Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

New Friedel-Crafts strategy of preparing 3-acylindoles

Lian-Hua Li, Zhi-Jie Niu, Yong-Min Liang*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China Fax: +86-931-8912582; e-mail: <u>liangym@lzu.edu.cn</u>

Table of Contents

1	General information	S2
2	Optimization of the reaction conditions	S 3
3	General procedure for the synthesis of desired 3-acylindoles	S4
4	Further application	S5-6
5	Mechanistic studies	S7-16
6	X-ray structures of 3-acylindoles: 3aa, 3al, 3ga, 3ua	S17-20
7	Characterization of compounds	S21-38
8	Copies of NMR Spectra	S39-88
9	References	S89

General information

Column chromatography was carried out on silica gel. ¹H NMR spectra were recorded on 400 MHz in CDCl₃ and DMSO- d_6 . ¹³C NMR spectra were recorded on 100 MHz in CDCl₃ and DMSO- d_6 . Chemical shifts (ppm) were recorded with tetramethylsilane (TMS) and DMSO- d_6 as the internal reference standard. Multiplicities are given as s (singlet), d (doublet), t (triplet), dd (doublet of doublets), q (quartet), or m (multiplet). Their ¹H NMR and ¹³C NMR spectra are provided in the Supporting Information. The HRMS was obtained using a Q-TOF instrument equipped with ESI source. Data collections for crystal structure were performed at room temperature (293 K) using Mo K α radiation on a Bruker APEXII diffractometer. Melting points were measured with micro melting point apparatus.

The substituted amides were prepared according to the literature.¹ Trifluoromethanesulfonic anhydride (Tf₂O) was commercially available. Solvents were dried using standard methods. All commercially available reagents were used with further purification. The toluene was distilled over CaH₂.

Optimization of the reaction conditions

1.6

1.6

1.6

1.6

1.6

1.6

Cs₂CO₃ (2.6)

Cs₂CO₃ (2.6)

Cs₂CO₃ (2.6)

 Cs_2CO_3 (2.6)

Cs₂CO₃ (2.6)

Cs₂CO₃ (2.6)

24

25

26

27^c

28^c

29°

1

1

1

1

1

1

Table S1 Additional optimization of the reaction^{a,b}

^{*a*} Reaction conditions: To a mixture of indole **1a** (X equiv.), amide **2a** (Y equiv.) and base (Z equiv.) in solvent (3.0 mL) was added Tf_2O (2.0 equiv.) at -78 °C under an Ar atmosphere. After 20 min, the reaction mixture was stirred at the reported temperature. ^{*b*} All reactions were carried out on 0.2 mmol scale. ^{*c*} The additive (0.5 equiv.) was added. ^{*d*} Isolated yields. DCM = dichloromethane, DCE = 1, 2-dichloroethane, Tf = trifluoromethanesulfonyl, TMS = trimethylsilyl.

_

-

-

CsBr (0.5)

Csl (0.5)

CsF (0.5)

-78-70

-78-80

-78-90

-78-70

-78-70

-78-70

14

14

14

14

14

14

toluene

toluene

toluene

toluene

toluene

toluene

72

67

52

83 73

85

General procedure for the synthesis of desired 3-acylindoles

The amide (0.32 mmol, 1.6 equiv.), Cs_2CO_3 (0.52 mmol) and CsF (0.1 mmol) were added to a dried round bottom flask and put under an Ar atmosphere. The indole (0.2 mmol, 1.0 equiv.), toluene (2.0 mL) were added and the solution was cooled to -78 °C, followed by addition of toluene (1.0 mL) solution of Tf_2O (0.4 mmol) via syringe. After 20 minutes, the reaction mixture was heated to 70 °C. After 14 hours, the mixture was quenched by the saturated NaHCO₃ solution and transferred to a separation funnel, diluted with DCM (15.0 mL) and the organic layer was washed with water (5.0 mL×2) and brine (5.0 mL), dried over anhydrous Na₂SO₄, concentrated in vacuum and subjected to column chromatography.

The amide **2a** (0.32 mmol, 1.6 equiv.), Cs_2CO_3 (0.52 mmol) and CsF (0.1 mmol) were added to a dried round bottom flask and put under an Ar atmosphere. The *N*,*N*-dimethyl aniline **4a** (0.2 mmol, 1.0 equiv.), toluene (2.0 mL) were added and the solution was cooled to -78 °C, followed by addition of toluene (1.0 mL) solution of Tf₂O (0.4 mmol) via syringe. After 20 minutes, the reaction mixture was heated to 70 °C. After 14 hours, the mixture was quenched by the saturated NaHCO₃ solution and transferred to a separation funnel, diluted with DCM (15.0 mL) and the organic layer was washed with water (5.0 mL×2) and brine (5.0 mL), dried over anhydrous Na₂SO₄, concentrated in vacuum and subjected to column chromatography, afforded acylated aniline **5aa** 7.59 mg in 15% isolated yield.

