$, Found: 544.2024.


Column chromatography afforded product $\mathbf{4 n}$ in $68 \%$ yield $(86.8 \mathrm{mg})$ as white powder; Mp: 236-244 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.38(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 2 \mathrm{H})$, 7.36-7.33 (m, 2H), 7.29-7.27 (m, 1H), 7.26-7.25 (m, 2H), 7.23-7.18 (m, 8H), 7.12-7.10 (m, 1H), 7.04-7.03 (m, 4H), 6.98-6.97 (m, 1H), 6.94-6.92 (m, 1H), 6.42 (s, $1 \mathrm{H}), 2.24(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=19.5 \mathrm{~Hz}\right)$, $141.6,138.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 135.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 134.3,133.6,132.4,132.3$, $129.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}} \quad 12.0 \mathrm{~Hz}\right), 129.1,128.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.5 \mathrm{~Hz}\right), 128.5,128.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 126.8,122.3$, $121.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=28.5 \mathrm{~Hz}\right), 111.0,101.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=124.5 \mathrm{~Hz}\right), 48.1,21.3 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(243 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $\delta=24.3$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}: 512.2128$, Found: 512.2132.


Column chromatography afforded the desired product $\mathbf{4 0}^{3}$ in $52 \%$ yield ( 71.6 mg ) as white powder; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}\right): \delta=11.82(\mathrm{~s}, 1 \mathrm{H})$, 7.63-7.62 (m, 2H), 7.54-7.45 (m, 7H), 7.28-7.26 (m, 4H), 7.23-7.21 (m, 2H), 7.12-7.07 (m, 5H), 6.89-6.86 (m, 1H), 6.59-6.58 (m, 2H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}\right): \delta=150.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=18.0 \mathrm{~Hz}\right), 141.8,137.5(\mathrm{~d}, \mathrm{~J}=16.5$ $\mathrm{Hz}), 136.7,134.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=15.0 \mathrm{~Hz}\right), 132.5,131.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.5 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.5 \mathrm{~Hz}\right), 129.2$, $128.9,128.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 127.2,122.6,121.2,119.8,112.9,99.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=127.5 \mathrm{~Hz}\right), 47.9$; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (243 MHz, $\left.\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}\right): \delta=20.9$.


Column chromatography afforded $\mathbf{4 p}$ in $80 \%$ yield $(116.6 \mathrm{mg})$ as white powder; Mp : $280-282{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.45(\mathrm{~s}, 1 \mathrm{H}), 8.15-8.13(\mathrm{~m}, 2 \mathrm{H})$, 7.85-7.84 (m, 2H), 7.80 (dd, $J=5.4 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.74-7.68(\mathrm{~m}, 4 \mathrm{H}), 7,56$ (td, $J$ $=6.0 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{td}, J=6.0 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.14-7.07 (m, 7H), 7.02-7.01 (m, 4H), $6.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.86(\mathrm{~m}, 1 \mathrm{H})$, $6.60(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=149.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=16.5 \mathrm{~Hz}\right), 141.3$, $135.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.5 \mathrm{~Hz}\right), 134.6,133.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.5 \mathrm{~Hz}\right), 132.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.5 \mathrm{~Hz}\right)$, $131.6,130.9,129.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 129.1,129.0,128.4,128.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 127.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $19.5 \mathrm{~Hz}), 126.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 126.8,126.5,122.3,121.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=24.0 \mathrm{~Hz}\right), 111.2,101.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ 124.5 Hz), 48.4; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $243 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=24.0$; HRMS (ESI): Exact mass calcd for
$\mathrm{C}_{41} \mathrm{H}_{30} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}: 584.2138$, Found: 584.2128.


Column chromatography afforded the desired product $\mathbf{4} \mathbf{q}^{3}$ in $50 \%$ yield $(62.0 \mathrm{mg})$ as white powder; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}$ ): $\delta=11.80(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 8.02-8.00 (m, 2H), 7.45-7.42 (m, 3H), 7.34-7.30 (m, 4H), 7.25-7.21 (m, 8H), 7.08 (t, $J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO- $d_{6}$ ): $\delta=149.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=19.0 \mathrm{~Hz}\right), 141.8,137.5,136.9$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=13.0 \mathrm{~Hz}\right), 136.3,135.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.0 \mathrm{~Hz}\right), 134.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.0 \mathrm{~Hz}\right), 128.8,128.4,127.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=13.0 \mathrm{~Hz}), 126.6,122.0,120.4,119.7,112.1,100.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=138.0 \mathrm{~Hz}\right), 46.8 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(243 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}\right): \delta=6.5$.

## 4. 1 mmol scale synthesis



The 1 mmol scale synthesis of $\mathbf{3 a}$ utilized the general procedure of $\mathrm{HOTs}^{\cdot} \mathrm{H}_{2} \mathrm{O}$-catalyzed regioselective benzylic phosphorylation of 2-indolylmethanols and $10.0 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{NO}_{2}$ was used in this reaction.

The 1 mmol scale synthesis of $\mathbf{4 a}$ utilized the general procedure for HOTf-catalyzed formation of C3-phosphorylatied indoles and 10.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was used instead of $\mathrm{CH}_{3} \mathrm{NO}_{2}$ in this reaction.

