Supporting information

Bioactive spiropyrrolizidine oxindole alkaloid enantiomers from *Isatis indigotica* Fortune

Si-Fan Liu,^{‡a,c} Bin Lin,^{‡b} Yu-Fei Xi,^a Le Zhou,^a Li-Li Lou,^a Xiao-Xiao Huang,^{*a,c}

Xiao-Bo Wang,*c Shao-Jiang Song,*a

 ^a School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
 ^b School of Pharmaceutical Engineering, Shenyang Pharmaceutical University

^c Chinese People's Liberation Army 210 Hospital, Dalian 116021, People's Republic of China

[‡] These authors contributed equally to this work.

*Corresponding author:

E-mail addresses: xiaoxiao270@163.com (X.-X. Huang), wxbbenson0653@sina.com

(X.-B. Wang), songsj99@163.com (S.-J. Song).

List of supplementary content

- Figure S1.1 The UV spectrum of compound 1
- Figure S1.2 The HRESIMS spectrum of compound 1
- Figure S1.3 The ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of compound 1
- Figure S1.4 The ¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of compound 1
- Figure S1.5 The HSQC spectrum of compound 1
- Figure S1.6 The HMBC spectrum of compound 1
- Figure S1.7 The ¹H-¹H COSY spectrum of compound 1
- Figure S1.8 The ROESY spectrum of compound 1
- Figure S1.9 The ECD spectrum of compound 1a
- Figure S1.10 The ECD spectrum of compound 1b
- Figure S1.11 The chiral HPLC chromatogram of compounds 1a and 1b
- Figure S1.12 Most stable conformers of 1 in solvated model calculations at the B3LYP/6-311+G
- (2d, p) level
- Figure S2.1 The UV spectrum of compound 2
- Figure S2.2 The HRESIMS spectrum of compound 2
- Figure S2.3 The ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of compound 2
- Figure S2.4 The ¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of compound 2
- Figure S2.5 The HSQC spectrum of compound 2
- Figure S2.6 The HMBC spectrum of compound 2
- Figure S2.7 The ¹H-¹H COSY spectrum of compound 2
- Figure S2.8 The NOESY spectrum of compound 2
- Figure S2.9 The ECD spectrum of compound 2a
- Figure S2.10 The ECD spectrum of compound 2b
- Figure S2.11 The chiral HPLC chromatogram of compounds 2a and 2b
- Figure S2.12 Most stable conformers of 2 in solvated model calculations at the B3LYP/6-311+G

(2d, p) level

- Figure S3.1 The UV spectrum of compound 3
- Figure S3.2 The HRESIMS spectrum of compound 3

- Figure S3.3 The ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of compound 3
- Figure S3.4 The ¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of compound 3
- Figure S3.5 The HSQC spectrum of compound 3
- Figure S3.6 The HMBC spectrum of compound 3
- Figure S3.7 The ¹H-¹H COSY spectrum of compound 3
- Figure S3.8 The NOESY spectrum of compound 3
- Figure S3.9 The ECD spectrum of compound 3a
- Figure S3.10 The ECD spectrum of compound 3b
- Figure S3.11 The chiral HPLC chromatogram of compounds 3a and 3b
- Figure S3.12 The DP4+ probability analysis of compound 3
- Figure S3.13 Most stable conformers of 3 in solvated model calculations at the B3LYP/6-311+G

(2d, p) level

- Figure S4.1 The UV spectrum of compound 4
- Figure S4.2 The HRESIMS spectrum of compound 4
- Figure S4.3 The ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of compound 4
- Figure S4.4 The 13 C NMR spectrum (100 MHz, DMSO- d_6) of compound 4
- Figure S4.5 The HSQC spectrum of compound 4
- Figure S4.6 The HMBC spectrum of compound 4
- Figure S4.7 The ¹H-¹H COSY spectrum of compound 4
- Figure S4.8 The NOESY spectrum of compound 4
- Figure S4.9 The ECD spectrum of compound 4a
- Figure S4.10 The ECD spectrum of compound 4b
- Figure S4.11 The chiral HPLC chromatogram of compounds 4a and 4b

Figure S4.12 Most stable conformers of 4 in solvated model calculations at the B3LYP/6-311+G

(2d, p) level

Table S1 Computed ¹³C NMR chemical shifts for compound **3** at B3LYP/6–311+G(2d,p) basis set with polarizable continuum model PCM in DMSO- d_6 solvent.

Table S2 Computed ¹³C NMR chemical shifts for compound **3** at B3LYP/6–311+G(d,p) basis set with polarizable continuum model PCM in DMSO- d_6 solvent.