The amide **2a** (0.32 mmol, 1.6 equiv.), Cs_2CO_3 (0.52 mmol) and CsF (0.1 mmol) were added to a dried round bottom flask and put under an Ar atmosphere. The pyrrole **6a** (0.2 mmol, 1.0 equiv.), toluene (2.0 mL) were added and the solution was cooled to -78 °C, followed by addition of toluene (1.0 mL) solution of Tf₂O (0.4 mmol) via syringe. After 20 minutes, the reaction mixture was heated to 70 °C. After 14 hours, the mixture was quenched by the saturated NaHCO₃ solution and transferred to a separation funnel, diluted with DCM (15.0 mL) and the organic layer was washed with water (5.0 mL×2) and brine (5.0 mL), dried over anhydrous Na₂SO₄, concentrated in vacuum and subjected to column chromatography, afforded product **7aa** 22 mg in 55% isolated yield.

The amide **2a** (0.32 mmol, 1.6 equiv.), Cs_2CO_3 (0.52 mmol) and CsF (0.1 mmol) were added to a dried round bottom flask and put under an Ar atmosphere. The 1,2,3-trimethoxybenzene **8a** (0.2 mmol, 1.0 equiv.), toluene (2.0 mL) were added and the solution was cooled to -78 °C, followed by addition of toluene (1.0 mL) solution of Tf₂O (0.4 mmol) via syringe. After 20 minutes, the reaction mixture was heated to 70 °C. After 14 hours, the mixture was quenched by the saturated NaHCO₃ solution and transferred to a separation funnel, diluted with DCM (15.0 mL) and the organic layer was washed with water (5.0 mL×2) and brine (5.0 mL), dried over anhydrous Na₂SO₄, concentrated in vacuum and subjected to column chromatography, afforded product **9aa** 16.2 mg in 27% isolated yield.

The amide **2a** (0.32 mmol, 1.6 equiv.), Cs_2CO_3 (0.52 mmol) and CsF (0.1 mmol) were added to a dried round bottom flask and put under an Ar atmosphere. The veratrole **10a** (0.2 mmol, 1.0 equiv.), toluene (2.0 mL) were added and the solution was cooled to -78 °C, followed by addition of toluene (1.0 mL) solution of Tf₂O (0.4 mmol) via syringe. After 20 minutes, the reaction mixture was heated to 70 °C. After 14 hours, the mixture was quenched by the saturated NaHCO₃ solution and transferred to a separation funnel, diluted with DCM (15.0 mL) and the organic layer was washed with water (5.0 mL×2) and brine (5.0 mL), dried over anhydrous Na₂SO₄, concentrated in vacuum and subjected to column chromatography, afforded product **11aa** 6.48 mg in 12% isolated yield.

Mechanistic studies

The amide **2k** (0.32 mmol, 1.6 equiv.), Cs_2CO_3 (0.52 mmol) and CsF (0.1 mmol) were added to a dried round bottom flask and put under an Ar atmosphere. The indole **1a** (0.2 mmol, 1 equiv.) or **1a**-3*d* (0.2 mmol, 1 equiv.), toluene (2.0 mL) were added and the solution was cooled to -78 °C, followed by addition of toluene (1.0 mL) solution of Tf₂O (0.4 mmol) via syringe. After 20 minutes, the reaction mixture was heated to 70 °C. After 30 minutes, the mixture was quenched by the saturated NaHCO₃ solution and transferred to a separation funnel, diluted with DCM (15.0 mL) and the organic layer was washed with water (5.0 mL×2) and brine (5.0 mL), dried over anhydrous Na₂SO₄, concentrated in vacuum and added *p*-bromotoluene (0.2 mmol) as internal standard, subjected to NMR tube. KIE value ($k_H/k_D = 1.11$) was determined by ¹H NMR analysis (**400 MHz, CDCl₃**).

S8

b) Monitoring experiment and NMR spectra

The first ¹³C NMR (100MHz, CDCl₃) was standard spectrum of substrate 2k.

Four sets of the amide **2k** (0.32 mmol, 1.6 equiv.), Cs₂CO₃ (0.52 mmol), CsF (0.1 mmol) were added to four dried round bottom flasks and put under an Ar atmosphere, respectively. The indole **1a** (0.2 mmol, 1 equiv.), toluene (2.0 mL) were each added to four flasks and the solutions were cooled to -78 °C, followed by addition of toluene (1.0 mL) solution of Tf₂O (0.4 mmol) via syringe, respectively. All of four reactions kept under -78 °C for 20 minutes. Then, the first reaction was stopped without heating and concentrated in vacuum. The mixture was added to NMR tube and the second ¹³C NMR was acquired. The second reaction was heated at 70 °C for 15 minutes and stopped and concentrated in vacuum. The mixture was added to NMR tube and the third ¹³C NMR was acquired. The third reaction was heated for 1 hour and stopped and concentrated in vacuum. The fourth reaction was heated for 14 hours and stopped and concentrated in vacuum. The fourth reaction was heated for 14 hours and stopped and concentrated in vacuum. The mixture was added to NMR tube and the fourth reaction was heated for 14 hours and stopped and concentrated in vacuum. The mixture was added to NMR tube and the fourth reaction was heated for 14 hours and stopped and concentrated in vacuum.

