Highly diastereoselective synthesis of cyclopropane-fused spiropseudoindoxyl derivatives through [2 + 1] annulation of 2ylideneoxindoles and sulfonium bromides

Xue Tang,^a Hong-Ping Zhu,^{a,b} Jin Zhou,^a Yang Chen,^a Xiao-Li Pan,^a Li Guo,^a Jun - Long Li,^b Cheng Peng^{*a} and Wei Huang^{*a}

^a State Key Laboratory Breeding Base of Systematic ResEtOAcrch, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. E - mail: pengcheng@cdutcm.edu.cn; huangwei@cdutcm.edu.cn

^b Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China

Supporting Information

Table of Contents

1. General Information	S2
2. General Procedure for the Synthesis of (Z)-2-Ylideneoxindoles	s 1S2
3. General Procedure for the Synthesis of Cyclopropane-fused	Spiro-pseudo-
indoxyl Derivatives 3	
4. Gram-scale Reaction	
5. Crystal Data of 3e	
6. NMR Spectra of (Z)-2-Ylideneoxindoles 1	S24
7. NMR Spectra of the Spiro-pseudoindoxyl Derivative 3	
8. IR Spectra of the Spiro-pseudoindoxyl Derivatives 3	S68
9. NMR Spectra of the By-product	
10. Computational Data and Details	S83

1. General Information

NMR data were obtained for 1H at 400 MHz and 600 MHz, and for 13C at 100 MHz and 150 MHz. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance in CDCl₃ solution as the internal standard. Mass spectra were recorded using ESI as the ionization method. ESI-HRMS spectra were meacsured with a QTOF instrument. UV detection was performed at 254 nm. Column chromatography was performed on silica gel (200-300 mesh) using an eluent of ethyl acetate and petroleum ether. TLC was performed on glass-backed silica plates; products were visualized using UV light. All reagents and solvents were obtained from commercial sources and used without further purification. 2-Ylideneoxindole $1^{[1-2]}$ and sulfonium bromide $2^{[3]}$ were prepared according to the literature procedures.

Reference:

[1] T. Noguchi-yachide, M. Tetsuhashi, H. Aoyama and Y. Hashimoto, *Chem. Pharm. Bull.*, 2009, **57**, 536-540.

[2] S. C. Conway and G. W. Gribble, Heterocycles, 1990, 30, 627-633.

[3] S. K. Chittimalla and C. Bandi, RSC Adv., 2013, 3, 13663-13667.

2. General Procedure for the Synthesis of (Z)-2-ylideneoxindoles 1

Sodium hydride (1.5 equiv) was added to indole **A** (1.0 equive) in THF while cooing with an ice bath and the mixture was stirred for 0.5 h at this temperature. Then benzenesulfonyl chloride or methanesulfonyl chloride (1.35 equiv) was added and the mixture was stirred at RT. After indole **A** was consumed (monitored by TLC), the reaction mixture was combined with water and extracted three times with EtOAc. The combined organic phase was dried on sodium sulphate and evaporated down. the residue was purified by flash chromatography (PE:EtOAc = 35:1) on silica gel to give sulfonyl-protected intermediate **B**.^[1] The protected indole **B** (1.0 equiv) and *m*-CPBA (1.05 equiv) were dissolved in glacial acetic acid, and the solution was refluxed for 2.5 h at 125 °C. After cooling, the bulk of the solvent was removed by vacuum distillation, then methylene dichloride and water were added. The resulting suspension was treated with solid sodium bicarbonate until gas evolution ceased. The mixture was extracted three times with methylene dichloride. The combined organic phase was dried on sodium sulphate and evaporated down. The residue was purified by flash chromatography (PE:EtOAc = 17:1 to 15:1) on silica gel to give sulfonyl-protected-indolin-3-one **C**.^[2]

The indolin-3-one C (1.0 mmol, 1 equiv) and aromatic aldehyde (1.2 mmol, 1.2 equiv) were stirred at 60 °C with pyrrole (0.4 mmol, 0.4 equiv) in toluene. After compound C was consumed (monitored by TLC), the reaction mixture was purified by flash chromatography (PE:EtOAc = 18:1) on silica gel to give the corresponding compound **1**, which was further analyzed by ¹H-NMR, ¹³C-HMR, and HRMS. The major isomer with *Z* configuration and minor isomer with *E* configuration were obtained respectively.

(Z)-2-benzylidene-1-(phenylsulfonyl)indolin-3-one ((Z)-1a). Yellow oil, 243.3 mg, 67% yield. ¹H NMR (400 MHz, CDCl₃): δ Ph = 8.07 (d, J = 8.4 Hz, 1H), 7.92 (s, 1H), 7.80-7.77 (m, 2H), 7.61-7.57 (m, 1H), 7.53 (d, J = 7.6 Hz, 1H), 7.49-7.47 (m, 2H),

7.45-7.42 (m, 1H), 7.35-7.33 (m, 3H), 7.28-7.24 (m, 1H), 7.18 (d, J = 7.6 Hz, 1H), 7.16 (d, J = 4.0 Hz, 1H) ppm.¹³C NMR (100 MHz, CDCl₃): $\delta = 182.9$, 148.4, 136.0, 136.0, 134.1, 133.5, 133.2, 132.2, 131.4, 130.6, 129.1, 128.1, 127.4, 126.6, 125.7, 124.3, 118.9 ppm. HRMS (ESI): m/z calculated for C₂₁H₁₅NO₃S⁺Na: 384.0665, found: 384.0667.

. SO₂Ph

(Z)-1a

(E)-2-benzylidene-1-(phenylsulfonyl)indolin-3-one ((E)-1a). (E)-2-benzylidene-1-(phenylsulfonyl)indolin-3-one ((E)-1a). (E)-1a (E)-2-benzylidene-1-(phenylsulfonyl)indolin-3-one ((E)-1a). (E)-1a

7.49 (d, J = 7.2 Hz, 1H), 7.42-7.33 (m, 5H), 7.28-7.26 (m, 2H), 7.23-7.14 (m, 3H), ppm.¹³C NMR (100 MHz, CDCl₃): $\delta = 186.3$, 150.6, 135.7, 134.0, 133.8, 133.8, 133.2, 132.6, 130.7, 129.6, 128.7, 128.3, 128.0, 127.6, 126.9, 124.3, 121.1 ppm. HRMS (ESI): m/z calculated for C₂₁H₁₅NO₃S⁺Na: 384.0665, found: 384.0674.

(Z)-2-(2-nitrobenzylidene)-1-(phenylsulfonyl)indolin-3-one
(1b). Yellow solid, 296.4 mg, 73% yield. ¹H NMR (600 MHz, DMSO-d6): δ = 8.18 (d, J = 8.4 Hz, 1H), 8.13 (s, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.83-7.80 (m, 3H), 7.72 (d, J = 7.8 Hz, 1H),

7.69 (d, J = 8.4 Hz, 1H), 7.64 (t, J = 7.8 Hz, 1H), 7.56 (d, J = 7..8 Hz, 2H), 7.53 (d, J = 7.8 Hz, 1H), 7.48 (d, J = 7.8 Hz, 1H), 7.31 (t, J = 7.8 Hz, 1H) ppm.¹³C NMR (150 MHz, DMSO-d6): $\delta = 182.9$, 148.2, 147.6, 138.1, 135.8, 135.6, 134.2, 132.9, 132.8, 130.6, 130.3, 129.4, 127.7, 126.6, 126.2, 125.0, 124.9, 117.9 ppm. HRMS (ESI): m/z calculated for C₂₁H₁₄N₂O₅S⁺Na: 429.0516, found: 429.0518.

(Z)-2-(4-nitrobenzylidene)-1-(phenylsulfonyl)indolin-3one (1c). Yellow solid, 285.2 mg, 70% yield. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.25-8.23$ (m, 2H), 8.17 (d, J = 8.4Hz, 1H), 7.97 (s, 1H), 7.87 (d, J = 8.4 Hz, 2H), 7.74-7.70

(m, 1H), 7.65-7.61 (m, 3H), 7.61-7.57 (m, 1H), 7.43-7.39 (m, 2H), 7.31-7.27 (m, 1H) ppm.¹³C NMR (100 MHz, CDCl₃): $\delta = 182.9$, 148.7, 148.1, 138.8, 136.9, 136.1, 135.2, 134.5, 131.5, 129.3, 128.0, 127.3, 126.0, 125.6, 124.7, 123.3, 118.4 ppm. HRMS (ESI): *m/z* calculated for C₂₁H₁₄N₂O₅S⁺Na: 429.0516, found: 429.0519.

(Z)-2-(3-bromobenzylidene)-1-(phenylsulfonyl)indolin-3one (1d). Yellow solid, 299.5 mg, 68% yield. ¹H NMR (400

MHz, CDCl₃): $\delta = 8.15$ (d, J = 8.4 Hz, 1H), 8.05-8.03 (m,

1d 1H), 7.90 (s, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.71-7.67 (m, 1H), 7.63 (d, J = 7.6 Hz, 1H), 7.59-7.56 (m, 2H), 7.56-7.53 (m, 2H), 7.37 (t, J = 7.6 Hz, 2H), 7.30-7.28 (m, 1H), 7.27-7.25 (m, 1H) ppm.¹³C NMR (100 MHz, CDCl₃): $\delta = 1$

182.9, 148.5, 136.3, 136.0, 134.2, 134.2, 133.7, 133.2, 130.5, 129.7, 129.6, 129.2, 127.3, 126.2, 125.8, 124.5, 122.1, 118.7 ppm. HRMS (ESI): m/z calculated for C₂₁H₁₄BrNO₃S⁺Na: 461.9770, found: 461.9778.

