Supporting Information

Palladium(II)-mediated rapid ¹¹C-cyanation of (hetero)arylborons

Zhouen Zhang,*, Takashi Niwa, Yasuyoshi Watanabe, and Takamitsu Hosoya*,

 Chemical Biology Team, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST) and Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047 Japan

Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan

Contents

Instrumentals and chemicals	S2–S3
Preparation of non-radiolabeled compounds and labeling precursors	S4–S7
Procedure for the production of [¹¹ C]NH₄CN and [¹¹ C]HCN	S8
Palladium(II)-mediated ¹¹ C-cyanation of 4-biphenylboronic acid pinacol ester (1b) using various [¹¹ C]cyanide sources (Table 2)	S9–S11
Table S1 Solvent effects of palladium(II)-mediated ¹¹ C-cyanation of 1b	S12
Results of palladium(II)-mediated ¹¹ C-cyanation of various (hetero)arylborons (Table 3)	S13–S71
Radiosynthesis of [cyano- ¹¹ C]cetrozole ([¹¹ C]2ac, Fig. 2)	S72–S73
Radiosynthesis of [<i>cyano</i> - ¹¹ C]YM511 ([¹¹ C]2ad, Fig. 2)	S74–S75
Preparation of [<i>cyano</i> - ¹¹ C]cetrozole ([¹¹ C]2ac) with high radioactivity	S76–S78
Preparation of [<i>cyano</i> - ¹¹ C]YM511 ([¹¹ C]2ad) with high radioactivity	S79–S81
Radiosynthesis of [<i>cyano-</i> ¹¹ C]cyhalofop butyl ([¹¹ C]2ae, Fig. 3)	S82–S84
Radio-HPLC analyses of the reaction mixtures of palladium(II)-mediated ¹¹ C-cyanation of 1a for mechanistic consideration (Fig. 4)	S85
References for Supporting Information	S86
NMR spectra for compounds	S87–S96

Instrumentals and chemicals

All reactions without using carbon-11 were performed under argon or nitrogen atmosphere unless otherwise indicated. All manipulations of air- and/or moisture-sensitive compounds were performed using standard Schlenk techniques.

Gas chromatography (GC) analysis was carried out on a Shimadzu GC-2014 using an INERT CAP (30 m, 0.25 mm I.D., 0.25 μ m df) column and helium as the carrier gas.

Analytical thin-layer chromatography (TLC) was performed on precoated (0.25 mm) silica-gel plates (Merck, Merck Silica Gel 60 F254). Preparative TLC (PTLC) was carried out using precoated (0.5 mm) silica-gel plates (Merck, Merck Silica Gel 60 F254). Flash chromatography was carried out on a YAMAZEN Automated Flash Chromatography System that consists of AI-580 and Parallel Frac FR-360 with silica-gel-packed column (YAMAZEN Universal Column Silica-Gel).

Melting points (mp) were measured with an OptiMelt automated melting point apparatus (Stanford Research Systems, Inc.) and were uncorrected.

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were obtained from measurements at room temperature on a JEOL 400SS spectrometer. Chloroform- d_1 (CDCl₃) containing tetramethylsilane (0.05%, TMS) (99.8%D, Cambridge Isotope Laboratories, Inc.) or dimethylsulfoxide- d_6 (DMSO- d_6 , 99.9%D, Cambridge Isotope Laboratories, Inc.) was used as an NMR solvent for NMR measurements. Chemical shifts (δ) are given in parts per million (ppm) downfield from (CH₃)₄Si (δ 0.00 for ¹H NMR in CDCl₃) or the solvent peak (δ 7.26 for ¹H NMR and δ 77.2 for ¹³C NMR in CDCl₃, or δ 2.49 for ¹H NMR and δ 39.5 for ¹³C NMR in DMSO- d_6) as an internal reference with coupling constants (J) in hertz (Hz). The abbreviations s, d, t, and m signify singlet, doublet, triplet, and multiplet, respectively.

IR spectra were measured by diffuse reflectance method on a Shimadzu IRPrestige-21 spectrometer with the absorption band given in cm⁻¹. High-resolution mass spectra (HRMS) were measured on a Thermo Fisher Scientific ExactiveTM Plus Orbitrap mass spectrometer under positive electrospray ionization (ESI⁺) conditions.

3-Dehydroxy-3-(pinacolylboryl)estrone ((8R,9S,13S,14S)-13-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-6,7,8,9,1,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthrene-17-one, **10**),^{S1} 4-((4-methylbenzyl)(4H-1,2,4-triazole-4-yl)amino)benzonitrile (cetrozole, **2ac**),^{S2} 4-((4-bromobenzyl)-(4H-1,2,4-triazole-4-yl)amino) benzonitrile (YM511, **2ad**),^{S3} and butyl (R)-2-(4-(4-(5,5-dimethyl-1,3,2-dioxanborinan-2-yl)-2-fluorophenoxy)propionate (**1ae''**)^{S4} were prepared according to the reported methods.

All chemical reagents obtained from commercial suppliers were used without further purification.

N,*N*-Dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and toluene were purchased from Wako Pure Chemical Industries, Ltd.

N,N-Dimethylacetamide (DMA), *N,N*-diethylformamide, *N*-methyl-2-pyrolidinone (NMP), potassium *tert*-butoxide (KO'Bu), 1-fluoro-4-iodobenzene, 4-amino-4*H*-1,2,4-triazole, cyhalofop butyl (**2ae**), bis(pinacolato)diboron ((Bpin)₂), 4-methylbenzyl bromide, 4-bromobenzyl bromide, phenylboronic acid pinacol ester (**1a**), phenylboronic acid (**1a'**), 4-methoxyphenylboronic acid pinacol ester (**1e**), 4-formylphenylboronic acid pinacol ester (**1f**), 4-cyanophenylboronic acid pinacol ester (**1h**), 4-cyanophenylboronic acid (**1h'**), 2-cyanophenylboronic acid (**1u'**), 4-carbamoylphenylboronic acid (**1v'**), 4-fluorophenylboronic acid (**1w'**), 4-iodophenylboronic acid (**1z'**), 4-phenylbenzonitrile (**2b**), 4-aminobenzonitrile (**2c**), 4-methoxybenzonitrile (**2e**), 4-cyanobenzoic acid (**2i**), 2-cyanophenol (**2k**), 2-aminobenzonitrile (**2l**), 2-methoxybenzonitrile (**2m**), phthalonitrile (**2n**), 4-cyanopyridine (**2q**), quinoline-6-carbonitrile (**2r**), quinoline-3-carbonitrile (**2z**), and 2-methylbenzonitrile (**2aa**) were purchased from Tokyo Chemical Industry Co., Ltd.

Phenylboronic acid neopentyl glycol ester (1a"), 4-biphenylboronic acid pinacol ester (1b), 4aminophenylboronic acid pinacol ester (1c), 4-(hydroxymethyl)phenylboronic acid pinacol ester (1d), 4-methoxycarbonylphenylboronic acid pinacol ester (1g), 4-methoxycarbonylphenylboronic acid (1g'), 4-carboxyphenylboronic acid pinacol ester (1i), 2-hydroxyphenylboronic acid pinacol ester (1k), 2-aminophenylboronic acid pinacol ester (1l), 2-methoxyphenylboronic acid pinacol ester (1m), 6-quinolineboronic acid pinacol ester (1r), 3-quinolineboronic acid pinacol ester (1s), 3quinolineboronic acid (1s'), 4-chlorophenylboronic acid (1s'), 4-bromophenylboronic acid (1y'), otolylboronic acid (1aa'), 2,4,6-trimethylphenyl boronic acid (1ab'), methyl 4-cyanobenzoate (2g), 4-(hydroxymethyl)benzonitrile (2d), cinnamonitrile (2p), 4-cyanoindole (2t), 4-acetylbenzonitrile (2u), bis(triphenylphosphine)palladium(II) dichloride $(PdCl_2(PPh_3)_2),$ bis(tri-o-tolylphosphine)palladium(II) dichloride ($PdCl_2(P(o-Tol)_3)_2$), (1,1'-bis(diphenylphosphino)ferrocene)palladium(II) dichloride complex with dichloromethane (PdCl₂(dppf)·CH₂Cl₂), platinum wire, chloro(1,5-cyclooctadiene)rhodium(I) dimer ([RhCl(cod)]₂), and 4,5-bis(diphenylphosphino)-9,9- dimethylxanthene (xantphos) were purchased from Sigma-Aldrich Japan, Inc.