c) Survey of intermediate I and analysis

The amide **2k** (0.32 mmol, 1.6 equiv) and Cs_2CO_3 (0.52 mmol) were added to a dried round bottom flask and put under an Ar atmosphere. The toluene (2.0 mL) was added to the flask and the solution was cooled to -78 °C, followed by addition of toluene (1.0 mL) solution of Tf₂O (0.4 mmol) via syringe. The reaction kept under -78 °C for 20 minutes. Then, the reaction was warmed to the room temperature and concentrated in vacuum. The mixture was added to NMR tube and the ¹³C NMR and ¹⁹F NMR were acquired as **2k**+Tf₂O+Cs₂CO₃.

Analysis: Comparing the ¹³C NMR spectra of $2k+Tf_2O+Cs_2CO_3+indole$ 1a and $2k+Tf_2O+Cs_2CO_3$ at low temperature labeling as 0 min, it was noticed that when the amide was treated with Tf_2O and Cs_2CO_3 without indole, the system was detected out only **B** signal, and that could be assigned to intermediate **I**, and when the system was added indole, the intermediate **I** could be transferred into intermediate **II** by the attack of indole in short time. Therefore, the signals **B** and **C** are relevant ¹³C NMR signal.

Analysis: Comparing the ¹⁹**F NMR** spectra of 2k+Tf₂O+Cs₂CO₃ at low temperature and Tf₂O, it was confirmed that 2k could transfer into intermediate I.

d) Recycling experiment of starting material 2k

The amide **2k** (0.32 mmol, 1.6 equiv.), Cs_2CO_3 (0.52 mmol), CsF (0.1 mmol) were added to dried round bottom flask and put under an Ar atmosphere. The indole **1a** (0.2 mmol, 1 equiv.), toluene (2.0 mL) were added to the flask and the solution was cooled to -78 °C, followed by addition of toluene (1.0 mL) solution of Tf₂O (0.4 mmol) via syringe. The reaction kept under -78 °C for 20 minutes, and then heated to 70 °C. After 14 h, the reaction was quenched by the saturated NaHCO₃ solution and mixture was transferred to separation funnels, diluted with DCM (15.0 mL) and the organic layer was washed with water (5.0 mL×2) and brine (5.0 mL), dried over anhydrous Na₂SO₄, concentrated in vacuum and subjected to column chromatography, afforded product **3ak** 79% and recycled 47% of proportion of starting material **2k**.

X-ray structures of Tetrazoles 3aa, 3al, 3ga, 3ua

The crystal structure of product 3aa

Crystallorgraphic data for compound **3aa** (CCDC-1857322) has been deposited with Crystallorgraphic Data Centre, Copies of the data can be obtained, free of charge, on application to CCDC (Email: deposit@ccdc.cam.ac.uk)

Bond precision:		C-C = 0.0020 A		Wavelength=1.54184			
Cell: a=22.0489(5)		5) b=15.0		516(3)	c=18.1612	2(4)	
	alpha=90		beta=1	08.711(3)	gamma=9	0	
Temperature	: 290 K						
		Calculate	d			Reported	
Volume		5708.6(2)			5708.6(2)	
Space group		I 2/c				1 2/c 1	
Hall group		-I 2yc				-I 2yc	
Moiety formu	ula	C18 H17 N O				C18 H17 N O	
Sum formula		C18 H17	NO			C18 H17 N O	
Mr		263.33				263.33	
Dx,g cm-3		1.226				1.226	
Z		16				16	
Mu (mm-1)		0.590				0.590	
F000		2240.0				2240.0	
F000'		2246.16					
h,k,lmax		26,18,22				26,18,22	
Nref		5402				5245	
Tmin,Tmax		0.899,0.9	21			0.313,1.000	
Tmin'		0.883					
Correction method= # Reported T Limits: Tmin=0.313 Tmax=1.000 AbsCorr =							
Data completeness = 0.071							
R(reflections)= 0.0416(4402)				wR2(refle	ections)= 0.	1155(5245)	
S = 1.034		Npar	= 363				

The crystal structure of product 3al

Crystallorgraphic data for compound **3al** (CCDC-1857189) has been deposited with Crystallorgraphic Data Centre, Copies of the data can be obtained, free of charge, on application to CCDC (Email: deposit@ccdc.cam.ac.uk)