(Z)-2-(4-bromobenzylidene)-1-(phenylsulfonyl)indolin-3one (1e). Yellow solid, 315.9 mg, 72% yield. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.15$ (d, J = 8.4 Hz, 1H), 7.90 (s, 1H), 7.75 (d, J = 8.8 Hz, 2H), 7.71-7.66 (m, 1H), 7.62 (d, J = 7.6Hz, 1H), 7.57-7.51 (m, 5H), 7.35 (t, J = 7.6 Hz, 2H), 7.27 (t, J = 7.2 Hz, 1H) ppm.¹³C

NMR (100 MHz, CDCl₃): δ = 183.0, 148.4, 136.2, 136.0, 134.2, 133.8, 132.8, 131.4, 131.4, 131.1, 129.1, 127.4, 126.4, 125.8, 125.1, 124.4, 118.8 ppm. HRMS (ESI): m/z calculated for C₂₁H₁₄BrNO₃S⁺Na: 461.9770, found: 461.9777.

(Z)-2-(2,4-dichlorobenzylidene)-1-(phenylsulfonyl)indoli n-3-one (1f). Yellow solid, 303.3 mg, 70% yield. ¹H NMR

(600 MHz, CDCl₃): $\delta = 8.18$ (d, J = 8.4 Hz, 1H), 7.97 (s, 1H), 7.72-7.69 (m, 3H), 7.61 (d, J = 7.2 Hz, 1H), 7.59-7.56

(m, 2H), 7.45 (d, J = 1.8 Hz, 1H), 7.41 (t, J = 7.8 Hz, 2H), 7.27 (t, J = 7.8 Hz, 1H)7.24 (dd, J = 8.4, 2.4 Hz, 1H) ppm.¹³C NMR (150 MHz, CDCl₃): $\delta = 183.0$, 148.7, 136.8, 136.3, 136.1, 135.2, 134.4, 134.1, 132.7, 129.6, 129.3, 129.3, 127.5, 126.6, 125.8, 125.7, 124.7, 118.2 ppm. HRMS (ESI): *m/z* calculated for C₂₁H₁₃Cl₂NO₃S⁺Na: 451.9885, found: 451.9890.

(Z)-2-(3-chlorobenzylidene)-1-(phenylsulfonyl)indolin-3-

one (1g). Yellow solid, 276.5 mg, 70% yield. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.15$ (d, J = 8.4 Hz, 1H), 7.91 (s, 1H), 7.89 (t, J = 1.6 Hz, 1H), 7.71-7.67 (m, 2H), 7.63 (dd, J =

7.6, 0.8 Hz, 1H), 7.58 (dd, J = 8.4, 1.2 Hz, 2H), 7.57-7.52 (m, 1H), 7.41-7.32 (m, 4H), 7.29-7.25 (m, 1H), ppm.¹³C NMR (100 MHz, CDCl₃): $\delta = 182.9$, 148.5, 136.3, 136.0, 134.2, 134.1, 133.9, 130.8, 130.6, 130.3, 129.3, 129.2, 127.3, 125.8, 124.5, 118.7 ppm. HRMS (ESI): m/z calculated for C₂₁H₁₄ClNO₃S⁺Na: 418.0275, found: 418.0278.

(Z)-2-(4-chlorobenzylidene)-1-(phenylsulfonyl)indolin-3one (1h). Yellow solid, 266.7 mg, 67% yield. ¹H NMR (400 MHz, CDCl₃): δ = 8.15 (d, J = 8.4 Hz, 1H), 7.93 (s, 1H), 7.84 (d, J = 8.8 Hz, 2H), 7.70-7.66 (m, 1H), 7.62 (d, J = 7.6

Hz, 1H), 7.57-7.51 (m, 3H), 7.39-7.33 (m, 4H), 7.27 (t, J = 7.6 Hz, 1H) ppm.¹³C NMR (100 MHz, CDCl₃): $\delta = 183.0$, 148.4, 136.6, 136.2, 136.0, 134.2, 133.8, 132.7, 131.5, 130.7, 129.1, 128.4, 127.4, 126.4, 125.8, 124.4, 118.8 ppm. HRMS (ESI): m/z calculated for C₂₁H₁₄ClNO₃S⁺Na: 418.0275, found: 418.0278.

(Z)-2-(2-methylbenzylidene)-1-(phenylsulfonyl)indolin-3-on e (1i). Yellow solid, 243.8 mg, 65% yield. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.18$ (d, J = 8.4 Hz, 1H), 8.06 (s, 1H), 7.71-7.66 (m, 1H), 7.64 (dd, J = 8.4, 1.2 Hz, 2H), 7.61-7.59 (m, 1H),

7.58-7.54 (m, 1H), 7.49 (d, J = 7.6 Hz, 1H), 7.41-7.31 (m, 2H), 7.31 (t, J = 7.2 Hz, 1H), 7.27-7.23 (m, 2H), 7.19 (t, J = 7.6 Hz, 1H), 2.34 (s, 3H) ppm.¹³C NMR (100 MHz, CDCl₃): $\delta = 182.9$, 148.5, 137.7, 136.2, 136.2, 134.2, 133.3, 131.5, 130.6, 130.4, 130.1, 130.0, 129.1, 127.4, 126.4, 125.6, 125.3, 124.4, 118.5, 20.3 ppm. HRMS (ESI): m/z calculated for C₂₂H₁₇NO₃S⁺Na: 398.0821, found: 398.0826.

(Z)-2-(4-isopropylbenzylidene)-1-(phenylsulfonyl)indoli
n-3-one (1j). Yellow solid, 288.2 mg, 71% yield. ¹H NMR
(600 MHz, CDCl₃): δ = 8.15 (d, J = 8.4 Hz, 1H), 8.00 (s, 1H), 7.90 (d, J = 7.8 Hz, 2H), 7.67-7.65 (m, 1H), 7.62 (d, J)

J = 7.2 Hz, 1H), 7.55-7.54 (m, 2H), 7.52-7.50 (m, 1H), 7.33 (t, J = 7.8 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 7.27 (t, J = .8 Hz, 1H), 2.97 (dq, J = 21.0, 7.2 Hz, 1H), 1.29 (s, 3H), 1.28 (s, 3H) ppm.¹³C NMR (150 MHz, CDCl₃): $\delta = 182.9$, 152.5, 148.3, 135.9, 135.9, 134.1, 134.0, 133.1, 132.0, 129.9, 129.1, 127.5, 126.9, 126.4, 125.8, 124.3, 119.1, 34.4, 23.8 ppm. HRMS (ESI): m/z calculated for C₂₄H₂₁NO₃S⁺Na: 426.1134, found: 426.1137.

(Z)-2-(2-methoxybenzylidene)-1-(phenylsulfonyl)indolin-3one (1k). Yellow solid, 279.1 mg, 71% yield. ¹H NMR (400 MHz, CDCl₃): δ = 8.22 (s, 1H), 8.16 (d, J = 8.4 Hz, 1H), 7.81 (dd, J = 7.6, 1.2 Hz, 1H), 7.68-7.59 (m, 4H), 7.54-7.50 (m,

1H), 7.43-7.38 (m, 1H), 7.37-7.33 (m, 2H), 7.26-7.22 (m, 1H), 6.97 (t, J = 7.6 Hz, 1H), 6.93 (d, J = 8.4 Hz, 1H), 3.89 (s, 3H) ppm.¹³C NMR (100 MHz, CDCl₃): $\delta = 182.8$, 158.3, 148.3, 136.1, 135.8, 133.9, 133.0, 132.3, 132.0, 128.9, 128.5, 127.5, 126.7, 125.5, 124.2, 121.2, 119.7, 118.7, 110.3, 55.6 ppm. HRMS (ESI): m/z calculated for C₂₂H₁₇NO₄S⁺Na: 414.0770, found: 414.0772.

(Z)-2-(3,4-dimethoxybenzylidene)-1-(phenylsulfonyl)in dolin-3-one (11). Yellow solid, 291.1 mg, 69% yield. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.18$ (d, J = 1.8 Hz, 1H), 8.13 (d, J = 8.4 Hz, 1H), 7.97 (s, 1H), 7.67-7.64 (m, 1H),

7.63 (d, J = 7.8 Hz, 1H), 7.54 (dd, J = 8.4, 1,8 Hz, 1H), 7.51-7.47 (m, 3H), 7.30 (t, J = 7.8 Hz, 1H), 7.27-7.25 (m, 1H), 6.92 (d, J = 8.4 Hz, 1H), 3.98 (s, 3H), 3.95 (s, 3H) ppm.¹³C NMR (150 MHz, CDCl₃): $\delta = 183.2$, 152.0, 148.4, 148.1, 135.8, 135.7, 135.1, 134.0, 132.1, 129.0, 127.8, 127.5, 127.3, 125.8, 125.7, 124.2, 119.3, 114.3, 110.5, 56.1, 56.1 ppm. HRMS (ESI): m/z calculated for C₂₃H₁₉NO₅S⁺Na: 444.0876, found: 444.0890.

(Z)-2-(furan-2-ylmethylene)-1-(phenylsulfonyl)indolin-3-on e (1m). Yellow solid, 255.6 mg, 72% yield. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.29$ (d, J = 3.6 Hz, 1H), 8.18 (d, J = 8.4 Hz, 1H), 8.02 (s, 1H), 7.71-7.64 (m, 3H), 7.61-7.58 (m, 2H),

7.50-7.47 (m, 1H), 7.34-7.30 (m, 2H), 7.29-7.25 (m, 1H), 6.62-6.61 (m, 1H) ppm.¹³C NMR (100 MHz, CDCl₃): δ = 182.5, 149.8, 147.8, 146.3, 136.1, 135.6, 134.0, 130.3, 129.1, 127.3, 126.3, 125.5, 124.0, 119.5, 118.3, 118.0, 113.5 ppm. HRMS (ESI): *m/z* calculated for C₁₉H₁₃NO₄S⁺Na: 374.0457, found: 374.0459.