Sodium cyanide (NaCN), copper(I) iodide (CuI), copper(II) triflate (Cu(OTf)₂), *n*-dodecane, benzonitrile (**2a**), terephthalonitrile (**2h**), 4-fluorobenzonitrile (**2w**), triphenylphosphine (PPh₃), potassium carbonate (K₂CO₃), sodium hydroxide (NaOH), 1,4-diazabicyclo[2.2.2]octane (DABCO), and 1,4-dioxane were purchased from Nacalai Tesque, Inc. 2-Cyanobiphenyl (**2j**) was purchased from Trans World Chemicals, Inc. Biphenyl-2-boronic acid pinacol ester (**1j**), indole-4-boronic acid pinacol ester (**1t**), and 2,4,6-trimethylbenzonitrile (**2ab**) were purchased from Alfa Aesar. 4,4,5,5-Tetramethyl-2-styryl-1,3,2-dioxaborolane (**1p**) were purchased from Ark Pharm, Inc. Bis(neopentyl glycolato)diboron was purchased from Frontier Scientific, Inc.

Preparation of non-radiolabeled compounds and labeling precursors

3-Dehydroxy-3-cyanoestrone ((8*R*,9*S*,13*S*,14*S*)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17decahydro-6*H*-cyclopenta[*a*]phenanthrene-3-carbonitrile, 20)

To a mixture of 3-dehydroxy-3-(pinacolylboryl)estrone (**1o**) (10.2 mg, 26.8 μ mol, 1 equiv) and copper(II) trifluoromethanesulfonate (0.72 mg, 2.0 μ mol, 0.07 equiv) in DMF (1 mL) equipped with a stir bar was added aqueous NaCN (2.0 mol/L, 100 μ L, 0.20 mmol, 7.7 equiv) under air. After sealing the vial with a rubber cap, the reaction mixture was heated at 100 °C for 14 h with stirring. After cooling to room temperature, the reaction mixture was poured into saturated aqueous ammonium chloride (10 mL), and extracted with EtOAc (10 mL × 3). The combined organic extract was washed with brine (10 mL) and dried over Na₂SO₄. After filtration, the volatiles were removed in vacuo. The residue was purified by preparative TLC (hexanes/EtOAc = 6/1) to give **2o** (6.0 mg, 21.5 μ mol, 80%) as a white solid;

TLC $R_{\rm f} = 0.25$ (*n*-hexane/EtOAc = 6/1);

¹H NMR (400 MHz, CDCl₃) δ 0.92 (s, 3H), 1.45–1.70 (m, 6H), 1.98–2.21 (m, 4H), 2.30–2.45 (m, 2H), 2.53 (dd, *J* = 19.0, 8.8 Hz, 1H), 2.91–2.95 (m, 2H), 7.37–7.44 (m, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 14.0, 21.7, 25.6, 26.2, 29.1, 31.6, 35.9, 37.8, 44.7, 48.0, 50.6, 109.8, 119.3, 126.4, 129.5, 132.7, 138.1, 145.5, 220.5;

The chemical shifts were consistent with those reported in the literature.^{S5}

Boronates 1ac and 1ad

N-(4-Iodophenyl)-4*H*-1,2,4-triazole-4-amine (**S1**): 4-Amino-4*H*-1,2,4-triazole (2.32 g, 27.6 mmol, 2 equiv) was added portionwise to a stirred suspension of KO'Bu (3.09 g, 27.5 mmol, 2 equiv) in DMSO (28 mL) at 15 °C. After stirring at room temperature for 30 min, to this mixture was added 1-fluoro-4-iodobenzene (1.59 mL, 13.8 mmol, 1 equiv) dropwise maintaining the temperature below 30 °C. After stirring for 30 min at room temperature, the mixture was poured into water, which resulted in the formation of a precipitate. After neutralization of the mixture with aqueous HCl (1 mol/L), the precipitate was collected by filtration and purified by recrystallization from water to give **S1** (3.26 g, 11.4 mmol, 82%) as a white solid;

mp 199.0–200.0 °C (decomposed);

TLC $R_{\rm f} = 0.20$ (EtOAc);

¹H NMR (400 MHz, DMSO-*d*₆) δ 6.32 (dd, *J* = 8.4, 1.6 Hz, 2H), 7.52 (dd, *J* = 7.2, 2.4 Hz, 2H), 8.66 (s, 2H), 9.52 (s, 1H);

¹³C NMR (100 MHz, DMSO-*d*₆) δ 84.7, 116.2 (2C), 138.8 (2C), 145.1 (2C), 147.7;

IR (ZnSe, cm⁻¹) 806, 842, 937, 964, 999, 1062, 1116, 1180, 1240, 1282, 1305, 1384, 1454, 1485, 1527, 1581, 3122, 3200;

HRMS (ESI⁺) m/z 286.9786 (286.9788 calcd for C₈H₈IN₄⁺, [M+H]⁺).

N-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-4*H*-1,2,4-triazole-4-amine (**S2**): A mixture of PdCl₂(dppf)·CH₂Cl₂ (71.8 mg, 87.9 μ mol, 0.05 equiv), **S1** (504 mg, 1.76 mmol, 1 equiv), (Bpin)₂ (720 mg, 2.84 mmol, 1.6 equiv), and potassium acetate (517 mg, 5.28 mmol, 3 equiv) in DMSO (10 mL) was stirred at 100 °C for 12 h. After cooling to room temperature, the reaction mixture was poured into saturated aqueous ammonium chloride (100 mL), and extracted with ethyl acetate (100 mL × 3). The combined organic extract was dried over Na₂SO₄. After filtration, the

filtrate was concentrated in vacuo. The residue was purified by flash chromatography (CHCl₃/MeOH = 20/1) to give **S2** (400 mg, 1.40 mmol, 80%) as a pale yellow solid;

mp 190.0–191.0 °C (decomposed);

TLC $R_{\rm f} = 0.20$ (CHCl₃/MeOH = 20/1);

¹H NMR (400 MHz, CDCl₃) δ 1.33 (s, 12H), 6.57 (d, *J* = 8.6 Hz, 2H), 6.95 (s, 1H), 7.73 (d, *J* = 8.6 Hz, 2H), 8.33 (s, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 25.0 (4C), 84.0 (2C), 112.5 (2C), 136.8 (2C), 144.1 (2C), 148.3 (the signal for the carbon that is attached to the boron atom was not observed);

IR (ZnSe, cm⁻¹) 655, 690, 734, 804, 825, 860, 937, 962, 1014, 1064, 1087, 1139, 1273, 1313, 1357, 1396, 1606, 2976, 3138;

HRMS (ESI⁺) m/z 287.1673 (287.1674 calcd for C₁₄H₂₀¹¹BN₄O₂⁺, [M+H]⁺).

4-((4-Methylbenzyl)-*N*-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-4*H*-1,2,4-triazol-4-amine (**1ac**): **S2** (555 mg, 1.94 mmol, 1 equiv) and 4-methylbenzyl bromide (555 mg, 3.00 mmol, 1.5 equiv) were dissolved in DMF (10 mL) and cooled with ice-bath. To the solution was added sodium hydride (60% in mineral oil, 100 mg, 2.50 mmol, 1.3 equiv) and after stirring for 30 min at 0 °C, the reaction mixture was warmed to room temperature. After stirring for 1 h at the same temperature, to the mixture was added aqueous KHSO₄, and extracted with ethyl acetate (100 mL × 3). The combined organic extract was dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash chromatography (CHCl₃/MeOH = 20/1) to give **1ac** (290 mg, 0.743 mmol, 38%) as a pale yellow solid;

mp 146.8-147.2 °C;

TLC $R_{\rm f} = 0.30$ (CHCl₃/MeOH = 20/1);

¹H NMR (400 MHz, CDCl₃) δ 1.33 (s, 12H), 2.30 (s, 3H), 4.79 (s, 2H), 6.67 (d, *J* = 8.8 Hz, 2H), 7.06–7.12 (m, 4H), 7.74 (d, *J* = 8.8 Hz, 2H), 8.03 (s, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 21.3, 25.0 (4C), 58.3, 84.0 (2C), 113.3 (2C), 128.6 (2C), 130.0 (2C), 131.4, 136.7 (2C), 138.9, 143.2 (2C), 150.2 (the signal for the carbon that is attached to the boron atom was not observed);

IR (ZnSe, cm⁻¹) 680, 692, 759, 808, 877, 1022, 1041, 1064, 1089, 1112, 1176, 1203, 1269, 1377, 1460, 1494, 1597, 2929, 3101;

HRMS (ESI⁺) *m*/*z* 391.2298 (391.2300 calcd for C₂₂H₂₈¹¹BN₄O₂⁺, [M+H]⁺).

