SUPPORTING INFORMATION

Structure-based protein engineering enables prenyl donor switching of a fungal aromatic prenyltransferase

Peter Mai,[†] Georg Zocher,[‡] Thilo Stehle,^{*‡} and Shu-Ming $Li^{*\dagger}$

[†] Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Marburg 35037, Germany

[‡] Interfakultäres Institut für Biochemie, Eberhard Karls Universität Tübingen, Tübingen 72076,

Germany

* e-mail: thilo.stehle@uni-tuebingen.de or shu-ming.li@staff.uni-marburg.de

Mutant	Primer	Sequence (5` → 3`)	Yield [mg/L]*
fgaPT2			3.3
M328A		TGCCGCTT <u>GCA</u> GCCAATTTCACCCTGCACCAGAATGACC	2.1
	328_GNW_r	AATTGGC <u>TGC</u> AAGCGGCAGCCTCTCGTCTGGGATAACC	
M328V	328_NNN_f	TGCCGCTT <u>GTG</u> GCCAATTTCACCCTGCACCAGAATGACC	1.5
	328_NNN_r	AATTGGC <u>CAC</u> AAGCGGCAGCCTCTCGTCTGGGATAACC	
M328L	328_CTA_f	TGCCGCTT <u>CTA</u> GCCAATTTCACCCTGCACCAGAATGACC	1.6
	328_CTA_r	AATTGGC <u>TAG</u> AAGCGGCAGCCTCTCGTCTGGGATAACC	
M328I	328_AWW_f	TGCCGCTT <u>ATT</u> GCCAATTTCACCCTGCACCAGAATGACC	1.6
	328_AWW_r	AATTGGC <u>AAT</u> AAGCGGCAGCCTCTCGTCTGGGATAACC	
1 (220 D	328_NNN_f	TGCCGCTT <u>CCT</u> GCCAATTTCACCCTGCACCAGAATGACC	1.8
M328P	328_NNN_r	AATTGGCAGGAAGCGGCAGCCTCTCGTCTGGGATAACC	
M328W	328_NNN_f	TGCCGCTT <u>TGG</u> GCCAATTTCACCCTGCACCAGAATGACC	2.7
	328_NNN_r	AATTGGC <u>CCA</u> AAGCGGCAGCCTCTCGTCTGGGATAACC	
M328F	328_TTT_f	TGCCGCTT <u>TTT</u> GCCAATTTCACCCTGCACCAGAATGACC'	1.5
	328_TTT_r	AATTGGC <u>AAA</u> AAGCGGCAGCCTCTCGTCTGGGATAACC	
M328Y	328_TNT_f	TGCCGCTT <u>TAT</u> GCCAATTTCACCCTGCACCAGAATGACC	2.5
	328_TNT_r	AATTGGCATAAAGCGGCAGCCTCTCGTCTGGGATAACC	
N (22)	328_NNN_f	TGCCGCTT <u>ACG</u> GCCAATTTCACCCTGCACCAGAATGACC	2.0
M3281	328_NNN_r	AATTGGC <u>CGT</u> AAGCGGCAGCCTCTCGTCTGGGATAACC	
M328Q	328_NNN_f	TGCCGCTT <u>CAA</u> GCCAATTTCACCCTGCACCAGAATGACC	1.6
	328_NNN_r	AATTGGC <u>TTG</u> AAGCGGCAGCCTCTCGTCTGGGATAACC	
M229C	328_NNN_f	TGCCGCTT <u>GGG</u> GCCAATTTCACCCTGCACCAGAATGACC	2.2
M328G	328_NNN_r	AATTGGC <u>CCC</u> AAGCGGCAGCCTCTCGTCTGGGATAACC	
Maag	328_NNN_f	TGCCGCTT <u>TCT</u> GCCAATTTCACCCTGCACCAGAATGACC	1.6
M328S	328_NNN_r	AATTGGCAGAAAGCGGCAGCCTCTCGTCTGGGATAACC	
M328C	328_TNT_f	TGCCGCTT <u>TGT</u> GCCAATTTCACCCTGCACCAGAATGACC	2.6
	328_TNT_r	AATTGGCACAAAGCGGCAGCCTCTCGTCTGGGATAACC	
M328N	328_AWW_f	TGCCGCTT <u>AAT</u> GCCAATTTCACCCTGCACCAGAATGACC	3.2
	328_AWW_r	AATTGGC <u>ATT</u> AAGCGGCAGCCTCTCGTCTGGGATAACC	
M328K	328_AWW_f	TGCCGCTT <u>AAA</u> GCCAATTTCACCCTGCACCAGAATGACC	2.7
	328_AWW_r	AATTGGC <u>TTT</u> AAGCGGCAGCCTCTCGTCTGGGATAACC	
M328R	328_NNN_f	TGCCGCTT <u>CGG</u> GCCAATTTCACCCTGCACCAGAATGACC	1.7
	328_NNN_r	AATTGGC <u>CCG</u> AAGCGGCAGCCTCTCGTCTGGGATAACC	
M328H	328_CAT_f	TGCCGCTT <u>CAT</u> GCCAATTTCACCCTGCACCAGAATGACC	3.1
	328_CAT_r	AATTGGCATGAAGCGGCAGCCTCTCGTCTGGGATAACC	
M328E	328_GNW_f	TGCCGCTT <u>GAA</u> GCCAATTTCACCCTGCACCAGAATGACC	2.0
	328_GNW_r	AATTGGC <u>TTC</u> AAGCGGCAGCCTCTCGTCTGGGATAACC	
M328D	328_GAC_f	TGCCGCTT <u>GAC</u> GCCAATTTCACCCTGCACCAGAATGACC	1.5
	328_GAC_r	AATTGGC <u>GTC</u> AAGCGGCAGCCTCTCGTCTGGGATAACC	
L263A_M328A	L263A_f	CTACCTG GCA GAGCAGATGGTTTCACTAGAAGCCATGGAGG	1.3
	L263A_r	TCTGCTC <u>TGC</u> CAGGTAGATCTTGATTCTCGACTTGGCAGG	
L263A_M328A_Y398F	Y398F_f	CCACGCC <u>TTT</u> ATATCCTTCTCCTACAGGGACCGTACC	1.3
	Y398F_r	AAGGATAT <u>AAA</u> GGCGTGGAGGTAGTTAAGTTTGTCATGATCCG	

Table S1 Primers used in this study and protein yields
--

* The purity of the recombinant proteins was determined at 75% – 80%. The protein yields were calculated by taking the impurities into consideration.

Figure S1 ¹H NMR spectrum of dimethylallyl diphosphate (DMAPP) (500 MHz, D₂O)

Figure S2 ³¹P NMR spectrum of dimethylallyl diphosphate (DMAPP) (200 MHz, D₂O)

Figure S3 ¹H NMR spectrum of geranyl diphosphate (GPP) (500 MHz, D₂O)

Figure S4 ³¹P NMR spectrum of geranyl diphosphate (GPP) (200 MHz, D₂O)

Figure S5 ¹H NMR spectrum of farnesyl diphosphate (FPP) (500 MHz, D₂O)

Figure S6 ³¹P NMR spectrum of farnesyl diphosphate (FPP) (200 MHz, D₂O)

Figure S7 ¹H NMR spectrum of 4-geranyltryptophan (3) (500 MHz, CD₃OD)

Figure S8 Positive HR-ESI-MS spectrum of 4-geranyltryptophan (3)

Figure S9 Kinetic parameters of FgaPT2 wild type and FgaPT2_M328 mutants toward DMAPP and GPP with **1**