(Z)-1-(phenylsulfonyl)-2-(thiophen-2-ylmethylene)indolin-3 -one (1n). Yellow solid, 267.8 mg, 73% yield. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.32$ (s, 1H), 8.19 (d, J = 8.4 Hz, 1H), 7.83 (d, *J* = 3.6 Hz, 1H), 7.71 (d, *J* = 7.6 Hz, 1H), 7.69-7.66 (m, 1H),

7.65-7.64 (m, 1H), 7.56 (dd, J = 8.0, 0.8 Hz, 1H), 7.50-7.45 (m, 1H), 7.32-7.26 (m, 3H), 7.21 (dd, J = 5.2, 4.0 Hz, 1H) ppm.¹³C NMR (100 MHz, CDCl₃): $\delta = 182.9$, 147.9, 138.7, 136.2, 135.9, 135.6, 134.0, 133.8, 130.0, 129.1, 127.6, 127.3, 126.4, 125.6, 124.8, 124.1, 118.6 ppm. HRMS (ESI): *m/z* calculated for C₁₉H₁₃NO₃S₂⁺Na: 390.0229, found: 290.0236.

(Z)-2-benzylidene-4-bromo-1-(phenylsulfonyl)indolin-3-one

(10). Yellow solid, 283.4 mg, 64% yield. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.15$ (d, J = 8.4 Hz, 1H), 8.03 (s, 1H), 7.88-7.87 (m, 2H), 7.58-7.55 (m, 3H), 7.49 (t, J = 7.8 Hz, 1H), 7.45-7.40 (m, 4H), 7.38 (t, J = 7.8 Hz, 2H) ppm.¹³C NMR (150 MHz, CDCl₃): $\delta = 180.7$, 150.1,

136.1, 135.8, 134.5, 134.0, 133.1, 132.0, 131.6, 131.0, 130.8, 129.3, 128.3, 127.5, 123.9, 120.1, 117.9 ppm. HRMS (ESI): *m/z* calculated for C₂₁H₁₄BrNO₃S⁺Na: 461.9770, found: 461.9773.

(Z)-2-benzylidene-5-chloro-1-(phenylsulfonyl)indolin-3-one (1p). Yellow solid, 265.5 mg, 67% yield. ¹H NMR (600 MHz, ĥ SO₂Ph CDCl₃): $\delta = 8.11$ (d, J = 8.4 Hz, 1H), 8.03 (s, 1H), 7.88-7.87 1p (m, 2H), 7.63 (dd, J = 9.0, 2.4 Hz, 1H), 7.57-7.55 (m, 4H),

7.46-7.44 (m, 3H), 7.40-7.37 (m, 2H) ppm.¹³C NMR (150 MHz, CDCl₃): $\delta = 181.7$, 146.7, 136.0, 135.7, 134.3, 134.3, 133.4, 132.0, 131.9, 131.6, 131.1, 130.3, 129.3, 128.3, 127.5, 124.0, 120.3 ppm. HRMS (ESI): *m/z* calculated for C₂₁H₁₄ClNO₃S⁺Na: 418.0275, found: 418.0279.

(Z)-2-benzylidene-6-bromo-1-(phenylsulfonyl)indolin-3-one (1q). Yellow solid, 269.9 mg, 61% yield. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.38$ (d, J = 1.2 Hz, 1H), 8.02 (s, 1H), 7.86-7.85 (m, 2H), 7.62-7.58 (m, 2H), 7.58-7.55 (m, 1H), 7.48 (d, J = 8.0

Hz, 1H), 7.47-7.44 (m, 2H), 7.42 (d, J = 1.6 Hz, 1H), 7.41 (d, J = 1.6 Hz, 1H), 7.40-7.38 (m, 2H) ppm.¹³C NMR (100 MHz, CDCl₃): $\delta = 181.7$, 148.9, 135.9, 134.4, 133.6, 133.2, 132.0, 131.4, 131.0, 130.9, 129.3, 128.2, 127.4, 125.3, 125.3, 121.9 ppm. HRMS (ESI): m/z calculated for C₂₁H₁₄BrNO₃S⁺Na: 461.9770, found: 461.9776.

(Z)-2-benzylidene-1-(methylsulfonyl)indolin-3-one (1r). Yellow solid, 201.6 mg, 67% yield. ¹H NMR (400 MHz, CDCl₃): δ = 8.00-7.97 (m, 3H), 7.89 (s, 1H), 7.82 (dd, J = 7.6 Hz, 1H), 7.69-7.65 (m, 1H), 7.44-7.43 (m, 3H), 7.33 (t, J = 7.2 Hz, 1H),

2.92 (s, 3H) ppm.¹³C NMR (100 MHz, CDCl₃): δ = 182.7, 148.1, 136.4, 133.3, 132.4, 132.2, 132.2, 131.5, 130.7, 128.2, 125.6, 124.7, 117.7, 36.5 ppm. HRMS (ESI): *m/z* calculated for C₁₆H₁₃NO₃S⁺Na: 322.0508, found: 322.0509.

3. General Procedure for the Synthesis of Cyclopropane-fused Spiro-pseudoindoxyl Derivatives 3

A mixture of (*Z*)-2-ylideneoxindole **1** (0.1 mmol), sulfonium bromide **2** (0.15 mmol), K_2CO_3 (0.15 mmol) and MeCN (1.0 mL) was stirred at room temperature without exclusion of air. Upon the consumption of (*Z*)-2-ylideneoxindole **1** (monitored by TLC), the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel to give compound **3** which was dried under vacuum and further analyzed by ¹H-NMR, ¹³C-HMR, IR, and HRMS.

2-benzoyl-3-phenyl-1'-(phenylsulfonyl)spiro[cyclopropane-1,2'

-indolin]-3'-one (3a). The residue was purified by a silica gel flash chromatography (PE:EtOAc = 12:1 to PE:EtOAc = 3:1) giving the product 3a as a white solid in 88% yield (42 mg, >20:1

dr), m.p. 194-196 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.07$ (d, J = 8.0 Hz, 1H), 7.76 (dd, J = 8.4, 1.2 Hz, 2H), 7.70-7.65 (m, 2H), 7.61-7.56 (m, 3H), 7.52-7.47 (m, 1H), 7.40-7.30 (m, 5H), 7.25-7.20 (m, 3H), 6.79 (dd, J = 6.8, 1.2 Hz, 2H), 5.23 (d, J = 8.4 Hz, 1H), 3.44 (d, J = 8.4 Hz, 1H) ppm.¹³C NMR (100 MHz, CDCl₃): $\delta = 192.8$, 190.5, 153.3, 137.0, 136.9, 136.3, 134.0, 133.5, 132.6, 129.5, 129.1, 128.7, 128.4, 128.0, 127.6, 127.5, 126.5, 126.1, 123.8, 120.7, 59.9, 43.4, 34.7 ppm. IR (CH₂Cl₂, cm⁻¹): 1707, 1680, 1599, 1473, 1457, 1447, 1367, 1158. HRMS (ESI): *m*/*z* calculated for C₂₉H₂₁NO4S⁺Na: 502.1083, found: 502.1088.

2-benzoyl-3-(2-nitrophenyl)-1'-(phenylsulfonyl)spiro[cycloprop ane-1,2'-indolin]-3'-one (3b). The residue was purified by a silica gel flash chromatography (PE:EtOAc = 12:1 to PE:EtOAc = 1:1)

^{3b} giving the product **3b** as a yellow solid in 74% yield (39 mg, >20:1 dr), m.p. 202-204 °C. ¹H NMR (400 MHz, CDCl₃) : $\delta = 8.04$ (d, J = 8.4 Hz, 1H), 7.95 (dd, J = 7.6, 1.2 Hz, 1H), 7.78-7.76 (m, 2H), 7.74-7.67 (m, 4H), 7.60-7.57 (m, 1H), 7.53-7.44 (m, 3H), 7.42-7.38 (m, 2H), 7.37-7.31 (m, 3H), 6.96 (d, J = 7.6 Hz, 1H), 5.07 (d, J = 8.4 Hz, 1H), 3.32 (d, J = 8.4 Hz, 1H) ppm.¹³C NMR (100 MHz, CDCl₃) $\delta = 192.1$, 190.1, 153.1, 148.8, 137.9, 136.8, 136.7, 134.1, 133.6, 133.0, 132.9, 129.4, 129.1, 128.8 128.7, 128.5, 127.7, 125.3, 124.9, 124.5, 124.1, 118.5, 61.3, 43.1, 31.9 ppm. IR (CH₂Cl₂, cm⁻¹): 1717, 1694, 1598, 1530, 1518, 1474, 1458, 1446, 1369, 1344, 1159. HRMS (ESI): m/z calculated for C₂₉H₂₀N₂O₆S⁺Na: 547.0934, found: 547.0941.