4-((4-Bromobenzyl)-*N*-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-4*H*-1,2,4-triazol-4-amine (**1ad**): This compound was prepared similarly using the procedure for the synthesis of **1ac**. A mixture of compound **S2** (630 mg, 2.20 mmol, 1 equiv) and 4-bromobenzyl bromide (821 mg, 4.44 mmol, 1.5 equiv) in DMF (10 mL) was treated with sodium hydride (60% in mineral oil, 105 mg, 2.63 mmol, 1.2 equiv). The crude mixture was purified by flash chromatography (*n*-hexane/EtOAc = 1/1 to 1/4) to give **1ad** (550 mg, 1.21 mmol, 55%) as a pale yellow solid; mp 145.5–146.1 °C;

TLC $R_{\rm f} = 0.30$ (CHCl₃/MeOH = 20/1);

¹H NMR (400 MHz, CDCl₃) δ 1.33 (s, 12H), 4.79 (s, 2H), 6.65 (d, *J* = 8.8 Hz, 2H), 7.10 (d, *J* = 8.8 Hz, 2H), 7.45 (d, *J* = 8.8 Hz, 2H), 7.75 (d, *J* = 8.8 Hz, 2H), 8.11 (s, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 25.0 (4C), 58.2, 84.1 (2C), 113.4 (2C), 123.1, 130.1 (2C), 132.5 (2C), 133.6, 136.8 (2C), 143.0 (2C), 149.9 (the signal for the carbon that is attached to the boron atom was not observed);

IR (ZnSe, cm⁻¹) 738, 810, 827, 858, 962, 999, 1008, 1066, 1093, 1126, 1141, 1228, 1268, 1321, 1363, 1402, 1602, 2970;

HRMS (ESI⁺) m/z 455.1246 (455.1248 calcd for C₂₁H₂₅¹¹B⁷⁹BrN₄O₂⁺, [M+H]⁺).

Procedure for the production of [¹¹C]NH₄CN and [¹¹C]HCN

The generation of [¹¹C]cyanides and the ¹¹C-cyanation reactions were conducted on an original automated radiolabeling system in RIKEN CLST/BDR (Figure S1). [¹¹C]CH₄ was initially produced in a CYPRIS HM-12S cyclotron (Sumitomo Heavy Industries, Japan) by irradiating N2 gas containing 15% H₂ (pressured to 0.8 MPa) with a 12 MeV proton beam (30 μ A) via the ¹⁴N(p, α)¹¹C reaction. The irradiation time was basically fixed for 10 min to give [¹¹C]CH₄ with a radioactivity of approximately 10 GBq. For high-radioactivity syntheses of $[cvano^{-11}C]$ cetrozole ($[^{11}C]2ac$) and [cvano-¹¹C]YM511 ([¹¹C]2ad), the irradiation time was extended to 30 min to afford approximately 25 GBq of [¹¹C]CH₄. The generated [¹¹C]CH₄ was transferred with a stream of N₂ gas (300–400 mL/min) from the target vessel in the cyclotron to a hot cell containing the automated radiolabeling system. The $[^{11}C]CH_4$ was then trapped by passing through a stainless-steel tube equipped with Porapak Q (80–100 mesh, 400 mg) cooled by liquid nitrogen. After condensation of [¹¹C]CH₄, the stainless-steel tube was warmed by an air heater and purged with helium gas at a flow rate of 150 mL/min. The helium gas containing $[^{11}C]CH_4$ was mixed with the NH₃ gas (30–40 mL/min), and subsequently passed through a preheated quartz tube (inner diam. 6 mm, 990 °C) containing platinum wire (5.4 g, diam. 0.127 mm) to generate [¹¹C]NH₄CN, which was used for the ¹¹C-cyanation reactions as a gas containing an excess amount of NH₃. This gaseous mixture containing [¹¹C]NH₄CN and NH₃ was passed through a vial containing warm aqueous H₂SO₄ (50%, 1.5 mL, 60–70 °C) to remove NH₃, affording [¹¹C]HCN as a gas. The gases containing either [¹¹C]NH₄CN or [¹¹C]HCN was bubbled into a reaction vessel preloaded with the reagents for the following ¹¹C-cyanation reactions.

Fig. S1 Experimental setup for palladium-mediated ¹¹C-cyanation.

Palladium(II)-mediated ¹¹C-cyanation of 4-biphenylboronic acid pinacol ester (1b) using various [¹¹C]cyanide sources (Table 2)

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile;

Gradient method: 60% B (0–15 min), 60–90% B (15–20 min), 90% B (20–45 min);

Flow rate: 1.0 mL/min; Wavelength of UV detection: 254 nm;

Retention time of [¹¹C]**2b**: 4.6 min.

Conditions for the reactions

- Entry 1: [¹¹C]NH₄CN used as [¹¹C]cyanide source, NH₃ gas used as base, and reaction conducted at 90 $^{\circ}$ C;
- Entry 2: [¹¹C]NH₄CN used as [¹¹C]cyanide source, NH₃ gas used as base, and reaction conducted at 100 $^{\circ}$ C;
- Entry 3: [¹¹C]HCN used as [¹¹C]cyanide source, and aqueous NaOH (2 M, 10 μL, 20 μmol) used as base, and reaction conducted at 100 °C;
- Entry 4: [¹¹C]HCN used as [¹¹C]cyanide source, and K₂CO₃ (2.8 mg, 20 μmol) used as base, and reaction conducted at 100 °C;
- Entry 5: [¹¹C]HCN used as [¹¹C]cyanide source, and aqueous NH₃ (1 M, 20 μL, 20 μmol) used as base, and reaction conducted at 100 °C.
- Entry 6: [¹¹C]HCN used as [¹¹C]cyanide source, without base, and reaction conducted at 100 $^{\circ}$ C.

RCYs	of each	experiment

Run	1	2	3	Average
Entry 1	70%	69%	45%	$61 \pm 14\% (n = 3)$
Entry 2	90%	87%	91%	$89 \pm 2\% (n = 3)$
Entry 3	64%	58%	55%	$59 \pm 5\% (n = 3)$
Entry 4	87%	88%	90%	$88 \pm 2\% (n = 3)$
Entry 5	99%	99%	99%	$99 \pm 0\% (n = 3)$
Entry 6	trace	trace	trace	trace

Fig. S2 Representative HPLC chromatograms for the synthesis of [¹¹C]**2b** (Table 2, entry 2). **Top**: UV trace of **2b** as an authentic reference.

Middle: UV trace of the reaction mixture containing $[^{11}C]$ 2b.

Bottom: RI trace of the reaction mixture containing $[^{11}C]$ 2b.

Fig. S3 Representative radio-HPLC chromatograms for the synthesis of $[^{11}C]_{2b}$ (Table 2, entries 3–6). RI traces of the reaction mixture of entries 3 (top), 4 (second), 5 (third), and 6 (bottom) are shown.

Dh	0- B-O	[¹¹ C]NH ₄ CN PdCl ₂ (PPh ₃) ₂ (2 μmol) NH ₃ (gas, excess) Solvent (250 μL)	Ph ¹¹ CN
1b ((20 µmol)	100 °C, 5 min	[¹¹ C]2b
Entry		Solvent	RCY (%) ^a
1		DMF	$89 \pm 2 \ (n = 3)^b$
2	DMF (230	μL), H ₂ O (20 μL)	$91 \pm 2 \ (n=3)^b$
3		DMSO	$93 \pm 7 \ (n=3)^b$
4	DMSO (23	0 μL), H ₂ O (20 μL)	$87 \pm 5 \ (n=3)^b$
5		DMA	79 (n = 1)
6	N,N-Die	ethylformamide	trace $(n = 1)$
7		NMP	8(n=1)
8	1.	4-Dioxane	trace $(n = 1)$

Table S1 Solvent effects on palladium(II)-mediated ¹¹C-cyanation of 1b

 $\frac{8 \qquad 1,4-\text{Dioxane} \qquad \text{trace } (n=1)}{{}^{a}\text{ RCYs based on } [{}^{11}\text{C}]\text{NH}_4\text{CN were determined by radio-HPLC analysis.}}$

Results of palladium(II)-mediated ¹¹C-cyanation of various (hetero)arylborons (Table 3)

[¹¹C]Benzonitrile ([¹¹C]2a)

Entry A: [¹¹C]**2a** was synthesized from phenylboronic acid pinacol ester (**1a**, Table 3A); Entry B: [¹¹C]**2a** was synthesized from phenylboronic acid neopentyl glycol ester (**1a**", Table 3A); Entry C: [¹¹C]**2a** was synthesized from phenylboronic acid (**1a**', Table 3B).