Figure S1.2 The HRESIMS spectrum of compound 1

Figure S1.3 The ¹H NMR spectrum (400 MHz, DMSO- d_6) of compound 1

Figure S1.4 The ¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of compound 1

Figure S1.5 The HSQC spectrum of compound 1

Figure S1.6 The HMBC spectrum of compound 1

Figure S1.7 The ¹H-¹H COSY spectrum of compound 1

Figure S1.8 The ROESY spectrum of compound 1

Figure S1.11 The chiral HPLC chromatogram of compounds 1a and 1b

Figure S1.12 Most stable conformers of 1 in solvated model calculations at the B3LYP/6-311+G (2d, p) level

Figure S2.2 The HRESIMS spectrum of compound 2

Figure S2.3 The ¹H NMR spectrum (400 MHz, DMSO- d_6) of compound 2

Figure S2.4 The ¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of compound 2

Figure S2.5 The HSQC spectrum of compound 2

Figure S2.6 The HMBC spectrum of compound 2

Figure S2.7 The ¹H-¹H COSY spectrum of compound 2

Figure S2.10 The ECD spectrum of compound 2b

Figure S2.11 The chiral HPLC chromatogram of compounds 2a and 2b

2-13 (11.33%)

Figure S2.12 Most stable conformers of 2 in solvated model calculations at the B3LYP/6-311+G (2d, p) level

Mass Spectrum SmartFormula Report

Figure S3.2 The HRESIMS spectrum of compound 3

Figure S3.3 The ¹H NMR spectrum (400 MHz, DMSO- d_6) of compound 3

Figure S3.4 The ¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of compound 3

Figure S3.5 The HSQC spectrum of compound 3

Figure S3.6 The HMBC spectrum of compound 3

Figure S3.7 The ¹H-¹H COSY spectrum of compound 3

Figure S3.8 The NOESY spectrum of compound 3

Figure	S3.11	The chiral	HPLC	chromatogram	of com	nounds 3a	and 3h
riguit	00.11	The enhal	m LC	ununuogram	or com	pounus Ja	

Funct: B3L	ional YP	Solv	cm CM	Basi 6-311+	s Set G(d,p)	Type o Unscale	f Data d Shifts
		DP4+	100 00%	d 0 00%	-	-	-
Nuclei	sn29	aperiment	Isoner 1	Isoner 2	Isoner 3	Isoner 4	Isoner 5
C	X	177.1	185.6	185.7			
C		75	84 2	83.6			
C	×	122.8	132.4	132.4	1		
C	x	127.6	135.5	135.0			
c	y v	121.2	128 1	126.0		1	
C	y v	120.8	137.5	137 7	-		
c	v	109.5	115.2	114 8	0	2	
č	~	143.2	152 1	151 8	÷	0	
č	•	64 8	72.0	71.4			
č		20.7	22.7	22.0			
č		26.1	21.0	21.0	1	-	
-		40.2	54.76	50.25			
-		170 7	100 52	104 70			
0	X	110.1 60.6	105.02	104.79		1	
C		00.0	09.02	13.99			
C	X	120.0	130.31	139.07		-	
C	X	123.9	132.48	135.07		· · · · · ·	
C	X	121.1	128.28	127.88			
C	X	128.3	135.83	136.48	<u> </u>		
C	X	108.9	115.02	115.56			
C	X	143.2	151.21	151.33			
C	1	53.6	63.97	59.85			
C	X	170.7	184.14	183.55			
C		51.5	55.27	55.56			
		Statistics .		12 10 10 10 10 10			
H		10.33	6.77	6.73			
H	x	7.54	7.88	6.75885084			
H	X	6.91	7.23	6.91097558			
Н	X	7.15	7.56	7. 52351694			
H	x	6.6	6.92	6.98903396			
H		4.41	4.73	4.91340004			
H		2.33	1.96	2.27575578			
H		1.87	2.52	2.53735606			
Н		1,92	2.01	2,10836712			
Н		1.66	1,91	2.323393			
Н	3	3.96	4.07	2.700506	3 8		
H		2.4	2.59	3 63779178			
H		10.38	7 07	6 87266482			
н	v	7 10	7 51	8 04331778	-	-	
н	x	6.8	7 07	7 39262602	9	8	
н	7	7.01	7 35	7 62320222	i i	0	
		6 52	6.0	6 00667270		-	
H	A	4 73	5 15	5 10087044			
u u		2.54	2.7	2 61694674	1		
n U		2.54	2.66	2 2722467			
п 11		2.54	2.54	2 277010/2			
n		3.04	3.09	3. 31181042			