2-benzoyl-3-(4-nitrophenyl)-1'-(phenylsulfonyl)spiro[cy clopropane-1,2'-indolin]-3'-one (**3c**). The residue was purified by a silica gel flash chromatography (PE:EtOAc = 12:1 to PE:EtOAc = 1:1) giving the product **3c** as a white

solid in 72% yield (38 mg, >20:1 dr), m.p. 190-192 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.08-8.05$ (m, 3H), 7.75-7.71 (m, 4H), 7.65 (t, J = 7.2 Hz, 1H), 7.56-7.50 (m, 3H), 7.41 (q, J = 7.6 Hz, 3H), 7.33 (t, J = 8.0 Hz, 2H), 6.87 (d, J = 8.4 Hz, 2H), 5.21 (d, J = 8.4 Hz, 1H), 3.42 (d, J = 8.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 192.6$, 189.7, 153.5, 147.2, 140.4, 136.9, 136.8, 136.5, 134.3, 133.8, 130.0, 129.7, 128.8, 128.4, 127.5, 126.4, 126.1, 123.9, 123.2, 120.7, 59.4, 43.1, 33.5 ppm. IR (CH₂Cl₂, cm⁻¹): 1699, 1678, 1601, 1521, 1473, 1456, 1445, 1370, 1347, 1158. HRMS (ESI): *m/z* calculated for C₂₉H₂₀N₂O₆S⁺Na: 547.0934, found: 547.0942.

2-benzoyl-3-(3-bromophenyl)-1'-(phenylsulfonyl)spiro[cyclo propane-1,2'-indolin]-3'-one (3d). The residue was purified by a silica gel flash chromatography (PE:EtOAc = 12:1 to PE:EtOAc = 3:1) giving the product **3d** as a white solid in 77%

yield (43 mg, >20:1 dr), m.p. 206-208 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.07$ (d, J = 8.4 Hz, 1H), 7.73-7.62 (m, 5H), 7.54 (dd, J = 8.4, 1.2 Hz, 2H), 7.52-7.48 (m, 1H), 7.44-7.35 (m, 4H), 7.32 (t, J = 8.0 Hz, 2H), 7.10 (t, J = 7.6 Hz, 1H), 6.81-6.79 (m, 1H), 6.64 (s, 1H), 5.13 (d, J = 8.4 Hz, 1H), 3.38 (d, J = 8.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 192.5$, 190.1, 153.5, 136.9, 136.7, 136.5, 134.9, 134.4, 133.7, 132.0, 130.6, 129.6, 129.6, 128.7, 128.4, 127.7, 127.5, 126.3, 126.3, 123.9, 122.0, 120.8, 59.5, 43.1, 33.7 ppm. IR (CH₂Cl₂, cm⁻¹): 1702, 1674, 1591, 1473, 1458, 1448, 1366, 1156. HRMS (ESI): m/z calculated for C₂₉H₂₀BrNO₄S⁺Na: 580.0189, found: 580.0193.

2-benzoyl-3-(4-bromophenyl)-1'-(phenylsulfonyl)spiro[cyclo propane-1,2'-indolin]-3'-one (3e). The residue was purified by a silica gel flash chromatography (PE:EtOAc = 12:1 to PE:EtOAc = 3:1) giving the product **3e** as a white solid in 72%

yield (40 mg, >20:1 dr), m.p. 186-188 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.06$ (d, J = 8.0 Hz, 1H), 7.73-7.66 (m, 4H), 7.61-7.58 (m, 1H), 7.55-7.48 (m, 3H), 7.40-7.35 (m, 3H), 7.34-7.30 (m, 4H), 6.62 (d, J = 8.0 Hz, 2H), 5.12 (d, J = 8.0 Hz, 1H), 3.38 (d, J = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 192.7$, 190.1, 153.4, 136.9, 136.7, 136.4, 134.0, 133.6, 131.7, 131.2, 130.7, 129.5, 128.7, 128.3, 127.5, 126.3, 126.2, 123.8, 121.5, 120.7, 59.6, 43.3, 33.8 ppm. IR (CH₂Cl₂, cm⁻¹): 1708, 1688, 1602, 1490, 1470, 1457, 1445, 1364, 1152. HRMS (ESI): *m/z* calculated for C₂₉H₂₀BrNO₄S⁺Na: 580.0189, found: 580.0196.

2-benzoyl-3-(2,4-dichlorophenyl)-1'-(phenylsulfonyl)spiro[c yclopropane-1,2'-indolin]-3'-one (**3f**). The residue was purified by a silica gel flash chromatography (PE:EtOAc = 12:1 to PE:EtOAc = 3:1) giving the product **3f** as a white solid

in 80% yield (44 mg, >20:1 dr), m.p. >220 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.08 (d, *J* = 8.4 Hz, 1H), 7.78-7.74 (m, 3H), 7.71 (td, *J* = 7.2, 1.2 Hz, 1H), 7.64 (dd, *J* = 8.0, 0.8 Hz, 2H), 7.60-7.56 (m, 1H), 7.53-7.49 (m, 1H), 7.40-7.33 (m, 5H), 7.29 (d, *J* = 2.0 Hz, 1H), 7.07 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.51 (dd, *J* = 8.4, 0.8 Hz, 1H), 4.88 (d, *J* = 8.4 Hz, 1H), 3.29 (d, *J* = 8.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.9, 190.0, 153.2, 137.7, 136.7, 136.7, 135.4, 134.1, 134.1, 133.6, 132.4, 129.5, 129.5, 129.3, 128.7, 128.4, 127.7, 126.5, 125.7, 125.2, 124.0, 119.4, 60.4, 43.8, 32.1 ppm. IR (CH₂Cl₂, cm⁻¹): 1710, 1684, 1603, 1588, 1474, 1458, 1447, 1376, 1160. HRMS (ESI): *m/z* calculated for C₂₉H₁₉Cl₂NO4S⁺Na: 570.0304, found: 570.0312.

2-benzoyl-3-(3-chlorophenyl)-1'-(phenylsulfonyl)spiro[cyclo propane-1,2'-indolin]-3'-one (3g). The residue was purified by a silica gel flash chromatography (PE:EtOAc = 12:1 to PE:EtOAc = 3:1) giving the product **3g** as a white solid in 80%

yield (41 mg, >20:1 dr), m.p. 201-203 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.08-8.06 (m, 1H), 7.74-7.68 (m, 4H), 7.65-7.61 (m, 1H), 7.54 (dd, J = 8.4, 0.8 Hz, 2H), 7.52-7.47 (m, 1H), 7.43-7.36 (m, 3H), 7.32 (t, J = 8.0 Hz, 2H), 7.21 (d, J = 8.4 Hz, 1H), 7.16 (t, J = 8.4 Hz, 1H), 6.74 (d, J = 7.6 Hz, 1H), 6.50 (s, 1H), 5.13 (d, J = 8.4 Hz, 1H), 3.39 (d, J = 8.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 192.6, 190.1, 153.5, 136.9, 136.7, 136.5, 134.7, 134.3, 133.9, 133.7, 129.6, 129.3, 129.2, 128.7, 128.4, 127.7, 127.5, 127.2, 126.4, 126.3, 123.9, 120.8, 59.5, 43.2, 33.8 ppm. IR (CH₂Cl₂, cm⁻¹): 1706, 1674, 1593, 1473, 1458, 1448, 1369, 1155. HRMS (ESI): *m/z* calculated for C₂₉H₂₀ClNO4S⁺Na: 536.0694, found: 536.0698.

2-benzoyl-3-(4-chlorophenyl)-1'-(phenylsulfonyl)spiro[cyclo propane-1,2'-indolin]-3'-one (3h). The residue was purified by a silica gel flash chromatography (PE:EtOAc = 12:1 to PE:EtOAc = 3:1) giving the product **3h** as a white solid in 74%

yield (38 mg, >20:1 dr), m.p. 187-189 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.06$ (d, J = 8.0 Hz, 1H), 7.74-7.67 (m, 4H), 7.60 (t, J = 7.6 Hz, 1H), 7.54 (d, J = 7.6 Hz, 2H), 7.50 (t, J = 7.6 Hz, 1H), 7.41-7.35 (m, 3H), 7.32 (t, J = 8.0 Hz, 2H), 7.18 (d, J = 8.4 Hz, 2H), 6.68 (d, J = 8.4 Hz, 2H), 5.14 (d, J = 8.4 Hz, 1H), 3.38 (d, J = 8.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 192.8$, 190.2, 153.4, 136.9, 136.7, 136.4, 134.0, 133.6, 133.4, 131.2, 130.4, 129.5, 128.7, 128.4, 128.2, 127.6, 126.4, 126.2, 123.8, 120.7, 59.7, 43.4, 33.8 ppm. IR (CH₂Cl₂, cm⁻¹): 1707, 1686, 1602, 1580, 1494, 1474, 1458, 1446, 1364, 1152. HRMS (ESI): m/z calculated for C₂₉H₂₀ClNO4S⁺ Na: 536.0694, found: 536.0700.

2-benzoyl-1'-(phenylsulfonyl)-3-(o-tolyl)spiro[cyclopropane-1, 2'-indolin]-3'-one (3i). The residue was purified by a silica gel flash chromatography (PE:EtOAc = 12:1 to PE:EtOAc = 3:1) giving the product 3i as a white solid in 81% yield (40 mg, >20:1

dr), m.p. 196-198 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.04$ (d, J = 8.4 Hz, 1H), 7.76-7.72 (m, 3H), 7.68 (td, J = 7.6, 1.2 Hz, 1H), 7.58-7.46 (m, 4H), 7.39-7.29 (m, 5H), 7.19-7.16 (m, 2H), 6.94-6.89 (m, 1H), 6.08 (d, J = 8.0 Hz, 1H), 5.18 (d, J = 8.8Hz, 1H), 3.28 (d, J = 8.4 Hz, 1H), 2.19 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 192.8, 190.1, 153.3, 137.6, 136.8, 136.7, 136.2, 134.0, 133.5, 130.4, 130.3, 129.9, 129.4, 128.6, 128.3, 127.8, 127.5, 126.4, 126.0, 124.7, 123.9, 120.7, 60.8, 45.2, 34.0, 19.6 ppm. IR (CH₂Cl₂, cm⁻¹): 1715, 1699, 1690, 1678, 1599, 1472, 1457, 1446, 1365, 1154. HRMS (ESI): *m/z* calculated for C₃₀H₂₃NO4S⁺Na: 516.1240, found: 516.1246.