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile; Gradient method: 40% \mathbf{B} (0–15 min), 40–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 220 nm; Retention time of [¹¹C]2a: 4.1 min.

RCYs of each experiment

Run	1	2	3	Average
Entry A: From 1a	98%	96%	91%	$95 \pm 4\% (n = 3)$
Entry B: From 1a"	97%	96%	92%	$95 \pm 3\% (n = 3)$
Entry C: From 1a'	85%	97%	100%	$94 \pm 8\% (n = 3)$

Fig. S4 Representative HPLC chromatograms for the synthesis of [¹¹C]**2a** (Entry A). **Top**: UV trace of **2a** as an authentic reference.

Middle: UV trace of the reaction mixture using 1a as a substrate, containing $[^{11}C]2a$. Bottom: RI trace of the reaction mixture using 1a as a substrate, containing $[^{11}C]2a$.

Fig. S5 Representative radio-HPLC chromatograms for the synthesis of [¹¹C]2a.
Top: RI trace of the reaction mixture using 1a" as a substrate, containing [¹¹C]2a (Entry B).
Bottom: RI trace of the reaction mixture using 1a' as a substrate, containing [¹¹C]2a (Entry C).

[¹¹C]4-Cyanoaniline ([¹¹C]2c)

<u>Conditions for the analytical HPLC</u>

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile; Gradient method: 25% \mathbf{B} (0–15 min), 25–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 230 nm; Retention time of [¹¹C]2c: 4.0 min.

RCYs of each experiment

Run	1	2	3	Average
From 1c	86%	100%	97%	$94 \pm 7\% (n = 3)$

Fig. S6 Representative HPLC chromatograms.

Top: UV trace of **2c** as an authentic reference.

Middle: UV trace of the reaction mixture containing $[^{11}C]$ 2c.

Bottom: RI trace of the reaction mixture containing $[^{11}C]2c$.

[¹¹C]4-Hydroxymethylbenzonitrile ([¹¹C]2d)

<u>Conditions for the analytical HPLC</u> Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile; Gradient method: 20% \mathbf{B} (0–15 min), 20–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 230 nm; Retention time of [¹¹C]2d: 4.1 min.

RCYs of each experiment

Run	1	2	3	Average
Entry A: From 1d	10%	_	_	10% (n = 1)
Entry B: From 1d ^[a]	80%	94%	93%	$89 \pm 8\% (n = 3)$

[a] The reaction was conducted in presence of K_2CO_3 (20 µmol).

Fig. S7 Representative HPLC chromatograms for the synthesis of [¹¹C]2d (Entry B).

Top: UV trace of 2d as an authentic reference.

Middle: UV trace of the reaction mixture containing $[^{11}C]$ 2d.

Bottom: RI trace of the reaction mixture containing $[^{11}C]$ 2d.

[¹¹C]4-Cyanoanisole ([¹¹C]2e)

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile; Gradient method: 40% \mathbf{B} (0–15 min), 40–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 254 nm; Retention time of [¹¹C]2e: 4.7 min.

RCYs of each experiment

Run	1	2	3	Average	
Entry A: From 1e	68%	66%	_	$67 \pm 1\% (n = 2)$	
Entry B: From 1e ^[a]	100%	94%	100%	$98 \pm 4\% (n = 3)$	
[-] The most is a surface of the table of tabl					

[a] The reaction was conducted at 110 °C.

Fig. S8 Representative HPLC chromatograms for the synthesis of [¹¹C]2e (Entry B).Top: UV trace of 2e as an authentic reference.

Middle: UV trace of the reaction mixture containing $[^{11}C]2e$.

Bottom: RI trace of the reaction mixture containing [¹¹C]2e.

[¹¹C]4-Cyanobenzaldehyde ([¹¹C]2f)

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile; Gradient method: 30% \mathbf{B} (0–15 min), 30–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 250 nm; Retention time of [¹¹C]**2f**: 4.6 min.

RCYs of each experiment

Run	1	2	3	Average
Entry A: From 1f	39%	—	_	39% (n=1)
Entry B: From 1f ^[a]	69%	53%	64%	$62 \pm 8\% (n = 3)$
F] (51)				

[a] The reaction was conducted in presence of K_2CO_3 (20 µmol).

Fig. S9 Representative HPLC chromatograms for the synthesis of [¹¹C]2f (Entry B).

Top: UV trace of **2f** as an authentic reference.

Middle: UV trace of the reaction mixture containing $[^{11}C]2f$.

Bottom: RI trace of the reaction mixture containing $[^{11}C]2f$.

[¹¹C]Methyl 4-cyanobenzoate ([¹¹C]2g)

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile; Gradient method: 35% \mathbf{B} (0–15 min), 35–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 250 nm; Retention time of [¹¹C]**2**g: 4.8 min.

RCYs of each experiment

Run	1	2	3	Average
Entry A: From 1g	99%	97%	95%	$97 \pm 2\% (n = 3)$
Entry B: From 1g'	94%	90%	91%	$92 \pm 2\% (n = 3)$

Fig. S10 Representative HPLC chromatograms for the synthesis of [¹¹C]2g.

Top: UV trace of 2g as an authentic reference.

Second: UV trace of the reaction mixture using 1g as a substrate, containing [¹¹C]2g (Entry A). Third: RI trace of the reaction mixture using 1g as a substrate, containing [¹¹C]2g (Entry A). Bottom: RI trace of the reaction mixture using 1g' as a substrate, containing [¹¹C]2g (Entry B).

[1-cyano-¹¹C]p-Dicyanobenzene ([¹¹C]2h)

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile; Gradient method: 35% \mathbf{B} (0–15 min), 35–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 240 nm;

Retention time of [¹¹C]2h: 4.2 min.

RCYs of each experiment

Run	1	2	3	Average
Entry A: From 1h	20%	—	—	20% (n =1)
Entry B: From 1h ^[a]	82%	93%	70%	$82 \pm 12\% (n = 3)$
Entry C: From 1h' ^[a]	80%	97%	87%	$88 \pm 9\% (n = 3)$
5 3 mm 1				

[a] The reaction was conducted at 110 °C.

Fig. S11 Representative HPLC chromatograms for the synthesis of [¹¹C]2h.

Top: UV trace of **2h** as an authentic reference.

Second: UV trace of the reaction mixture using **1h** as a substrate, containing [¹¹C]**2h** (Entry B). **Third**: RI trace of the reaction mixture using **1h** as a substrate, containing [¹¹C]**2h** (Entry B). **Bottom**: RI trace of the reaction mixture using **1h'** as a substrate, containing [¹¹C]**2h** (Entry C).

[¹¹C]4-Cyanobenzoic acid ([¹¹C]2i)

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = phosphate buffer (20 mmol/L (mM), pH 2.5), mobile phase \mathbf{B} = acetonitrile; Gradient method: 25% \mathbf{B} (0–15 min), 25–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 250 nm; Retention time of [¹¹C]2i: 4.3 min.

RCYs of each experiment

Run	1	2	3	Average
Entry A: From 1i	9%	_	-	9% (n = 1)
Entry B: From 1i ^[a]	38%	11%	17%	$22 \pm 14\% (n = 3)$
Entry C: From 1i ^[b]	50%	_	-	50% (n =1)
Entry D: From 1i ^[b,c]	81%	60%	65%	$69 \pm 11\% (n = 3)$

[a] The reaction was conducted in the presence of K_2CO_3 (20 µmol).

[b] The reaction was conducted at 110 °C, in the presence of 1i (40 µmol) and K₂CO₃ (70 µmol).

[c] PdCl₂(P(o-Tol)₃)₂ (2 µmol) was used instead of PdCl₂(PPh₃)₂.

Fig. S12 Representative HPLC chromatograms for the synthesis of [¹¹C]2i (Entry D).

Top: UV trace of 2i as an authentic reference.

Middle: UV trace of the reaction mixture containing $[^{11}C]2i$.

Bottom: RI trace of the reaction mixture containing $[^{11}C]2i$.