Bond precision:		C-C = 0.0051 A			Wavelength=0.71073			
Cell:	a=9.2569(18) b=		b=15.60	08(2)	c=10.8924	(18)		
	alpha=90		beta=10	05.432(19)	gamma=90	0		
Temperature	: 232 K							
		Calculate	ed			Reported		
Volume		1517.0(5)			1517.1(4)		
Space group		P 21/n				P 1 21/n 1		
Hall group		-P 2yn				-P 2yn		
Moiety formu	ıla	C19 H19	NO	C19 H19 N O				
Sum formula		C19 H19 N O				C19 H19 N O		
Mr		277.35				277.35		
Dx,g cm-3		1.214				1.214		
Z		4				4		
Mu (mm-1)		0.074				0.074		
F000		592.0				592.0		
F000'		592.23						
h,k,lmax		11,19,13				11,19,13		
Nref		3000				2987		
Tmin,Tmax		0.983,0.9	990			0.809,1.000		
Tmin'		0.983						
Correction method= # Reported T Limits: Tmin=0.809 Tmax=1.000 AbsCorr =								
MULTI-SCAN								
Data complet	eness= 0.99	6		Theta(max)= 26.020				
R(reflections)= 0.0812(1790)				wR2(refl	ections)= 0.	2195(2987)		
S = 1.106 Npar= 192			r= 192					

The crystal structure of product 3ga

Crystallorgraphic data for compound **3ga** (CCDC-1857188) has been deposited with Crystallorgraphic Data Centre, Copies of the data can be obtained, free of charge, on application to CCDC (Email: deposit@ccdc.cam.ac.uk)

Bond precision:		C-C = 0.0046 A			Wavelength=1.54184		
Cell:	a=8.4795(3))	b=11.3	762(4)	c=16.2210	(5)	
	alpha=90		beta=9	2.399(3)	gamma=90)	
Temperature	: 293 K						
		Calculate	d			Reported	
Volume		1563.38(9)			1563.38(9)	
Space group		P 21/n				P 1 21/n 1	
Hall group		-P 2yn				-P 2yn	
Moiety formu	ıla	C18 H16	Br N O			C18 H16 Br N O	
Sum formula		C18 H16	Br N O			C18 H16 Br N O	
Mr		342.22				342.23	
Dx,g cm-3		1.454				1.454	
Z		4				4	
Mu (mm-1)		3.558				3.558	
F000		696.0				696.0	
F000'		694.83					
h,k,lmax		10,13,19				10,13,19	
Nref		2757				2685	
Tmin,Tmax		0.808,0.8	67			0.896,1.000	
Tmin'		0.780					
Correction method= # Reported T Limits: Tmin=0.896 Tmax=1.000 AbsCorr = MULTI-SCAN							
Data completeness= 0.974				Theta(max)=	56.590		
R(reflections)= 0.0430(222		26) wR2(refle		ections)= 0.1183(2685)			
S = 1.059		Npar	= 191				

The crystal structure of product 3ua

Crystallorgraphic data for compound **3ua** (CCDC-1857187) has been deposited with Crystallorgraphic Data Centre, Copies of the data can be obtained, free of charge, on application

to CCDC (Email: deposit@ccdc.cam.ac.uk)

Bond precision:		C-C = 0.0034 A		ι.		Wavelength=0.71073	
Cell:	a=9.6173(1	0)	b=12.72	178(10)	c=11.2532	(10)	
	alpha=90		beta=9	5.476(10)	gamma=90)	
Temperature	: 295 K						
		Calculate	d			Reported	
Volume		1370.1(2))			1370.1(2)	
Space group		P 21/c				P 1 21/c 1	
Hall group		-P 2ybc				-P 2ybc	
Moiety formu	ıla	C18 H17	NO			C18 H17 N O	
Sum formula		C18 H17	NO			C18 H17 N O	
Mr		263.33				263.33	
Dx,g cm-3		1.277				1.277	
Z		4				4	
Mu (mm-1)		0.079				0.079	
F000		560.0				560.0	
F000'		560.22					
h,k,lmax		11,15,13				11,15,13	
Nref		2694				2690	
Tmin,Tmax		0.987,0.9	91			0.627,1.000	
Tmin'		0.987					
Correction method= # Reported T Limits: Tmin=0.627 Tmax=1.000 AbsCorr =							
MULTI-SCAN							
Data completeness= 0.999				Theta(max)= 26.020			
R(reflections)	'44)		wR2(refle	ections)= 0.3	1982(2690)		
S = 1.041		Npar	= 182				

Characterization of compounds

(3aa) 1-(1-methyl-1H-indol-3-yl)-3-phenylpropan-1-one

brownish red crystal, 44.7 mg, 85%, m.p. 57-59 °C

¹H NMR (400 MHz, CDCl₃) δ 8.43 – 8.38 (m, 1H), 7.64 (s, 1H), 7.34 – 7.25 (m, 7H), 7.23 – 7.16 (m, 1H), 3.79 (s, 3H), 3.19 – 3.14 (m, 2H), 3.14 – 3.07 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 194.4, 141.7, 137.3, 135.2, 128.4, 126.2, 125.9, 123.2, 122.5, 116.3, 109.5, 41.6, 33.4, 30.7.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₈H₁₇NO) requires m/z 264.1383, found m/z 264.1383.