2-benzoyl-3-(4-isopropylphenyl)-1'-(phenylsulfonyl)spiro[c yclopropane-1,2'-indolin]-3'-one (**3j**). The residue was purified by a silica gel flash chromatography (PE:EtOAc = 12:1 to PE:EtOAc = 3:1) giving the product **3j** as a white solid

in 82% yield (43 mg, >20:1 dr), m.p. 188-190 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.06 (d, *J* = 8.4 Hz, 1H), 7.76 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.69-7.64 (m, 2H), 7.60-7.56 (m, 3H), 7.50-7.47 (m, 1H), 7.40-7.29 (m, 5H), 7.09 (d, *J* = 8.0 Hz, 2H) , 6.74 (d, *J* = 7.6 Hz, 2H), 5.21 (d, *J* = 8.4 Hz, 1H), 3.43 (d, *J* = 8.4 Hz, 1H), 2.88 (dq, *J* = 20.4 Hz, 6.8 Hz, 1H), 1.24 (d, *J* = 1.6 Hz, 3H), 1.23 (d, *J* = 1.6 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 192.9, 190.6, 153.3, 148.0, 137.0, 136.9, 136.2, 133.9, 133.5, 129.8, 129.4, 129.0, 128.7, 128.4, 127.7, 126.6, 126.1, 126.1, 123.8, 120.7, 60.0, 43.5, 34.6, 33.8, 23.9, 23.9 ppm. IR (CH₂Cl₂, cm⁻¹): 1706, 1677, 1601, 1513, 1473, 1450, 1443, 1383, 1363, 1154. HRMS (ESI): *m*/*z* calculated for C₃₂H₂₇NO₄S⁺Na: 544.1553, found: 544.1560.

2-benzoyl-3-(2-methoxyphenyl)-1'-(phenylsulfonyl)spiro[cyclo propane-1,2'-indolin]-3'-one (3k). The residue was purified by a silica gel flash chromatography (PE:EtOAc = 12:1 to PE:EtOAc = 1:1) giving the product **3k** as a white solid in 88% yield (45

mg, >20:1 dr), m.p. 168-170 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.03$ (d, J = 8.4 Hz, 1H), 7.86 (dd, J = 8.4, 1.2 Hz, 2H), 7.78 (dd, J = 8.4, 1.2 Hz, 2H), 7.69 (dd, J = 8.0, 0.8 Hz, 1H), 7.66-7.62 (m, 1H), 7.56-7.49 (m, 2H), 7.38-7.34 (m, 4H), 7.29-7.23 (m, 2H), 7.02 (dt, J = 7.6, 1.2 Hz, 1H), 6.92 (td, J = 7.6, 0.8 Hz, 1H), 672 (d, J = 8.0 Hz, 1H), 4.82 (d, J = 8.8 Hz, 1H), 3.31 (d, J = 8.8 Hz, 1H), 3.16 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 191.6$, 191.5, 157.3, 152.5, 138.0, 137.1, 136.0, 133.6, 133.4, 130.7, 129.1, 128.8, 128.6, 128.6, 127.9, 125.0, 125.0, 123.7, 121.3, 120.4, 118.5, 110.0, 60.6, 54.6, 43.2, 29.8 ppm. IR (CH₂Cl₂, cm⁻¹): 1707, 1679, 1598, 1496, 1477, 1460, 1447, 1360, 1164. HRMS (ESI): *m/z* calculated for C₃₀H₂₃NO₅S⁺Na: 532.1189, found: 532.1193.

2-benzoyl-3-(3,4-dimethoxyphenyl)-1'-(phenylsulfonyl)spi ro[cyclopropane-1,2'-indolin]-3'-one (3l). The residue was purified by a silica gel flash chromatography (PE:EtOAc = 12:1 to PE:EtOAc = 1:1) giving the product **3l** as a white

solid in 85% yield (46 mg, >20:1 dr)White solid, m.p. 189-191 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.06$ (d, J = 8.0 Hz, 1H), 7.75 (d, J = 7.6 Hz, 2H), 7.71-7.65 (m, 2H), 7.60-7.55 (m, 3H), 7.50 (t, J = 7.2 Hz, 1H), 7.40-7.31 (m, 5H), 6.71 (d, J = 8.4 Hz, 1H), 6.50 (d, J = 1.2 Hz, 1H), 6.34-6.32 (m, 1H), 5.17 (d, J = 8.4 Hz, 1H), 3.86 (s, 3H), 3.75 (s, 3H), 3.43 (d, J = 8.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 192.8$, 190.6, 153.2, 148.6, 148.4, 137.0, 136.9, 136.2, 133.9, 133.5, 129.4, 128.7, 128.4, 127.6, 126.5, 126.1, 124.8, 123.8, 121.5, 120.6, 112.2, 110.4, 60.1, 56.0, 55.8, 43.5, 34.6 ppm. IR (CH₂Cl₂, cm⁻¹): 1709, 1673, 1591, 1514, 1458, 1446, 1366, 1152. HRMS (ESI): m/z calculated for C₃₁H₂₅NO₆S⁺Na: 562.1295, found: 562.1299.

2-benzoyl-3-(furan-2-yl)-1'-(phenylsulfonyl)spiro[cyclopropa ne-1,2'-indolin]-3'-one (**3m**). The residue was purified by a silica gel flash chromatography (PE:EtOAc = 12:1 to PE:EtOAc = 3:1) giving the product **3m** as a yellow solid in 87% yield (41

mg, >20:1 dr), m.p. 132-134 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.97$ (d, J = 8.0 Hz, 1H), 7.77-7.74 (m, 2H), 7.65-7.61 (m, 4H), 7.53-7.47 (m, 2H), 7.36-7.29 (m, 6H), 6.38 (dd, J = 3.2, 2.0 Hz, 1H), 621-6.20 (m, 1H), 5.25 (d, J = 8.0 Hz, 1H), 3.55 (d, J = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 192.5, 189.7, 153.1, 146.9, 142.1, 136.8, 136.1, 135.7, 134.0, 133.6, 129.1, 128.7, 128.4, 127.8, 126.8, 126.4, 123.6, 121.2, 110.7, 109.2, 59.3, 41.3, 27.3 ppm. IR (CH₂Cl₂, cm⁻¹): 1711, 1676, 1600, 1504, 1472, 1457, 1447, 1367, 1157. HRMS (ESI):$ *m*/*z*calculated for C₂₇H₁₉NO₅S⁺Na: 492.0876, found: 492.0884.

2-benzoyl-1'-(phenylsulfonyl)-3-(thiophen-2-yl)spiro[cycloprop ane-1,2'-indolin]-3'-one (3n). The residue was purified by a silica gel flash chromatography (PE:EtOAc = 12:1 to PE:EtOAc = 3:1) giving the product 3n as a pale yellow solid in 78% yield (38

mg, >20:1 dr). 155-157 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.04$ (d, J = 8.0 Hz, 1H), 7.76 (dd, J = 8.4, 0.8 Hz, 2H), 7.68-7.64 (m, 2H), 7.59-7.54 (m, 3H), 7.52-7.48 (m, 1H), 7.40-7.36 (m, 2H), 7.33 (t, J = 7.6 Hz, 3H), 7.22-7.20 (m, 1H), 6.94 (dd, J = 5.2, 3.6 Hz, 1H), 6.78-6.77 (m, 1H), 5.27 (d, J = 8.0 Hz, 1H), 3.53 (d, J = 8.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 192.2$, 189.9, 153.1, 136.8, 136.5, 136.2, 135.4, 134.0, 133.6, 129.5, 128.7, 128.4, 127.8, 127.6, 126.6, 126.5, 126.2, 125.3, 123.8, 120.7, 60.0, 43.7, 29.6 ppm. IR (CH₂Cl₂, cm⁻¹): 1705, 1681, 1590, 1473, 1459, 1442, 1365, 1154. HRMS (ESI): m/z calculated for C₂₇H₁₉NO₄S₂+Na: 508.0648, found: 508.0652.

2-benzoyl-4'-bromo-3-phenyl-1'-(phenylsulfonyl)spiro[cyclopro pane-1,2'-indolin]-3'-one (30). The residue was purified by a silica gel flash chromatography (PE:EtOAc = 12:1 to PE:EtOAc = 3:1) giving the product **30** as a white solid in 79% yield (44 mg, >20:1 dr), m.p. 178-180 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.01$ (dd, J = 7.2, 1.6 Hz, 1H), 7.79-7.77 (m, 2H), 7.63-7.59 (m, 3H), 7.53-7.40 (m, 5H), 7.35 (t, J = 8.0 Hz, 2H), 7.27-7.22 (m, 3H), 6.91-6.88 (m, 2H), 5.21 (d, J = 8.4 Hz, 1H), 3.48 (d, J = 8.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 190.4$, 190.2, 154.8, 136.9, 136.8, 136.1, 134.2, 133.6, 132.1, 130.9, 129.6, 129.1, 128.7, 128.4, 128.2, 127.6, 127.6, 124.3, 119.5, 119.0, 60.3, 43.3, 35.0 ppm. IR (CH₂Cl₂, cm⁻¹): 1714, 1671, 1589, 1577, 1498, 1460, 1445, 1362, 1162. HRMS (ESI): *m/z* calculated for C₂₉H₂₀BrNO4S⁺Na: 580.0189, found: 580.0201.