## 5. Control experiments



To a 10.0 mL vial was added successively $\mathbf{3 a}(96.6 \mathrm{mg}, 0.2 \mathrm{mmol}), 2.0 \mathrm{~mL}$ anhydrous $\mathrm{CH}_{3} \mathrm{NO}_{2}$ and HOTf ( $6.0 \mathrm{mg}, 20 \mathrm{~mol} \%$ ) which was prepared as a solution in $\mathrm{CH}_{3} \mathrm{NO}_{2}$, the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 hours. The reaction mixture was directly subjected to column chromatography using dichloromethane /ethyl acetate ( $6: 1, \mathrm{v}: \mathrm{v}$ ) as the eluent to afford product $\mathbf{4 a}$ in $76 \%$ yield ( 73.4 mg ).

Replacing HOTf with $\mathrm{HOTs}^{\prime} \mathrm{H}_{2} \mathrm{O}$, only $41 \%$ yield of $\mathbf{4 a}$ was isolated along with $40 \%$ of $\mathbf{3 a}$ recovered.

The same procedure was followed without HOTf, no desired product 4a was detected along with over $90 \%$ of $\mathbf{3 a}$ recovered.


To a 5.0 mL vial was added successively $\mathbf{4 a}(48.3 \mathrm{mg}, 0.1 \mathrm{mmol}), 1.0 \mathrm{~mL}$ anhydrous $\mathrm{CH}_{3} \mathrm{NO}_{2}$ and HOTf ( $3.0 \mathrm{mg}, 20 \mathrm{~mol} \%$ ) which was prepared as a solution in $\mathrm{CH}_{3} \mathrm{NO}_{2}$, the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 hours. No product 3a was observed along with almost $\mathbf{4 a}$ recovered.


To a $5-\mathrm{mL}$ vial were added 2 -indolylmethanol 1a ( $0.15 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{H} \mathbf{2 a}(0.18 \mathrm{mmol}$, 1.2 equivs) and 1.0 mL of anhydrous $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$. After adding $\mathrm{HOTf}(2.3 \mathrm{mg}, 10 \mathrm{~mol} \%$ ) which was prepared as a solution in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$, the reaction mixture was stirred at room temperature for 24 hours. The reaction mixture was directly subjected to column chromatography using petrol ether/ethyl acetate (generally $10: 1$ to $3: 1, \mathrm{v}: \mathrm{v}$ ) as the eluent to afford products $\mathbf{3 a}$ and $\mathbf{4 a}$ in $78 \%$ and $15 \%$ yield.

The same procedure was followed by running the reaction at $80^{\circ} \mathrm{C}$ for 15 minutes, $\mathbf{3 a}$ was isolated in $85 \%$ yield and $\mathbf{4 a}$ was generated with less than $5 \%$ yield.


To a 5.0 mL vial was added successively $\mathbf{3 b}$ ( $51.1 \mathrm{mg}, 0.1 \mathrm{mmol}$ ), $\mathbf{3 i}(54.3 \mathrm{mg}, 0.1 \mathrm{mmol}), 1.0 \mathrm{~mL}$ anhydrous $\mathrm{CH}_{3} \mathrm{NO}_{2}$ and HOTf ( $3.0 \mathrm{mg}, 20 \mathrm{~mol} \%$ ) which was prepared as a solution in $\mathrm{CH}_{3} \mathrm{NO}_{2}$, the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ until the disappearance of $\mathbf{3 b}$ and $\mathbf{3 i}$. The reaction mixture was directly subjected to column chromatography using dichloromethane /ethyl acetate (10: to 6:1, v:v) as the eluent to afford product $\mathbf{4 i}$ in $82 \%$ yield ( 44.6 mg ) and $\mathbf{4 b}$ in $55 \%$ yield $(28.2 \mathrm{mg})$, respectively.




- 20 -




요



- 23 -








$\underbrace{\text { ning }}$

- 31 -


## 











- 38 -



- 42 -

- 43 -







- 46 -







- 49 -




##  <br> N <br> 68 0 0 0 <br> $\stackrel{\infty}{\infty}$



- 52



- 54 -








- 55




## 




- 58 -




\section*{ <br> 동웅 <br> | 90 |
| :--- |
| 0. | $\stackrel{\stackrel{\rightharpoonup}{7}}{\stackrel{\rightharpoonup}{1}}$}














- 70






- 75



- 78 -


## 



- 79 -



| 450 | 400 | 350 | 300 | 250 | 200 | 150 | 100 | 50 | 0 | －50 | －100 | －150 | －200 | $-250$ | －300 | 5 | －400 | 150 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |







- 82 -



$\stackrel{\stackrel{y}{i}}{i}$
$\stackrel{8}{5}$






- 85 -




- 88 -


- 90 -






#  <br>  <br>  


-93







-99 -


- 100 -






- 105 -



- 108 -



- 111 -




-113-

- 114 -



- 117 -

-118-
$\stackrel{n}{\underset{\sim}{i}}$


-119-

- 120 -

- 121 -

- 122 -



－ 123 －

- 124 -
(s)

- 126-

- 127 -

- 129 -

- 130 -


- 133-


- 135 -

- 136-

- 137 -
人 ま

－138－

- 139 -


- 141 -

- 142 -
(1000

- 144 -

- 145 -


- 147 -

- 148 -

- 150 -

- 151 -



[^0]:    ${ }^{1}$. Y.-Y. He, X.-X. Sun, G.-H. Li, G.-J. Mei, F. Shi, J. Org. Chem., 2017, 82, 2462.
    ${ }^{2}$ S. Molitor, J. Becker, V. H. Gessner, J. Am. Chem. Soc., 2014, 136, 15517.

[^1]:    ${ }^{3}$ C. Hu, Y. He, C. Zhou, M. C. Kozlowski, L.-M. Wang, J. Org. Chem., 2018, 83, 4739.