(3ab) 1-(1-methyl-1H-indol-3-yl)propan-1-one

transparent crystal, 21.3 mg, 57%, m.p. 74-76 °C

¹H NMR (400 MHz, CDCl₃) δ 8.50 – 8.28 (m, 1H), 7.69 (s, 1H), 7.44 – 7.27 (m, 3H), 3.81 (s, 3H), 2.86 (q, *J* = 7.4 Hz, 2H), 1.25 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 196.3, 137.3, 134.9, 126.2, 123.1, 122.3, 116.1, 109.5, 33.4, 32.8, 8.9.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₂H₁₃NO) requires m/z 188.1070, found m/z 188.1069.

(3ac) 1-(1-methyl-1H-indol-3-yl)butan-1-one

crimson oily liquid, 26.1 mg, 65%

¹H NMR (400 MHz, CDCl₃) δ 8.42 – 8.37 (m, 1H), 7.68 (s, 1H), 7.33 – 7.27 (m, 3H), 3.80 (s, 3H), 2.79 (t, *J* = 7.2 Hz, 2H), 1.85 – 1.75 (m, 2H), 1.01 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 195.7, 137.3, 135.1, 126.2, 123.1, 122.5, 122.3, 116.5, 109.5, 41.8, 33.3, 18.6, 14.0.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₃H₁₅NO) requires *m/z* 202.1226, found *m/z* 202.1225.

(3ad) 1-(1-methyl-1H-indol-3-yl)pentan-1-one

bright red liquid, 25.0 mg, 58%

¹H NMR (400 MHz, CDCl₃) δ 8.42 – 8.36 (m, 1H), 7.69 (s, 1H), 7.33 – 7.27 (m, 3H), 3.82 (s, 3H), 2.82 (t, *J* = 8.0 Hz, 2H), 1.80 – 1.71 (m, 2H), 1.48 – 1.37 (m, 2H), 0.95 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 195.9, 137.4, 135.1, 126.3, 123.2, 122.6, 122.4, 116.5, 109.5, 39.6, 33.4, 27.3, 22.6, 13.9.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₄H₁₇NO) requires *m/z* 216.1383, found *m/z* 216.1382.

(3ae) 1-(1-methyl-1H-indol-3-yl)hexan-1-one

crimson liquid, 24.3 mg, 53%

¹H NMR (400 MHz, CDCl₃) δ 8.43 – 8.37 (m, 1H), 7.70 (s, 1H), 7.30 (dt, *J* = 7.6, 2.4 Hz, 3H), 3.83 (s, 3H), 2.82 (t, *J* = 7.8 Hz, 2H), 1.82 – 1.73 (m, 2H), 1.42 – 1.32 (m, 4H), 0.95 – 0.87 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 195.9, 137.4, 135.1, 126.3, 123.2, 122.6, 122.4, 116.5, 109.5, 39.9, 33.4, 31.7, 24.9, 22.5, 13.9.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₅H₁₉NO) requires m/z 230.1539, found m/z 230.1539.

(3af) 1-(1-methyl-1H-indol-3-yl)heptan-1-one

aubergine liquid, 27.7 mg, 57%

¹**H NMR (400 MHz, CDCl₃)** δ 8.41 – 8.37 (m, 1H), 7.69 (s, 1H), 7.33 – 7.27 (m, 3H), 3.81 (s, 3H), 2.84 – 2.79 (m, 2H), 1.82 – 1.72 (m, 2H), 1.42 – 1.35 (m, 2H), 1.35 – 1.29 (m, 4H), 0.91 – 0.86 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 195.9, 137.4, 135.1, 126.3, 123.1, 122.5, 122.4, 116.5, 109.5, 39.9, 33.4, 31.7, 29.2, 25.2, 22.5, 14.0.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₆H₂₁NO) requires *m/z* 244.1696, found *m/z* 244.1696.

(3ag) 4-methyl-1-(1-methyl-1H-indol-3-yl)pentan-1-one

rufous liquid, 31.1 mg, 68%

¹H NMR (400 MHz, CDCl₃) δ 8.41 – 8.37 (m, 1H), 7.68 (s, 1H), 7.32 – 7.27 (m, 3H), 3.81 (s, 3H), 2.85 – 2.79 (m, 2H), 1.70 – 1.63 (m, 3H), 0.95 (d, *J* = 6.0 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 196.1, 137.4, 135.1, 126.3, 123.2, 122.5, 122.4, 116.4, 109.5, 37.9, 34.1, 33.4, 27.9, 22.4.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₅H₁₉NO) requires *m/z* 230.1539, found *m/z* 230.1539.