[¹¹C]2-Cyanobiphenyl ([¹¹C]2j)

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile; Gradient method: 60% \mathbf{B} (0–15 min), 60–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 254 nm; Retention time of [¹¹C]2j: 3.7 min.

RCYs of each experiment

Run	1	2	3	Average
Entry A: From 1j	8%	_	_	8% (n = 1)
Entry B: From 1j ^[a]	68%	84%	85%	$79 \pm 10\% (n = 3)$

[a] The reaction was conducted at 110 °C in the presence of K_2CO_3 (20 µmol).

Fig. S13 Representative HPLC chromatograms for the synthesis of [¹¹C]**2j** (Entry B). **Top**: UV trace of **2j** as an authentic reference.

Middle: UV trace of the reaction mixture containing $[^{11}C]2j$.

Bottom: RI trace of the reaction mixture containing [¹¹C]2j.

[¹¹C]2-Cyanophenol ([¹¹C]2k)

The reaction was conducted at 110 °C in the presence of K_2CO_3 (20 µmol).

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = phosphate buffer (20 mM, pH 2.5), mobile phase \mathbf{B} = acetonitrile; Gradient method: 28% \mathbf{B} (0–15 min), 28–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 220 nm; Retention time of [¹¹C]2k: 4.0 min.

RCYs of each experiment

Run	1	2	3	Average	
Entry A: From 1k	62%	—	_	62% (n = 1)	
Entry B: From 1k ^[a]	72%	89%	89%	$83 \pm 10\% (n = 3)$	
[a] PPh ₃ (10 μ mol) was added.					

Fig. S14 Representative HPLC chromatograms for the synthesis of [¹¹C]2k (Entry B).Top: UV trace of 2k as an authentic reference.

Middle: UV trace of the reaction mixture containing [¹¹C]2k.

Bottom: RI trace of the reaction mixture containing $[^{11}C]_{2k}$.

[¹¹C]2-Cyanoaniline ([¹¹C]2l)

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile; Gradient method: 30% \mathbf{B} (0–15 min), 30–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 254 nm; Retention time of [¹¹C]**2**I: 4.5 min.

RCYs of each experiment

Run	1	2	3	Average
From 11	100%	99%	97%	$99 \pm 2\% (n = 3)$

Fig. S15 Representative HPLC chromatograms for the synthesis of [¹¹C]**2**I. **Top**: A UV trace of **2**I as an authentic reference.

Top. A UV trace of ZI as an authentic reference.

Middle: UV trace of the reaction mixture containing $[^{11}C]$ 2l.

Bottom: RI trace of the reaction mixture containing [¹¹C]2l.

[¹¹C]2-Cyanoanisole ([¹¹C]2m)

The reaction was conducted at 110 °C.

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile; Gradient method: 40% \mathbf{B} (0–15 min), 40–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 220 nm; Retention time of [¹¹C]2m: 4.3 min.

RCYs of each experiment

Run	1	2	3	Average
From 1m	87%	91%	93%	$90 \pm 3\% (n = 3)$

Fig. S16 Representative HPLC chromatograms for the synthesis of [¹¹C]2m.

Top: A UV trace of **2m** as an authentic reference.

Middle: UV trace of the reaction mixture containing $[^{11}C]^{2m}$.

Bottom: RI trace of the reaction mixture containing [¹¹C]**2m**.

[1-cyano-¹¹C]o-Dicyanobenzene ([¹¹C]2n)

The reaction was conducted at 110 °C.

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile; Gradient method: 35% \mathbf{B} (0–15 min), 35–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 220 nm; Retention time of [¹¹C]2n: 4.3 min.

RCYs of each experiment

Run	1	2	3	Average
Entry A: From 1n	46%	45%	48%	$46 \pm 2\% (n = 3)$
Entry B: From 1n ^[a]	46%	_	_	$46\% (n = 1)^{[b]}$
Entry C: From 1n ^[a,c]	70%	73%	71%	$71 \pm 2\% (n = 3)$

[a] K_2CO_3 (20 µmol) was added.

[b] [¹¹C]Benzonitrile ([¹¹C]2a) was formed as a byproduct (retention time: 5.3 min, RCY: 21%).

[c] PPh₃ (10 μ mol) was added.

Fig. S17 Representative HPLC chromatograms for the synthesis of [¹¹C]2n.Top: A UV trace of 2n as an authentic reference.

Middle: UV trace of the reaction mixture containing [¹¹C]**2n** (Entry A). **Bottom**: RI trace of the reaction mixture containing [¹¹C]**2n** (Entry A).

Fig. S18 Representative HPLC chromatograms for the synthesis of [¹¹C]2n.
Top: UV trace of the reaction mixture containing [¹¹C]2n and [¹¹C]2a (Entry B).
Middle: RI trace of the reaction mixture containing [¹¹C]2n and [¹¹C]2a (Entry B).
Bottom: RI trace of the reaction mixture containing [¹¹C]2n (Entry C).

[¹¹C]3-Dehydroxy-3-cyanoestrone ([¹¹C]20)

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile; Gradient method: 65% \mathbf{B} (0–15 min), 65–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 250 nm; Retention time of [¹¹C]**20**: 4.2 min.

Run	1	2	3	Average
From 10	91%	89%	98%	$93 \pm 5\% (n = 3)$

Fig. S19 Representative HPLC chromatograms for the synthesis of $[^{11}C]_{20}$.

Top: UV trace of **20** as an authentic reference.

Middle: UV trace of the reaction mixture containing $[^{11}C]_{20}$.

Bottom: RI trace of the reaction mixture containing $[^{11}C]_{20}$.

[¹¹C]Cinnamonitrile ([¹¹C]2p)

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile; Gradient method: 45% \mathbf{B} (0–15 min), 45–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–45 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 220 nm; Retention time of [¹¹C]2p: 5.0 min.

Run	1	2	3	Average
From 1p	89%	97%	99%	$95 \pm 5\%$ (n = 3)

Fig. S20 Representative HPLC chromatograms for the synthesis of [¹¹C]2p.

Top: UV trace of **2p** as an authentic reference.

Middle: UV trace of the reaction mixture containing [¹¹C]2p.

Bottom: RI trace of the reaction mixture containing [¹¹C]**2**p.

[¹¹C]4-Cyanopyridine ([¹¹C]2q)

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile; Gradient method: 15% \mathbf{B} (0–15 min), 15–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 254 nm; Retention time of [¹¹C]2q: 3.3 min.

RCYs of each experiment

Run	1	2	3	Average
Entry A: From 1q	10%	_	-	10% (n = 1)
Entry B: From 1q ^[a]	47%	36%	—	$42 \pm 8\% (n = 2)$
Entry C: From 1q ^[b]	100%	100%	98%	$99 \pm 1\% (n = 3)$

.

[a] The reaction was conducted in the presence of K_2CO_3 (20 µmol).

[b] The reaction was conducted in the presence of K₂CO₃ (20 µmol) and PPh₃ (10 µmol).

Fig. S21 Representative HPLC chromatograms for the synthesis of [¹¹C]2q (Entry C). **Top**: UV trace of **2q** as an authentic reference.

Middle: UV trace of the reaction mixture containing $[^{11}C]2q$.

Bottom: RI trace of the reaction mixture containing [¹¹C]2q.

[¹¹C]6-Cyanoquinoline ([¹¹C]2r)

The reaction was conducted in the presence of K_2CO_3 (20 µmol).

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile; Gradient method: 30% \mathbf{B} (0–15 min), 30–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 254 nm; Retention time of [¹¹C]2r: 4.0 min.

Run	1	2	3	Average
From 1r	89%	94%	88%	$90 \pm 3\% (n = 3)$

Fig. S22 Representative HPLC chromatograms for the synthesis of [¹¹C]2r.

Top: UV trace of **2r** as an authentic reference.

Middle: UV trace of the reaction mixture containing $[^{11}C]2r$.

Bottom: RI trace of the reaction mixture containing $[^{11}C]$ 2r.

[¹¹C]3-Cyanoquinoline ([¹¹C]2s)

The reaction was conducted in presence of K_2CO_3 (20 µmol).

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile; Gradient method: 37% \mathbf{B} (0–15 min), 37–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 274 nm; Retention time of [¹¹C]2s: 4.0 min.