2-benzoyl-5'-chloro-3-phenyl-1'-(phenylsulfonyl)spiro[cyclop ropane-1,2'-indolin]-3'-one (**3p**). The residue was purified by a silica gel flash chromatography (PE:EtOAc = 12:1 to PE:EtOAc = 3:1) giving the product **3p** as a white solid in 72% yield (37

mg, >20:1 dr), m.p. 150-152 °C. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.03$ (d, J = 9.0 Hz, 1H), 7.76 (d, J = 7.8 Hz, 2H), 7.64-7.62 (m, 3H), 7.58 (d, J = 7.8 Hz, 2H), 7.54-7.51 (m, 1H), 7.43 (t, J = 7.8 Hz, 2H), 7.36 (t, J = 7.8 Hz, 2H), 7.27-7.21 (m, 3H), 6.76 (d, J = 7.2 Hz, 2H), 5.22 (d, J = 8.4 Hz, 1H), 3.44 (d, J = 8.4 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 191.6$, 190.1, 151.5, 136.7, 136.6, 136.0, 134.1, 133.6, 132.2, 132.1, 129.6, 129.0, 128.7, 128.3, 128.1, 127.6, 123.3, 121.8, 60.3, 43.7, 34.9 ppm. IR (CH₂Cl₂, cm⁻¹): 1715, 1683, 1598, 1497, 1457, 1446, 1377, 1151. HRMS (ESI): m/z calculated for C₂₉H₂₀ClNO₄S⁺Na: 536.0694, found: 536.0697.

2-benzoyl-6'-bromo-3-phenyl-1'-(phenylsulfonyl)spiro[cyclo propane-1,2'-indolin]-3'-one (**3q**). The residue was purified by a silica gel flash chromatography (PE:EtOAc = 12:1 to PE:EtOAc = 3:1) giving the product **3q** as a white solid in 70%

yield (39 mg, >20:1 dr), m.p. 194-196 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.30 (d, *J* = 1.2 Hz, 1H), 7.77 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.65-7.61 (m, 3H), 7.55-7.51 (m, 2H), 7.48 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.45-7.41 (m, 2H), 7.36 (t, *J* = 7.6 Hz, 2H), 7.27-7.19 (m, 3H), 6.76 (d, *J* = 7.2 Hz, 2H), 5.18 (d, *J* = 8.4 Hz, 1H), 3.44 (d, *J* = 8.4 Hz, 1H)

ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 191.6$, 190.2, 153.8, 136.9, 136.8, 134.2, 133.7, 132.3, 131.7, 129.7, 129.7, 129.0, 128.8, 128.4, 128.1, 127.6, 127.6, 125.0, 124.7, 123.5, 60.2, 43.4, 34.8 ppm. IR (CH₂Cl₂, cm⁻¹): 1705, 1676, 1594, 1574, 1498, 1472, 1443, 1368, 1161. HRMS (ESI): m/z calculated for C₂₉H₂₀BrNO₄S⁺Na 580.0189, found: 580.0198.

2-benzoyl-1'-(methylsulfonyl)-3-phenylspiro[cyclopropane-1,2'indolin]-3'-one (3r). The residue was purified by a silica gel flash chromatography (PE:EtOAc = 12:1 to PE:EtOAc = 3:1) giving the

product **3r** as a white solid in 86% yield (36 mg, >20:1 dr). 206-208 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.86-7.84 (m, 2H), 7.78 (d, *J* = 8.4 Hz, 1H), 7.75 (dd, *J* = 11.6, 0.4 Hz, 1H), 7.67-7.62 (m, 1H), 7.55-7.51 (m, 1H), 7.43-7.36 (m, 6H), 7.35-7.30 (m, 2H), 5.07 (d, *J* = 8.8 Hz, 1H), 3.70 (d, *J* = 8.8 Hz, 1H), 3.10 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 192.3, 191.7, 152.6, 136.9, 136.3, 133.7, 132.2, 129.0, 128.8, 128.5, 128.4, 127.9, 125.5, 125.3, 124.1, 119.1, 61.2, 41.7, 39.1, 35.9 ppm. IR (CH₂Cl₂, cm⁻¹): 1707, 1679, 1594, 1496, 1472, 1447, 1360, 1150. HRMS (ESI): *m/z* calculated for C₂₄H₁₉NO₄S⁺Na: 440.0927, found: 440.0927.

1'-acetyl-2-benzoyl-3-phenylspiro[cyclopropane-1,2'-indolin]-3 '-one (3s). The residue was purified by a silica gel flash chromatography (PE:EtOAc = 12:1 to PE:EtOAc = 3:1) giving the product **3s** as a white solid in 84% yield (32 mg, >20:1 dr), m.p.

176-178 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.96-7.94 (m, 2H), 7.77-7.75 (m, 1H), 7.70-7.65 (m, 1H), 7.58 (d, *J* = 8.8 Hz, 1H), 7.55-7.51 (m, 1H), 7.43-7.34 (m, 6H), 7.32-7.24 (m, 2H), 5.05 (d, *J* = 9.2 Hz, 1H), 3.57 (d, *J* = 9.2 Hz, 1H), 2.49 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.7, 191.6, 168.6, 151.2, 136.9, 136.0, 133.1, 133.0, 129.3, 128.7, 128.4, 128.2, 127.6, 124.6, 124.3, 124.0, 115.9, 60.1, 39.8, 36.2, 27.2 ppm. IR (CH₂Cl₂, cm⁻¹): 1709, 1672, 1595, 1469, 1447, 1430, 1371, 1152. HRMS (ESI): *m/z* calculated for C₂₅H₁₉NO₃S⁺Na: 404.1257, found: 404.1262.

2-(2-nitrobenzoyl)-3-phenyl-1'-(phenylsulfonyl)spiro[cyclop ropane-1,2'-indolin]-3'-one (3t). The residue was purified by a silica gel flash chromatography (PE:EtOAc = 12:1 to PE:EtOAc = 3:1) giving the product **3t** as a white solid in 71%

yield (37 mg, >20:1 dr), m.p. 190-192 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.23$ (d, J = 8.4 Hz, 1H), 8.11 (dd, J = 8.0, 0.4 Hz, 1H), 7.78-7.74 (m, 1H), 7.62 (td, J = 7.6, 1.2 Hz, 1H), 7.59-7.54 (m, 3H), 7.53-7.50 (m, 2H), 7.37-7.33 (m, 3H), 7.30 (dd, J = 7.6, 1.6 Hz, 1H), 7.28-7.21 (m, 3H), 6.89-6.87 (m, 2H), 5.37 (d, J = 8.0 Hz, 1H), 3.13 (d, J = 8.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 192.6$, 192.4, 153.2, 145.5, 137.2, 136.2, 136.0, 134.7, 134.2, 132.0, 131.0, 129.4, 129.1, 128.1, 127.9, 127.7, 127.7, 127.1, 126.8, 124.4, 124.0, 121.5, 60.5, 47.6, 35.4 ppm. IR (CH₂Cl₂, cm⁻¹): 1698, 1602, 1573, 1526, 1496, 1472, 1459, 1444, 1377, 1154. HRMS (ESI): m/z calculated for C₂₉H₂₀N₂O₆S⁺Na: 547.0934, found: 547.0936.

2-(4-bromobenzoyl)-3-phenyl-1'-(phenylsulfonyl)spiro[c yclopropane-1,2'-indolin]-3'-one (3u). The residue was purified by a silica gel flash chromatography (PE:EtOAc = 12:1 to PE:EtOAc = 3:1) giving the product 3u as a white

solid in 75% yield (42 mg, >20:1 dr), m.p. 200-202 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.10-8.08$ (m, 1H), 7.72-7.68 (m, 2H), 7.62-7.56 (m, 5H), 7.47 (d, J = 8.4 Hz, 2H), 7.41-7.34 (m, 3H), 7.27-7.19 (m, 3H), 6.77-6.76 (m, 2H), 5.18 (d, J = 8.4 Hz, 1H), 3.37 (d, J = 8.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 192.5$, 189.7, 153.2, 136.9, 136.5, 135.6, 134.0, 132.3, 132.0, 129.8, 129.5, 129.0, 128.9, 128.1, 127.6, 126.3, 126.2, 123.9, 120.5, 59.8, 43.0, 34.6 ppm. IR (CH₂Cl₂, cm⁻¹): 1704, 1677, 1583, 1475, 1458, 1446, 1369, 1162. HRMS (ESI): m/z calculated for C₂₉H₂₀BrNO₄S⁺Na: 580.0189, found: 580.0187.