(3ah) 3-cyclopentyl-1-(1-methyl-1H-indol-3-yl)propan-1-one

red liquid, 31.1 mg, 61%

¹H NMR (400 MHz, CDCl₃) δ 8.42 – 8.37 (m, 1H), 7.69 (s, 1H), 7.33 – 7.27 (m, 3H), 3.82 (s, 3H), 2.86 – 2.80 (m, 2H), 1.87 – 1.74 (m, 5H), 1.68 – 1.46 (m, 4H), 1.20 – 1.10 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 196.0, 137.4, 135.1, 135.0, 126.3, 123.1, 122.6, 122.4, 116.4, 109.4, 39.9, 39.2, 33.4, 32.5, 31.5, 25.1.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₇H₂₁NO) requires m/z 256.1696, found m/z 256.1696.

(3ai) 3,5,5-trimethyl-1-(1-methyl-1H-indol-3-yl)hexan-1-one

aubergine liquid, 35.2 mg, 65%

¹**H NMR (400 MHz, CDCl₃)** δ 8.44 – 8.39 (m, 1H), 7.66 (s, 1H), 7.32 – 7.27 (m, 3H), 3.81 (s, 3H), 2.76 (dd, *J* = 14.8, 6.0 Hz, 1H), 2.66 (dd, *J* = 14.8, 8.0 Hz, 1H), 2.36 – 2.26 (m, 1H), 1.36 (dd, *J* = 14.0, 4.0 Hz, 1H), 1.17 (dd, *J* = 14.0, 6.4 Hz, 1H), 1.01 (d, *J* = 6.4 Hz, 3H), 0.92 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 195.5, 137.4, 135.2, 126.3, 123.2, 122.6, 122.4, 117.3, 109.4, 51.1, 49.5, 33.4, 31.1, 30.0, 27.0, 23.0.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₈H₂₅NO) requires *m/z* 272.2009, found *m/z* 272.2009.

(3aj) 2-methyl-1-(1-methyl-1H-indol-3-yl)propan-1-one

crimson liquid, 18.1 mg, 45%

¹H NMR (400 MHz, CDCl₃) δ 8.51 – 8.31 (m, 1H), 7.73 (s, 1H), 7.40 – 7.27 (m, 3H), 3.84 (s, 3H), 3.31 (p, *J* = 6.8 Hz, 1H), 1.25 (d, *J* = 6.8 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 200.8, 137.4, 135.0, 126.5, 123.2, 123.2, 122.7, 122.4, 115.1, 109.4, 37.0, 33.4, 19.7.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₃H₁₅NO) requires *m/z* 202.1226, found *m/z* 202.1226.

(3ak) 1-(1-methyl-1H-indol-3-yl)-2-phenylethan-1-one

white crystal, 39.34 mg, 79%, m.p. 112-113 °C

¹H NMR (400 MHz, CDCl₃) δ 8.50 – 8.33 (m, 1H), 7.69 (s, 1H), 7.34 – 7.26 (m, 7H), 7.24 – 7.19 (m, 1H), 4.09 (s, 2H), 3.75 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 192.5, 137.3, 135.8, 135.7, 129.2, 128.5, 126.5, 126.5, 123.4, 122.6, 122.6, 116.0, 109.5, 46.8, 33.4.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₇H₁₅NO) requires *m/z* 250.1226, found *m/z* 250.1225.

(3al) 1-(1-methyl-1H-indol-3-yl)-2-phenylbutan-1-one

pink crystal, 35.0 mg, 63%, m.p. 166-168 °C

¹H NMR (400 MHz, CDCl₃) δ 8.49 – 8.44 (m, 1H), 7.69 (s, 1H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.30 – 7.23 (m, 5H), 7.18 (t, *J* = 7.2 Hz, 1H), 4.17 (t, *J* = 7.3 Hz, 1H), 3.73 (s, 3H), 2.34 – 2.22 (m, 1H), 1.94 – 1.82 (m, 1H), 0.93 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 195.2, 141.1, 137.3, 135.5, 135.3, 128.5, 127.9, 123.3, 122.8, 122.5, 116.4, 109.3, 57.0, 33.4, 26.9, 12.5.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₉H₁₉NO) requires *m/z* 278.1539, found *m/z* 278.1540.

(3am) 2,2-dimethyl-1-(1-methyl-1H-indol-3-yl)propan-1-one

brown crystal, 11 mg, 25%, m.p. 115-116 °C

¹H NMR (400 MHz, Chloroform-*d*) δ 8.57 – 8.45 (m, 1H), 7.79 (s, 1H), 7.34 – 7.28 (m, 3H), 3.85 (s, 3H), 1.42 (s, 9H).

 ^{13}C NMR (100 MHz, Chloroform-d) δ 201.98 , 136.42 , 128.22 , 123.37 , 123.19 , 122.45 , 112.70 , 109.17 , 44.05 , 33.46 , 28.94 .

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₄H₁₇NO) requires *m/z* 216.1383, found *m/z* 216.1382.