RCYs of each experiment

Run	1	2	3	Average
Entry A: From 1s	82%	80%	90%	$84 \pm 5\% (n = 3)$
Entry B: From 1s'	70%	50%	32%	$51 \pm 19\% (n = 3)^{[a]}$
Entry C: From 1s'[b]	98%	70%	70%	$79 \pm 16\% (n = 3)$

[a] $[^{11}C]2a$ was formed as a byproduct (retention time: 4.8 min, RCY: $32 \pm 13\%$ (n = 3)).

[b] PPh₃ (10 μ mol) was added.

Fig. S23 Representative HPLC chromatograms for the synthesis of [¹¹C]2s.

Top: UV trace of 2s as an authentic reference.

Middle: UV trace of the reaction mixture using 1s as a substrate, containing $[^{11}C]$ 2s (Entry A). Bottom: RI trace of the reaction mixture using 1s as a substrate, containing $[^{11}C]$ 2s (Entry A).

- Fig. S24 Representative HPLC chromatograms for the synthesis of [¹¹C]2s.
 - **Top**: UV trace of the reaction mixture using **1s'** as a substrate, containing [¹¹C]**2s** and [¹¹C]**2a** (Entry B).
 - Middle: RI trace of the reaction mixture using 1s' as a substrate, containing [¹¹C]2s and [¹¹C]2a (Entry B).
 - **Bottom**: RI trace of the reaction mixture using **1s'** as a substrate, containing [¹¹C]**2s** (Entry C). Comparison of the results for entries B and C clearly showed that addition of PPh₃ was effective for reducing the amount of the byproduct [¹¹C]**2a**.

[¹¹C]4-Cyanoindole ([¹¹C]2t)

The reaction was conducted in the presence of K_2CO_3 (20 µmol).

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile; Gradient method: 37% \mathbf{B} (0–15 min), 37–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 254 nm; Retention time of [¹¹C]2t: 4.8 min.

Run	1	2	3	Average
From 1 t	99%	99%	72%	$90 \pm 16\% (n = 3)$

Fig. S25 Representative HPLC chromatograms for the synthesis of $[^{11}C]_{2t}$.

Top: UV trace of 2t as an authentic reference.

Middle: UV trace of the reaction mixture containing [¹¹C]2t.

Bottom: RI trace of the reaction mixture containing $[^{11}C]2t$.

[¹¹C]4-Cyanoacetophenone ([¹¹C]2u)

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile; Gradient method: 35% \mathbf{B} (0–15 min), 35–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 254 nm; Retention time of [¹¹C]**2u**: 4.2 min.

Run	1	2	3	Average
From 1u'	92%	96%	98%	$95 \pm 3\% (n = 3)$

Fig. S26 Representative HPLC chromatograms for the synthesis of $[^{11}C]^2u$.

Top: UV trace of **2u** as an authentic reference.

Middle: UV trace of the reaction mixture containing [¹¹C]2u.

Bottom: RI trace of the reaction mixture containing $[^{11}C]2u$.

[¹¹C]4-Cyanobenzamide ([¹¹C]2v)

Into a reaction vessel charged with $PdCl_2(PPh_3)_2$ (1.4 mg, 2.0 µmol) and DMF (150 µL) was bubbled a gas containing [¹¹C]NH₄CN until the amount of radioactivity was saturated. To the mixture was added a solution of **1v'** (40 µmol) in DMF (0.1 mL). Then ¹¹C-cyanation was conducted at 110 °C.

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile; Gradient method: 15% \mathbf{B} (0–15 min), 15–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 235 nm; Retention time of [¹¹C]2v: 3.5 min.

Run	1	2	3	Average
From 1v'	62%	78%	70%	$70 \pm 8\% (n = 3)$

Fig. S27 Representative HPLC chromatograms for the synthesis of $[^{11}C]_{2v}$.

Top: UV trace of 2v as an authentic reference.

Middle: UV trace of the reaction mixture containing $[^{11}C]_{2v}$.

Bottom: RI trace of the reaction mixture containing $[^{11}C]_{2v}$.

[¹¹C]4-Fluorobenzonitrile ([¹¹C]2w)

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile; Gradient method: 45% \mathbf{B} (0–15 min), 45–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 225 nm; Retention time of [¹¹C]2w: 3.6 min.

RCYs of each experiment

Run	1	2	3	Average
Entry A, From 1w'	60%	51%	54%	$55 \pm 5\% (n = 3)$
Entry B, From 1w' ^[a]	80%	53%	60%	$64 \pm 14\% (n = 3)$

[a] The reaction was conducted at 110 °C, in the presence of K₂CO₃ (20 µmol) and PPh₃ (10 µmol).

Fig. S28 Representative HPLC chromatograms for the synthesis of [¹¹C]2w.
Top: UV trace of 2w as an authentic reference.
Second: UV trace of the reaction mixture containing [¹¹C]2w (Entry A).
Third: RI trace of the reaction mixture containing [¹¹C]2w (Entry A).
Bottom: RI trace of the reaction mixture containing [¹¹C]2w (Entry B).

[¹¹C]4-Chlorobenzonitrile ([¹¹C]2x)

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile; Gradient method: 50% \mathbf{B} (0–15 min), 50–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 230 nm; Retention time of [¹¹C]2x: 4.2 min.

Run	1	2	3	Average
From 1x'	95%	97%	96%	$96 \pm 1\% (n = 3)$

Fig. S29 Representative HPLC chromatograms for the synthesis of $[^{11}C]_{2x}$.

Top: UV trace of **2x** as an authentic reference.

Middle: UV trace of the reaction mixture containing $[^{11}C]2x$.

Bottom: RI trace of the reaction mixture containing $[^{11}C]2x$.

[¹¹C]4-Bromobenzonitrile ([¹¹C]2y)

Method A (general procedure): Into a reaction vessel charged with $PdCl_2(PPh_3)_2$ (1.4 mg, 2.0 µmol), **1y'** (20 µmol), and DMF (250 µL) was bubbled a gas containing [¹¹C]NH₄CN until the amount of radioactivity was saturated. Then the reaction was conducted at 100 °C.

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile; Gradient method: 25% \mathbf{B} (0–15 min), 25–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 250 nm; Retention time of [¹¹C]2y: 10.1 min.

RCYs of each experiment

Run	1	2	3	Average
From 1y' ^[a]	72%	74%	84%	$77 \pm 6\% (n = 3)$

[a] [¹¹C]4-Cyanophenylboronic acid ([¹¹C]1h) was formed as a byproduct (retention time: 2.8 min, RCY: $10 \pm 3\%$ (n = 3)).

Fig. S30 Representative HPLC chromatograms for the synthesis of [¹¹C]2y (Method A).
Top: UV trace of 2y as an authentic reference.
Second: UV trace of the reaction mixture containing [¹¹C]2y and [¹¹C]1h'.
Third: RI trace of the reaction mixture containing [¹¹C]2y and [¹¹C]1h'.

Bottom: UV trace of 1h' as an authentic reference.

Method B: Into a reaction vessel charged with $PdCl_2(PPh_3)_2$ (1.4 mg, 2.0 µmol) and DMF (150 µL) was bubbled a gas containing [¹¹C]NH₄CN until the amount of radioactivity was saturated. To the mixture was added a solution of **1y'** (40 µmol) in DMF (100 µL). The reaction was conducted at 100 °C.

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile; Gradient method: 50% \mathbf{B} (0–15 min), 50–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 250 nm; Retention time of [¹¹C]2y: 4.5 min.

Run	1	2	3	Average
From 1y'	92%	85%	72%	$83 \pm 10\% (n = 3)$

Fig. S31 Representative HPLC chromatograms for the synthesis of [¹¹C]**2**y (**Method B**). **Top**: UV trace of **2**y as an authentic reference.

Middle: UV trace of the reaction mixture containing $[^{11}C]2y$.

Bottom: RI trace of the reaction mixture containing [¹¹C]2y.

[¹¹C]4-Iodobenzonitrile ([¹¹C]2z)

Into a reaction vessel charged with $PdCl_2(PPh_3)_2$ (1.4 mg, 2.0 µmol) and DMF (150 µL) was bubbled a gas containing [¹¹C]NH₄CN until the amount of radioactivity was saturated. To the mixture was added a solution of **1z'** (40 µmol) in DMF (100 µL). The reaction was conducted at 100 °C.

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile; Gradient method: 55% \mathbf{B} (0–15 min), 55–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 250 nm; Retention time of [¹¹C]2z: 4.1 min.