2-(3,4-dichlorobenzoyl)-3-phenyl-1'-(phenylsulfonyl)spir o[cyclopropane-1,2'-indolin]-3'-one (3v). The residue was purified by a silica gel flash chromatography (PE:EtOAc = 12:1 to PE:EtOAc = 3:1) giving the product **3v** as a white

solid in 75% yield (41 mg, >20:1 dr), m.p. 182-184 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.10$ (d, J = 8.4 Hz, 1H), 7.82 (d, J = 2.0 Hz, 1H), 7.74-7.69 (m, 2H), 7.62-7.57 (m, 3H), 7.54 (dd, J = 8.4, 2.0 Hz, 1H), 7.42-7.35 (m, 4H), 7.27-7.19 (m, 3H), 6.76 (d, J =7.2 Hz, 2H), 5.16 (d, J = 8.4 Hz, 1H), 3.33 (d, J = 8.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 192.4$, 188.7, 153.1, 138.2, 136.9, 136.6, 136.3, 134.1, 133.5, 132.1, 130.8, 130.4, 129.6, 129.0, 128.1, 127.7, 127.6, 127.3, 126.3, 126.3, 123.9, 120.5, 59.6, 42.7, 34.6 ppm. IR (CH₂Cl₂, cm⁻¹): 1711, 1683, 1598, 1474, 1459, 1446, 1369, 1162. HRMS (ESI): m/z calculated for C₂₉H₁₉Cl₂NO4S⁺Na: 570.0304, found: 570.0311

2-(4-fluorobenzoyl)-3-phenyl-1'-(phenylsulfonyl)spiro[cy clopropane-1,2'-indolin]-3'-one (3w). The residue was purified by a silica gel flash chromatography (PE:EtOAc = 12:1 to PE:EtOAc = 3:1) giving the product 3w as a white

solid in 84% yield (42 mg, >20:1 dr), m.p. 199-201 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.09$ (d, J = 8.8 Hz, 1H), 7.80-7.76 (m, 2H), 7.71-7.67 (m, 2H), 7.61-7.57 (m, 3H), 7.41-7.34 (m, 3H), 7.26-7.19 (m, 3H), 6.99 (t, J = 8.4 Hz, 2H), 6.78-6.76 (m, 2H), 5.18 (d, J = 8.4 Hz, 1H), 3.39 (d, J = 8.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 192.6$, 189.0, 166.0 (d, $J_{CF} = 254.2$ Hz), 153.3, 136.9, 136.4, 134.0, 133.4 (d, $J_{CF} =$ 2.9 Hz), 132.4, 131.0 (d, $J_{CF} = 9.4$ Hz), 129.5, 129.0, 128.1, 127.6, 127.6, 126.3, 126.1, 123.9, 120.5, 115.9 (d, $J_{CF} = 21.9$ Hz), 59.8, 43.1, 34.6 ppm. IR (CH₂Cl₂, cm⁻¹): 1708, 1670, 1596, 1505, 1472, 1457, 1449, 1367, 1154. HRMS (ESI): m/z calculated for C₂₉H₂₀FNO4S⁺Na: 520.0989, found: 520.0992.

2-(4-methoxybenzoyl)-3-phenyl-1'-(phenylsulfonyl)spir o[cyclopropane-1,2'-indolin]-3'-one (3x). The residue was purified by a silica gel flash chromatography (PE:EtOAc = 12:1 to PE:EtOAc = 2:1) giving the product

3x as a white solid in 65% yield (33 mg, >20:1 dr), m.p. 188-190 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.08$ (d, J = 8.4 Hz, 1H), 7.73 (d, J = 8.8 Hz, 2H), 7.69-7.65 (m, 2H), 7.60-7.56 (m, 3H), 7.39-7.33 (m, 3H), 7.26-7.18 (m, 3H), 6.79-6.77 (m, 4H), 5.20 (d, J = 8.4 Hz, 1H), 3.79 (s, 3H), 3.39 (d, J = 8.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 192.9$, 188.8, 163.8, 153.3, 137.0, 136.2, 133.9, 132.8, 130.7, 130.1, 129.5, 129.1, 128.0, 127.6, 127.4, 126.5, 126.0, 123.7, 120.6, 113.9, 59.9, 55.5, 43.4, 34.6 ppm. IR (CH₂Cl₂, cm⁻¹): 1709, 1669, 1603, 1575, 1511, 1474, 1458, 1445, 1366, 1164. HRMS (ESI): *m/z* calculated for C₃₀H₂₃NO₅S⁺Na: 532.1189, found: 532.1198.

2-(2-naphthoyl)-3-phenyl-1'-(phenylsulfonyl)spiro[cyclo propane-1,2'-indolin]-3'-one (3y). The residue was purified by a silica gel flash chromatography (PE:EtOAc = 12:1 to PE:EtOAc = 3:1) giving the product 3y as a white

solid in 32% yield (18 mg, >20:1 dr), m.p. 208-210 °C. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.09$ (s, 1H), 8.01 (d, J = 8.4 Hz, 1H), 7.96-7.95 (m, 1H), 7.82 (q, J = 4.2 Hz, 2H) 7.75 (d, J = 7.8 Hz, 1H), 7.64 (d, J = 8.4 Hz, 1H), 7.62-7.54 (m, 5H), 7.46-7.43 (m, 1H), 7.40-7.36 (m, 3H), 7.28-7.23 (m, 3H), 6.84 (d, J = 6.6 Hz, 2H), 5.29(d, J = 8.4Hz, 1H), 3.56 (d, J = 8.4 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 192.9$, 190.3, 153.3, 136.9, 136.2, 135.7, 134.2, 133.9, 132.6, 132.2, 130.3, 130.3, 129.4, 129.0, 128.6, 128.6, 128.0, 127.7, 127.6, 127.5, 126.7, 126.6, 126.1, 123.9, 123.7, 120.7, 59.8, 43.6, 34.7 ppm. IR (CH₂Cl₂, cm⁻¹): 1704, 1679, 1624, 1598, 1502, 1474, 1461, 1445, 1367, 1159. HRMS (ESI): m/z calculated for C₃₃H₂₃NO₄S⁺Na: 552.1240, found: 552.1246.

4. Gram-scale Reaction

A mixture of (Z)-2-ylideneoxindole **1a** (1.01 g, 2.8 mmol), sulfonium bromide **2a** (1.10 g, 4.2 mmol), K₂CO₃ (0.58 g, 4.2 mmol) and MeCN (28.0 mL) was stirred at room temperature without exclusion of air. After (Z)-2-ylideneoxindoles **1a** was consumed (monitored by TLC), the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (PE:EtOAc = 3:1) to give compound **3a** as red solid. Then the solid was recrystallized from 5.0 mL EtOAc and 30.0 mL PE to afford pure compound **3a** as white solid (1.09 g, 81% yield, >20:1 dr).

5. Crystal Data of 3e

Empirical formula	C ₂₉ H ₂₀ BrNO ₄ S
Formula weight	558.43
Temperature/K	266(10)
Crystal system	triclinic
Space group	P-1
a/Å	9.8247(5)
b/Å	11.5260(6)
c/Å	11.6543(5)
α/°	86.407(4)
β/°	74.525(4)
$\gamma^{/\circ}$	72.819(5)
Volume/Å ³	1214.94(11)
Z	2
$\rho_{calc}g/cm^3$	1.526
μ/mm^{-1}	3.421
F(000)	568.0
Crystal size/mm ³	0.7 imes 0.4 imes 0.3
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	9.76 to 145.602
Index ranges	$\begin{array}{l} \textbf{-11} \leq h \leq 9, \textbf{-14} \leq k \leq 13, \textbf{-14} \leq 1 \\ \leq 10 \end{array}$
Reflections collected	13326
Independent reflections	4725 [R _{int} = 0.0434, R _{sigma} = 0.0336]
Data/restraints/parameters	4725/0/325
Goodness-of-fit on F ²	1.086
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0578, wR_2 = 0.1459$
Final R indexes [all data]	$R_1 = 0.0612, wR_2 = 0.1505$
Largest diff. pEtOAck/hole / e Å ⁻³	0.43/-1.21

0 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

7. NMR Spectra of NMR Spectra of the Spiro-pseudoindoxyl Derivatives 3

8. IR Spectra of the Spiro-pseudoindoxyl Derivatives 3

9. Spectra of the By-product

7.6 Hz, 2H) ppm.¹³C NMR (150 MHz, CDCl₃): $\delta = 196.2$, 193.1, 136.5, 136.5, 134.1, 133.7, 129.0, 128.9, 128.8, 128.6, 36.5, 30.5 ppm. HRMS (ESI): m/z calculated for C₂₄H₁₈O₃+Na: 377.1148, found: 377.1144.

10. Computational Data and Details

All calculations and geometry optimizations were performed with the Gaussian 09 Rev. D01 program. Geometry optimizations of all the minima structures involved were carried out using the 6-31+G basis set for the optimization of all stationary points in gas phase without any constraints. Optimizations at different theoretical levels were completed to verify the influence of different methods, which came to the same conclusion. The wave functions of all stationary points have been computationally tested as stable ones. Frequency calculations were performed to confirm that each stationary point was a global minimum with the imaginary frequency as zero.

	major	Minor1	Minor2	Minor3
<i>E_{ele}</i> (singlet, a.u.)	-4441.58	-4441.58	-4441.57	-4441.57

Cartesian Coordinates of All Computed Structures

Major

Br	-6.33467	-1.41365	0.40946
С	-2.36813	-2.06016	-0.78089
С	1.90731	-2.12102	-0.9354
С	2.74372	-3.25696	-0.44665
С	3.76631	-3.69422	-1.30413
С	4.59494	-4.74833	-0.93753
С	4.41308	-5.38075	0.29747
С	3.40176	-4.95066	1.15927
С	2.56915	-3.89317	0.79034
С	0.52687	0.19152	1.67923
С	1.62525	1.10542	2.03881
С	1.98449	1.59695	3.28954
С	-3.73313	-2.21618	-0.54742
С	3.10713	2.41852	3.38232
С	3.8537	2.72453	2.23127
С	3.50846	2.224	0.97372
С	2.37522	1.41149	0.88966
С	0.39297	3.18374	-1.12543
С	0.89783	4.29792	-0.47425