(3an) cyclobutyl(1-methyl-1H-indol-3-yl)methanone

light red crystal, 28.5 mg, 67%, m.p. 89-90 °C

¹H NMR (400 MHz, CDCl₃) δ 8.44 – 8.38 (m, 1H), 7.59 (s, 1H), 7.33 – 7.27 (m, 3H), 3.80 (s, 4H), 2.53 – 2.42 (m, 2H), 2.29 – 2.19 (m, 2H), 2.12 – 1.99 (m, 1H), 1.97 – 1.87 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 196.6, 137.3, 134.9, 126.4, 123.1, 122.5, 122.3, 114.7, 109.4, 43.0, 33.4, 25.2, 18.3.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₄H₁₅NO) requires *m/z* 214.1226, found *m/z* 214.1227.

(3ao) cyclopentyl(1-methyl-1H-indol-3-yl)methanone

dark brown liquid, 24.5 mg, 54%

¹H NMR (400 MHz, CDCl₃) δ 8.45 – 8.40 (m, 1H), 7.70 (s, 1H), 7.34 – 7.26 (m, 3H), 3.82 (s, 3H), 3.54 – 3.46 (m, 1H), 2.03 – 1.85 (m, 4H), 1.83 – 1.73 (m, 2H), 1.69 – 1.60 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 198.5, 137.4, 135.1, 126.5, 123.1, 122.6, 122.4, 116.2, 109.4, 47.8, 33.4, 30.5, 26.3.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₅H₁₇NO) requires *m/z* 228.1383, found *m/z* 228.1379.

(3ap) cyclohexyl(1-methyl-1H-indol-3-yl)methanone

aubergine crystal, 24.1 mg, 50%, m.p. 133-135 °C

¹H NMR (400 MHz, CDCl₃) δ 8.44 – 8.36 (m, 1H), 7.73 (s, 1H), 7.35 – 7.27 (m, 3H), 3.83 (s, 3H), 3.06 – 2.97 (m, 1H), 1.94 – 1.82 (m, 4H), 1.77 – 1.70 (m, 1H), 1.68 – 1.56 (m, 2H), 1.45 – 1.25 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 199.4, 137.5, 134.9, 126.5, 123.2, 122.69, 122.44, 115.39, 109.49, 47.78, 33.46, 33.40, 29.8, 26.0, 25.9.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₆H₁₉NO) requires m/z 242.1539, found m/z 242.1539.

(3aq) (1-methyl-1H-indol-3-yl)(phenyl)methanone

light red crystal, 18.3 mg, 39%, m.p. 108-109 °C

¹H NMR (400 MHz, CDCl₃) δ 8.55 – 8.39 (m, 1H), 7.82 (s, 1H), 7.80 (s, 1H), 7.57 – 7.44 (m, 4H), 7.39 – 7.32 (m, 3H), 3.83 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 190.8, 140.8, 137.9, 137.9, 137.4, 131.0, 128.6, 128.2, 127.1, 123.6, 122.6, 115.4, 109.5, 33.5.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₆H₁₃NO) requires *m/z* 236.1070, found *m/z* 236.1069.

(3ar) 4-(1-methyl-1H-indole-3-carbonyl)benzonitrile

brownish crystal, 14.6 mg, 28%, m.p. 204-206 °C

¹H NMR (400 MHz, CDCl₃) δ 8.41 − 8.36 (m, 1H), 7.89 − 7.84 (m, 2H), 7.79 − 7.74 (m, 2H), 7.47 (s, 1H), 7.42 − 7.35 (m, 3H), 3.87 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 188.6, 144.6, 137.9, 137.6, 132.8, 129.0, 126.8, 124.1, 123.2, 122.6, 118.3, 115.1, 114.4, 109.8, 33.7.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₇H₁₂N₂O) requires *m/z* 261.1022, found *m/z* 261.1025.

(3as)1-methyl-1H-indole-3-carbaldehyde

brownish crystal, 25 mg, 79%, m.p. 71-73 °C

¹H NMR (400 MHz, Chloroform-*d*) δ 9.95 (s, 1H), 8.32 – 8.27 (m, 1H), 7.62 (s, 1H), 7.36 – 7.29 (m, 3H), 3.83 (s, 3H).

¹³C NMR (100 MHz, Chloroform-d) δ 184.3, 139.2, 137.8, 125.2, 123.9, 122.8, 121.9, 117.9, 109.8,

33.6.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₀H₉NO) requires m/z 160.0757, found m/z 160.0759.

(3ba) 1-(4-fluoro-1-methyl-1H-indol-3-yl)-3-phenylpropan-1-one

brownish red crystal, 25.9 mg, 46%, m.p. 80-82 °C

¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 1H), 7.31 – 7.26 (m, 4H), 7.25 – 7.15 (m, 2H), 7.11 (d, *J* = 8.0 Hz, 1H), 6.99 – 6.93 (m, 1H), 3.80 (s, 3H), 3.31 – 3.25 (m, 2H), 3.12 – 3.07 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 193.6, 157.6, 155.1, 141.8, 140.3 (d, *J* = 11.0 Hz), 135.8, 128.4 (d, *J* = 8.0 Hz), 125.8, 123.8 (d, *J* = 8.0 Hz), 116.3 (d, *J* = 5.0 Hz), 113.8 (d, *J* = 20.0 Hz), 108.1 (d, *J* = 22.0 Hz), 105.9 (d, *J* = 4.0 Hz), 42.5 (d, *J* = 7.0 Hz), 33.8, 30.7.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₈H₁₆FN₅O) requires *m/z* 282.1289, found *m/z* 282.1288.