Figure S3.12 The DP4+ probability analysis of compound 3

3-1 (95.15%)

3-2 (4.85%)

Figure S3.13 Most stable conformers of **3** in solvated model calculations at the B3LYP/6-311+G (2d, p) level

Figure S4.1 The UV spectrum of compound 4

Mass Spectrum SmartFormula Report

Analysis Info

Comment

 Analysis Name
 D:\Data\20170613CEYANG\C3-4-2_1-F,1_01_9961.d

 Method
 20131026_ceyang b-ch3oh.m

 Sample Name
 C3-4-2

Acquisition Date 6/13/2017 2:30:13 PM

Operator Bruker Customer Instrument / Ser# micrOTOF-Q 125

Acquisition Parameter Positive 4500 V 1.2 Bar 180 °C Source Type ESI Ion Polarity Set Nebulizer Set Capillary Set End Plate Offset Set Dry Heater Set Dry Gas Focus Active Scan Begin Scan End 50 m/z 1500 m/z -500 V 8.0 Vmin Set Collision Cell RF 400.0 Vpp Set Divert Valve Source +MS, 1.6min #93 Intens x104 2.0 287.1398 1.5 1.0 0.5 281.0934 303.0760 261.1275 274.1596 267.0803 295.1932 0.0 260 270 280 290 300 310 m/z rdb N-Rule Meas. # Formul m/z err Mean e mSigm Std I Std Std I Std Std Conf Mean m/zComb m/za [ppm] err a VarNor Diff Dev (ppm) m/z m 287.13 98 1 C 16 H 287.13 -2.7 -1.9 8.5 ok even 18.45 0.0297 0.0007 0.0177 0.0012 0.8427 19 N 2 90 03

Figure S4.4 The ¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of compound 4

Figure S4.5 The HSQC spectrum of compound 4

Figure S4.6 The HMBC spectrum of compound 4

Figure S4.7 The ¹H-¹H COSY spectrum of compound 4

Figure S4.8 The NOESY spectrum of compound 4

Figure S4.9 The ECD spectrum of compound 4a

Figure S4.10 The ECD spectrum of compound 4b

Figure S4.11 The chiral HPLC chromatogram of compounds 4a and 4b

4-4 (10.93%)

Figure S4.12 Most stable conformers of **4** in solvated model calculations at the B3LYP/6-311+G (2d, p) level

Table S1

Position	Scal. calc.	Scal. calc.
Position	(QCP-1)	(QCP-2)
2	176.2	176.3
3	77.1	78.0
3a	124.3	124.6
4	128.0	126.6
5	119.2	118.7
6	128.7	129.0
7	106.7	106.8
7a	142.9	143.2
2'	66.0	65.0
3'	27.5	28.4
4′	26.2	26.0
5'	48.5	46.1
2″	179.5	175.6
3″	63.2	65.7
3″a	127.8	131.3
4″	124.1	126.3
5″	119.6	119.6
6"	126.7	128.4
7″	106.9	107.3
7″a	142.2	142.7
1‴	56.8	54.2
2‴	174.6	174.1
AveDev	1.5	1.8
MaxDev	4.0	5.1
R^2	0.9984	0.9972

Computed ¹³C NMR chemical shifts for compound **3** at B3LYP/6–311+G(2d,p) basis

set with polarizable continuum model PCM in DMSO- d_6 solvent (δ in ppm).

Table S2

Position	Scal. calc. (QCP-1)	Scal. calc. (QCP-2)
2	185.6	185.7
3	84.2	83.6
3a	132.4	132.4
4	136.6	135.0
5	128.1	126.9
6	137.5	137.7
7	115.2	114.8
7a	152.1	151.8
2'	72.9	71.4
3'	33.7	33.9
4′	31.9	31.8
5'	54.8	50.3
2″	188.5	184.8
3″	69.5	73.9
3 <i>''</i> a	136.3	139.7
4″	132.5	135.1
5″	128.3	127.9
6″	135.8	136.5
7″	115.0	115.6
7 <i>''</i> a	151.2	151.3
1 '''	64.0	59.8
2‴	184.1	183.5
2‴-OCH ₃	55.3	55.6
R^2	0.9989	0.9984

Computed ¹³C NMR chemical shifts for compound **3** at B3LYP/6–311+G(d,p) basis

set with polarizable continuum model PCM in DMSO- d_6 solvent (δ in ppm).