Run	1	2	3	Average
From 1z'	86%	68%	84%	$79 \pm 10\% (n = 3)$

Fig. S32 Representative HPLC chromatograms for the synthesis of [¹¹C]**2***z*. **Top**: UV trace of **2***z* as an authentic reference.

Middle: UV trace of the reaction mixture containing $[^{11}C]2z$.

Bottom: RI trace of the reaction mixture containing $[^{11}C]2z$.

[¹¹C]2-Methylbenzonitrile ([¹¹C]2aa)

The reaction was conducted in the presence of K_2CO_3 (20 µmol).

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile; Gradient method: 50% \mathbf{B} (0–15 min), 50–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 230 nm; Retention time of [¹¹C]**2aa**: 3.6 min.

Run	1	2	3	Average
From 1aa'	79%	80%	74%	$78 \pm 3\% (n = 3)$

Fig. S33 Representative HPLC chromatograms.

Top: UV trace of **2aa** as an authentic reference.

Middle: UV trace of the reaction mixture containing [¹¹C]2aa.

Bottom: RI trace of the reaction mixture containing [¹¹C]**2aa**.

[¹¹C]2,4,6-Trimethylbenzonitrile ([¹¹C]2ab)

The reaction was conducted using 40 µmol of 1ab' at 110 °C in the presence of K₂CO₃ (20 µmol).

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile; Gradient method: 60% \mathbf{B} (0–15 min), 60–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 230 nm; Retention time of [¹¹C]2ab: 4.5 min.

Run	1	2	3	Average
From 1ab'	81%	80%	79%	$80 \pm 1\% (n = 3)$

Fig. S34 Representative HPLC chromatograms.

Top: UV trace of **2ab** as an authentic reference.

Middle: UV trace of the reaction mixture containing $[^{11}C]$ 2ab.

Bottom: RI trace of the reaction mixture containing [¹¹C]**2ab**.

Radiosynthesis of [cyano-¹¹C]cetrozole ([¹¹C]2ac, Fig. 2)

The reaction was conducted in DMSO (250 μ L) in the presence of K₂CO₃ (20 μ mol).

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = aqueous NH₄OAc (30 mM, pH 7.0), mobile phase \mathbf{B} = acetonitrile; Gradient method: 42% \mathbf{B} (0–15 min), 42–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–45 min); Column: COSMOSIL 5C₁₈ AR-II 4.6 mm I.D. × 150 mm Flow rate: 1.0 mL/min; Wavelength of UV detection: 265 nm; Retention time of [¹¹C]**2ac**: 5.8 min.

Run	1	2	3	Average
From 1ac	80%	90%	85%	$85 \pm 5\% (n = 3)$

Fig. S35 Representative HPLC chromatograms.

Top: UV trace of **2ac** as an authentic reference.

Middle: UV trace of the reaction mixture containing $[^{11}C]$ 2ac.

Bottom: RI trace of the reaction mixture containing $[^{11}C]$ 2ac.

Radiosynthesis of [cyano-¹¹C]YM511 ([¹¹C]2ad, Fig. 2)

The reaction was conducted in DMSO (250 μ L) in the presence of K₂CO₃ (20 μ mol) and PPh₃ (10 μ mol).

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = aqueous NH₄OAc (30 mM, pH 7.0), mobile phase \mathbf{B} = acetonitrile; Gradient method: 45% \mathbf{B} (0–15 min), 45–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Column: COSMOSIL 5C₁₈ AR-II 4.6 mm I.D. × 150 mm (Nacalai Tesque, Inc.); Flow rate: 1.0 mL/min; Wavelength of UV detection: 254 nm; Retention time of [¹¹C]**2ad**: 5.3 min.

RCYs of each experiment

Run	1	2	3	Average
From 1ad	89%	69%	65%	$74 \pm 13\%$ (n = 3)

Fig. S36 Representative HPLC chromatograms.

Top: UV trace of **2ad** as an authentic reference.

Middle: UV trace of the reaction mixture containing $[^{11}C]^2ad$.

Bottom: RI trace of the reaction mixture containing [¹¹C]**2ad**.

Preparation of [cyano-¹¹C]cetrozole ([¹¹C]2ac) with high radioactivity

The gas containing [¹¹C]NH₄CN and NH₃ was prepared by using [¹¹C]CH₄ with a radioactivity of 25 GBq. Into a reaction vessel charged with PdCl₂(PPh₃)₂ (1.4 mg, 2.0 µmol), **1ac** (20 µmol), K₂CO₃ (20 µmol), and DMSO (250 µL) was bubbled the gas containing [¹¹C]NH₄CN until the amount of radioactivity was saturated. The mixture was heated at 100 °C for 5 min without stirring. After quickly cooling to 25 °C within 1 min, to the reaction mixture was immediately added aqueous acetonitrile (50%, 1.0 mL). The mixture was passed through a short pad of silica wool and syringe filter (filter media, PVDF; pore size, 0.2 mm; Whatman Inc.) sequentially, and injected into a preparative HPLC under the conditions shown below. A fraction containing [¹¹C]**2ac**, which was estimated by using UV and radioactivity detectors, was collected into a flask and concentrated under reduced pressure with heating. The residue was diluted in saline (2 mL) and transferred into a small vial. The desired product [¹¹C]**2ac** was obtained with a radioactivity of 4.4 GBq and a molar radioactivity of 72 GBq/µmol at the end of synthesis. The total time of synthesis was 28 min from the end of bombardment (EOB). The decay-corrected radiochemical yield (DCY) was 45% from [¹¹C]CH₄. The production of [¹¹C]**2ac** was confirmed by HPLC analysis co-injected with non-radioactive standard **2ac**. The chemical and radiochemical purities of [¹¹C]**2ac** were 97% and >99%, respectively.

Conditions for the preparative HPLC

Column: semi-preparative column, COSMOSIL 5C₁₈ AR-II 10 mm I.D. \times 250 mm (Nacalai Tesque, Inc.); Mobile phase **A** = phosphate buffer (50 mM, pH 7.0), mobile phase **B** = acetonitrile;

Gradient method: 10% **B** (0–2 min), 41% **B** (2–30 min);

Flow rate: 6.5 mL/min; Wavelength of UV detection: 265 nm;

Retention time of [¹¹C]2ac: 13.0 min.

Fig. S37 Preparative HPLC chromatogram for the synthesis of [¹¹C]2ac.

Conditions for the analytical HPLC

Column: COSMOSIL 5C₁₈ MS-II 4.6 mm I.D. \times 150 mm (Nacalai Tesque, Inc.) Mobile phase: acetonitrile / aqueous NH₄OAc (30 mM, pH 7.0) = 42/58 Flow rate: 1.0 mL/min; Wavelength of UV detection: 265 nm; Retention time of [¹¹C]2ac: 5.8 min.

Fig. S38 Analytical HPLC chromatograph of [¹¹C]**2ac** co-injected with non-radioactive standard **2ac**.

Calibration curve for 2ac

A calibration curve was plotted from five concentrations (1.25, 2.5, 5.0, 10, and 20 nmol/mL) of **2ac** and used for estimating the concentration and molar radioactivity of synthesized $[^{11}C]^2ac$.

Fig. S39 Calibration curve for 2ac.

Preparation of [cyano-¹¹C]YM511 ([¹¹C]2ad) with high radioactivity

The gas containing $[^{11}C]NH_4CN$ and NH₃ was prepared by using $[^{11}C]CH_4$ with a radioactivity of 25 GBq. Into a reaction vessel charged with PdCl₂(PPh₃)₂ (1.4 mg, 2.0 µmol), **1ad** (20 µmol), K₂CO₃ (20 µmol), PPh₃ (2.6 mg, 10 µmol), and DMSO (250 µL) was bubbled the gas containing ^{[11}C]NH₄CN until the amount of radioactivity was saturated. The mixture was heated at 100 °C for 5 min without stirring. After quickly cooling to 25 °C within 1 min, to the reaction mixture was immediately added aqueous acetonitrile (50%, 1.0 mL). The mixture was passed through a short pad of silica wool and syringe filter (filter media, PVDF; pore size, 0.2 mm; Whatman Inc.) sequentially, and injected into a preparative HPLC under the conditions shown below. A fraction containing ¹¹C]2ad, which was estimated by using UV and radioactivity detectors, was collected into a flask and concentrated under reduced pressure with heating. The residue was diluted in saline (2 mL) and transferred into a small vial. The desired product $[^{11}C]^2ad$ was obtained with a radioactivity of 3.2 GBq and a molar radioactivity of 93 GBq/µmol at the end of synthesis. The total time of synthesis was 28 min from the end of bombardment (EOB). The decay-corrected radiochemical yield (DCY) was 33% from [¹¹C]CH₄. The production of [¹¹C]2ad was confirmed by HPLC analysis co-injected with non-radioactive standard **2ad**. The chemical and radiochemical purities of [¹¹C]**2ad** were 97% and >99%, respectively.