-0.0066	5.2652	-0.03108
-1.376	5.09872	-0.26074
-1.85114	3.9751	-0.94469
-0.95518	3.00129	-1.39114
-4.44366	-1.19941	0.07922
-3.80209	-0.03197	0.47075
-2.43558	0.12301	0.23467
-1.70123	-0.89016	-0.39132
-0.25042	-0.7507	-0.73143
0.73959	-0.09023	0.2008
0.78547	-1.64294	-0.08372
-1.81434	-2.8535	-1.27015
3.88136	-3.18148	-2.25095
5.38064	-5.07934	-1.60639
5.05697	-6.20336	0.58658
3.26197	-5.43673	2.11761
1.79515	-3.57	1.47476
1.39654	1.33118	4.1604
-4.24303	-3.1209	-0.84952
3.41665	2.8126	4.34246
4.7324	3.35289	2.32096
4.0783	2.45069	0.08506
1.96525	4.40895	-0.33849
0.35713	6.14704	0.48181
-2.07369	5.85308	0.08285
-2.9103	3.86157	-1.14073
-1.2795	2.13532	-1.95402
-4.36446	0.74938	0.96393
-1.94245	1.03433	0.54532
-0.01098	-0.54842	-1.77462
0.4634	-2.21841	0.77243
1.845	0.74559	-0.25886
2.14276	-1.57688	-2.02712
-0.31947	-0.33013	2.41106
2.98223	2.56422	-1.96406
0.8134	1.09054	-2.87354
1.56748	1.88802	-1.72667
	-0.0066 -1.376 -1.85114 -0.95518 -4.44366 -3.80209 -2.43558 -1.70123 -0.25042 0.73959 0.78547 -1.81434 3.88136 5.38064 5.05697 3.26197 1.79515 1.39654 -4.24303 3.41665 4.7324 4.0783 1.96525 0.35713 -2.07369 -2.9103 -1.2795 -4.36446 -1.94245 -0.31947 2.98223 0.8134 1.56748	-0.00665.2652-1.3765.09872-1.851143.9751-0.955183.00129-4.44366-1.19941-3.80209-0.03197-2.435580.12301-1.70123-0.89016-0.25042-0.75070.73959-0.090230.78547-1.64294-1.81434-2.85353.88136-3.181485.38064-5.079345.05697-6.203363.26197-5.436731.79515-3.571.396541.33118-4.24303-3.12093.416652.81264.73243.352894.07832.450691.965254.408950.357136.14704-2.073695.85308-2.91033.86157-1.27952.13532-4.364460.74938-1.942451.03433-0.01098-0.548420.4634-2.218411.8450.745592.14276-1.57688-0.31947-0.330132.982232.564220.81341.090541.567481.88802

Minor1

Br	-6.64496	-0.47715	0.81019
С	-2.46573	-0.76527	0.59422
С	1.27999	-2.44986	-1.22379
С	2.37342	-3.06104	-0.41056

С	3.26267	-3.90727	-1.09344
С	4.30405	-4.53278	-0.41824
С	4.46798	-4.32285	0.95607
С	3.58691	-3.48616	1.64384
С	2.5367	-2.85692	0.96949
С	1.0255	0.60897	-2.1219
С	0.81392	2.06165	-1.92035
С	1.12291	3.12027	-2.76573
С	-3.77435	-0.6425	1.05621
С	0.80258	4.41398	-2.34962
С	0.18539	4.62656	-1.10589
С	-0.13267	3.56491	-0.25378
С	0.19128	2.27948	-0.684
С	2.56257	1.43026	1.42679
С	2.92833	2.72436	1.76904
С	4.25463	3.10937	1.57452
С	5.17446	2.19841	1.04682
С	4.77712	0.89903	0.71973
С	3.45144	0.50012	0.91156
С	-4.83472	-0.64212	0.15757
С	-4.60047	-0.76188	-1.20572
С	-3.29169	-0.88103	-1.66988
С	-2.20544	-0.88568	-0.78125
С	-0.84204	-1.03248	-1.33933
С	0.31052	-0.02864	-0.94502
С	0.33057	-1.50303	-0.53181
Н	-1.65331	-0.75652	1.30959
Н	3.10421	-4.05196	-2.15488
Н	4.98571	-5.18312	-0.95368
Н	5.27671	-4.81155	1.48725
Н	3.70925	-3.32695	2.70879
Н	1.8709	-2.20602	1.52602
Н	1.59551	2.92699	-3.72166
Н	-3.96974	-0.54775	2.1158
Н	1.02163	5.26026	-2.98922
Н	-0.06129	5.63696	-0.80125
Н	-0.59792	3.71519	0.70907
Н	2.18371	3.38816	2.18797
Н	4.56734	4.11271	1.83633
Н	6.20387	2.49992	0.89452
Н	5.49214	0.19127	0.31917
Н	3.14832	-0.51105	0.67747
Н	-5.43189	-0.7636	-1.89753
Н	-3.11166	-0.97542	-2.73507

Н	-0.769	-1.31983	-2.38473
Н	0.17438	-1.65591	0.52486
Ν	-0.05889	1.03779	-0.003
0	1.13779	-2.73571	-2.42024
0	1.57465	0.04585	-3.07001
0	0.13771	2.24952	2.47591
0	0.56714	-0.46058	2.25746
S	0.77086	1.02214	1.68921

Minor2

Br	-5.03713	3.10367	0.93367
С	-2.18163	0.03143	0.83896
С	-0.71453	-2.79563	0.28102
С	-1.85082	-3.28645	-0.55211
С	-2.68343	-4.26475	0.01214
С	-3.75859	-4.77467	-0.70702
С	-4.01183	-4.31046	-2.00282
С	-3.18717	-3.33654	-2.57136
С	-2.10932	-2.82396	-1.84912
С	0.9493	-0.70705	1.93456
С	2.32716	-0.54682	2.41745
С	2.77264	-0.41207	3.7276
С	-3.29727	0.81105	1.13897
С	4.1399	-0.27619	3.95993
С	5.03427	-0.29005	2.87753
С	4.6013	-0.43238	1.55666
С	3.22519	-0.55219	1.3339
С	2.95939	1.39423	-1.72289
С	3.4565	2.30362	-0.8019
С	3.27552	3.66425	-1.06092
С	2.62004	4.07629	-2.2256
С	2.14073	3.13471	-3.14088
С	2.31425	1.77201	-2.8906
С	-3.48808	2.03281	0.50679
С	-2.56948	2.48913	-0.42938
С	-1.45584	1.70923	-0.73347
С	-1.24093	0.46967	-0.10612
С	-0.04122	-0.3048	-0.5321
С	1.06224	-0.84612	0.41736
С	0.20937	-1.81206	-0.38091
Н	-2.02498	-0.8911	1.37275
Н	-2.45741	-4.60289	1.01605
Н	-4.39861	-5.53003	-0.26644

Н	-4.84923	-4.70572	-2.56629
Н	-3.38604	-2.97536	-3.57341
Н	-1.47899	-2.06164	-2.28884
Н	2.04974	-0.418	4.53486
Н	-4.01652	0.4674	1.86974
Н	4.5167	-0.17167	4.96951
Н	6.09817	-0.20261	3.06662
Н	5.29585	-0.48484	0.73207
Н	3.95943	1.97203	0.09815
Н	3.64448	4.39733	-0.35442
Н	2.48524	5.13344	-2.42013
Н	1.63998	3.45697	-4.04561
Н	1.96159	1.00433	-3.56787
Н	-2.72478	3.4418	-0.91751
Н	-0.74088	2.06775	-1.46652
Н	0.37299	0.04809	-1.46985
Н	0.73461	-2.20201	-1.25011
Ν	2.49456	-0.68465	0.13792
0	-0.53082	-3.21539	1.43205
0	-0.08455	-0.71636	2.60608
0	4.70233	-0.8622	-1.41611
0	2.2047	-1.12772	-2.5328
S	3.17732	-0.43147	-1.47527

Minor3

Br	-5.98243	-1.25833 -	0.32876
С	-2.90181	0.24695	2.08042
С	0.20837	2.07716	0.24928
С	0.46155	3.54562	0.19138
С	-0.22893	4.26433	-0.797
С	-0.05823	5.63858	-0.92201
С	0.82308	6.31083	-0.06882
С	1.53052	5.60061	0.90395
С	1.34878	4.224	1.03806
С	1.8123	-0.55774	2.71429
С	2.29522	-1.89152	2.3125
С	2.96812	-2.85973	3.04758
С	-4.15658	-0.09317	1.57808
С	3.2746	-4.06892	2.41972
С	2.91039	-4.28703	1.08154
С	2.23626	-3.31138	0.34149
С	1.92704	-2.11433	0.9771
С	1.94197	-0.63999	-2.44811

~			
С	0.74146	-0.13394	-2.9185
С	0.30607	-0.56487	-4.17538
С	1.07013	-1.47087	-4.91679
С	2.28075	-1.95539	-4.41268
С	2.72874	-1.53491	-3.1599
С	-4.24748	-0.77393	0.37121
С	-3.09873	-1.11438	-0.33211
С	-1.84422	-0.76419	0.16289
С	-1.7277	-0.07639	1.38009
С	-0.43618	0.29464	2.0179
С	0.98233	-0.09228	1.52991
С	0.56158	1.36184	1.50342
Н	-2.83453	0.77104	3.0278
Н	-0.8959	3.71578	-1.44991
Н	-0.60408	6.18694	-1.6807
Н	0.96182	7.38148	-0.16523
Н	2.22683	6.11706	1.5539
Н	1.92476	3.68254	1.77685
Н	3.23694	-2.67054	4.08011
Н	-5.0553	0.16388	2.12211
Н	3.7927	-4.8478	2.96566
Н	3.15655	-5.23182	0.61159
Н	1.95833	-3.47914	-0.69058
Н	0.1624	0.5614	-2.32155
Н	-0.62997	-0.18986	-4.57128
Н	0.72349	-1.79716	-5.89029
Н	2.87528	-2.65169	-4.99164
Н	3.66318	-1.87036	-2.72848
Н	-3.18413	-1.65278	-1.26644
Н	-0.94892	-1.02845	-0.377
Н	-0.47256	0.28526	3.10442
Н	1.03662	1.93527	2.28839
Ν	1.24813	-0.97686	0.3861
0	-0.37626	1.50171	-0.68787
0	1.92939	0.04332	3.78566
0	2.61968	1.42495	-0.5092
0	3.98951	-0.94366	-0.62205
S	2.625	-0.14187	-0.80145