Conditions for the preparative HPLC

Column: semi-preparative column, COSMOSIL $5C_{18}$ AR-II 10 mm I.D. \times 250 mm (Nacalai Tesque, Inc.);

Mobile phase A = phosphate buffer (50 mM, pH 7.0), mobile phase B = acetonitrile;

Gradient method: 40% B (0–30 min);

Flow rate: 3 mL/min (0–2 min), 6.5 mL/min (2–30 min); Wavelength of UV detection: 254 nm; Retention time of [¹¹C]2ad: 13.6 min.

Fig. S40 Preparative HPLC chromatogram for the synthesiss of [¹¹C]2ad.

Conditions for the analytical HPLC

Column: COSMOSIL 5C₁₈ AR-II 4.6 mm I.D. \times 150 mm (Nacalai Tesque, Inc.) Mobile phase: acetonitrile / aqueous NH₄OAc (30 mM, pH 7.0) = 46/54 Flow rate: 1.0 mL/min; Wavelength of UV detection: 265 nm; Retention time of [¹¹C]2ad: 5.1 min.

Fig. S41 Analytical HPLC chromatograph of [¹¹C]**2ad** co-injected with non-radioactive standard **2ad**.

Calibration curve for 2ad

A calibration curve was plotted from five concentrations (1.25, 2.5, 5.0, 10, and 20 nmol/mL) of **2ad** and used for estimating the concentration and molar radioactivity of synthesized $[^{11}C]^2ad$.

Fig. S42 Calibration curve for 2ad.

Radiosynthesis of [cyano-¹¹C] cyhalofop butyl ([¹¹C]2ae, Fig. 3)

The reaction was conducted in DMSO (250 μ L) at 110 °C.

Conditions for the analytical HPLC

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile; Gradient method: 70% \mathbf{B} (0–15 min), 70–90% \mathbf{B} (15–20 min), 90% \mathbf{B} (20–40 min); Flow rate: 1.0 mL/min; Wavelength of UV detection: 254 nm; Retention time of [¹¹C]2ae: 5.2 min.

RCYs of each experiment

Run	1	2	3	Average
From 1ae"	75%	74%	74%	$74 \pm 1\% (n = 3)$

Fig. S43 Representative HPLC chromatograms.

Top: A UV trace of **2ae** as an authentic reference.

Second: UV trace of the reaction mixture containing [¹¹C]**2ae**.

Third: RI trace of the reaction mixture containing [¹¹C]**2ae**.

Fourth: UV trace of co-injected standard 2ae with the reaction mixture containing [¹¹C]2ae. Bottom: RI trace of co-injected standard 2ae with the reaction mixture containing [¹¹C]2ae.

Molar radioactivity of [¹¹C]2ae

Although [¹¹C]**2ae** was not isolated, its molar activity was roughly calculated based on the UV absorbance of **2ae** at 254 nm. A calibration curve was plotted from six concentrations (1.25, 2.5, 5.0, 10, 20, and 100 nmol/mL) of **2ae** and used for estimating the concentration of synthesized [¹¹C]**2ae** in the reaction mixture (Figure S43). The radioactivity of [¹¹C]**2ae** was calculated by counting the total radioactivity of the sample and multiplying by the RCY.

In the experiment shown in Run 1, the total radioactivity of the reaction mixture was 4.21 GBq at the end of synthesis 13 min after the end of bombardment (EOB). Since the RCY for Run 1 was 75%, the radioactivity of [¹¹C]2ae was calculated as 3.16 GBq (= 4.21 GBq × 0.75). The amount of [¹¹C]2ae was calculated to be 55.3 nmol (integral of the absorbance area: 485,000, concentration: 32.5 nmol/mL, total volume: 1.7 mL) from the calibration curve. Therefore, the molar radioactivity of [¹¹C]2ae was calculated to be 57 GBq/µmol. Similarly, the molar radioactivities of [¹¹C]2ae for Runs 2 and 3 were calculated to be 64 and 68 GBq/µmol, respectively.

Fig. S44 Calibration curve for 2ae.

Radio-HPLC analyses of the reaction mixtures of palladium(II)-mediated ¹¹C-cyanation of 1a for mechanistic consideration (Fig. 4)

Preparation of reaction mixtures

Mixture (a): Into a reaction vessel charged with DMF (250 μ L) was bubbled the gas containing [¹¹C]NH₄CN at room temperature until the amount of radioactivity was saturated. The mixture was diluted with aqueous acetonitrile (50%, 1.0 mL), and an aliquot of the resulting mixture (20 μ L) was injected for radio-HPLC analysis.

Mixture (b): Into a reaction vessel charged with $PdCl_2(PPh_3)_2$ (1.4 mg, 2.0 µmol) and DMF (250 µL) was bubbled the gas containing [¹¹C]NH₄CN at room temperature until the amount of radioactivity was saturated. The mixture was diluted with aqueous acetonitrile (50%, 1.0 mL), and an aliquot of the resulting mixture (20 µL) was injected for radio-HPLC analysis.

Mixture (c): Into a reaction vessel charged with $PdCl_2(PPh_3)_2$ (1.4 mg, 2.0 µmol), **1a** (4.1 mg, 20 µmol), and DMF (250 µL) was bubbled the gas containing [¹¹C]NH₄CN at room temperature until the amount of radioactivity was saturated. The mixture was diluted with aqueous acetonitrile (50%, 1.0 mL), and an aliquot of the resulting mixture (20 µL) was injected for radio-HPLC analysis.

Mixture (d): Into a reaction vessel charged with $PdCl_2(PPh_3)_2$ (1.4 mg, 2.0 µmol), **1a** (4.1 mg, 20 µmol), and DMF (250 µL) was bubbled the gas containing [¹¹C]NH₄CN at room temperature until the amount of radioactivity was saturated. After heating at 100 °C for 5 min, the mixture was diluted with aqueous acetonitrile (50%, 1.0 mL), and an aliquot of the resulting mixture (20 µL) was injected for radio-HPLC analysis.

Conditions for the analytical radio-HPLC

Mobile phase \mathbf{A} = water, mobile phase \mathbf{B} = acetonitrile;

Gradient method: 40% B (0–15min), 40–90% B (15–20 min), 90% B (20–40 min);

Flow rate: 1.0 mL/min; Wavelength of UV detection: 220 nm.

References for Supporting Information

- S1 Z. Feng, Q.-Q. Min, Y.-L. Xiao, B. Zhang and X. Zhang, Angew. Chem., Int. Ed., 2014, 53, 1669.
- K. Takahashi, T. Hosoya, K. Onoe, H. Doi, H. Nagata, T. Hiramatsu, X.-L. Li, Y. Watanabe,
 Y. Wada, T. Takashima, M. Suzuki, H. Onoe and Y. Watanabe, *J. Nucl. Med.*, 2014, 55, 852.
- S3 M. Okada, T. Yoden, E. Kawaminami, Y. Shimada, M. Kudoh and Y. Isomura, *Chem. Pharm. Bull.*, 1997, 45, 333.
- S4 M. Tobisu, H. Kinuta, Y. Kita, E. Remond and N. Chatani, J. Am. Chem. Soc., 2012, 134, 115.
- S5 H. G. Lee, P. J. Milner, M. S. Placzek, S. L. Buchwald and J. M. Hooker, J. Am. Chem. Soc., 2015, 137, 648.

NMR Spectra for compounds

¹H NMR (400 MHz) spectrum of **20** (CDCl₃)

 $\mathbf{S87}$

¹H NMR (400 MHz) spectrum of **S1** (DMSO- d_6)

¹³C NMR (100 MHz) spectrum of **S1** (DMSO-*d*₆)

¹H NMR (400 MHz) spectrum of **S2** (CDCl₃)

¹³C NMR (100 MHz) spectrum of **S2** (CDCl₃)

¹H NMR (400 MHz) spectrum of **1ac** (CDCl₃)

¹³C NMR (100 MHz) spectrum of **1ac** (CDCl₃)

¹³C NMR (100 MHz) spectrum of **1ad** (CDCl₃)