(3ca) 1-(4-chloro-1-methyl-1H-indol-3-yl)-3-phenylpropan-1-one

light yellow crystal, 42.1 mg, 71%, m.p. 82-84 °C

¹H NMR (400 MHz, CDCl₃) δ 7.49 (s, 1H), 7.29 – 7.22 (m, 5H), 7.20 – 7.14 (m, 3H), 3.72 (s, 3H), 3.20 – 3.13 (m, 2H), 3.12 – 3.04 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 193.7, 141.6, 139.1, 135.7, 128.4, 128.8, 127.2, 125.9, 123.7, 123.6, 123.3, 117.4, 108.3, 43.5, 33.5, 30.9.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₈H₁₆ClNO) requires *m*/*z* 298.0993, found *m*/*z* 298.0993.

(3da) 1-(1,4-dimethyl-1H-indol-3-yl)-3-phenylpropan-1-one

light yellow crystal, 31.1 mg, 56%, m.p. 95-96 °C

¹H NMR (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.31 – 7.28 (m, 1H), 7.27 – 7.23 (m, 3H), 7.22 – 7.16 (m, 2H), 7.10 (d, *J* = 8.0 Hz, 1H), 7.04 (d, *J* = 7.2 Hz, 1H), 3.72 (s, 3H), 3.18 – 3.12 (m, 2H), 3.11 – 3.05 (m, 2H), 2.85 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 193.5, 141.7, 138.2, 136.1, 133.6, 128.4, 125.9, 125.0, 124.3, 123.5, 118.2, 107.0, 42.3, 33.4, 31.2, 23.0.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₈H₁₇NO) requires *m/z* 278.1539, found *m/z* 278.1539.

(3ea) 1-(4-methoxy-1-methyl-1H-indol-3-yl)-3-phenylpropan-1-one

gray white crystal, 26.4 mg, 45%, m.p. 81-82 °C

¹H NMR (400 MHz, CDCl₃) δ 7.61 (s, 1H), 7.30 – 7.22 (m, 5H), 7.20 – 7.15 (m, 1H), 6.95 – 6.91 (m, 1H), 6.68 (d, J = 7.6 Hz, 1H), 3.91 (s, 3H), 3.74 (s, 3H), 3.42 – 3.37 (m, 2H), 3.10 – 3.04 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 196.2, 153.9, 142.1, 139.3, 134.4, 128.3, 128.3, 125.7, 123.8, 118.0, 115.1, 103.0, 102.5, 55.3, 43.6, 33.5, 31.1.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₉H₁₉NO₂) requires *m/z* 294.1489, found *m/z* 294.1485.

(3fa) 1-(5-chloro-1-methyl-1H-indol-3-yl)-3-phenylpropan-1-one

rufous crystal, 33.3 mg, 56%, m.p. 130-132 °C

¹H NMR (400 MHz, CDCl₃) δ 8.38 – 8.36 (m, 1H), 7.55 (d, *J* = 2.8 Hz, 1H), 7.31 – 7.28 (m, 1H), 7.27 – 7.23 (m, 3H), 7.21 – 7.16 (m, 2H), 7.16 – 7.12 (m, 1H), 3.73 (s, 3H), 3.11 – 3.05 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 194.0, 141.5, 135.9, 135.6, 128.4, 128.4, 127.1, 126.0, 123.5, 121.9, 115.7, 110.5, 41.3, 33.5, 30.5.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₈H₁₆ClNO) requires *m*/*z* 298.0993, found *m*/*z* 298.0991.

(3ga) 1-(5-bromo-1-methyl-1H-indol-3-yl)-3-phenylpropan-1-one

light pink crystal, 46.4 mg, 68%, m.p. 142-144 °C

¹H NMR (400 MHz, CDCl₃) δ 8.53 – 8.50 (m, 1H), 7.50 (d, J = 4.8 Hz, 1H), 7.33 – 7.27 (m, 2H), 7.27 – 7.23 (m, 3H), 7.21 – 7.16 (m, 1H), 7.09 – 7.04 (m, 1H), 3.71 (s, 3H), 3.09 – 3.05 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 193.9, 141.5, 135.7, 128.4, 127.6, 125.0, 124.9, 116.1, 115.66, 110.98, 41.31, 33.5, 30.5.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₈H₁₆BrNO) requires *m*/*z* 342.0488, found *m*/*z* 342.0486.

(3ha) 1-(5-methoxy-1-methyl-1H-indol-3-yl)-3-phenylpropan-1-one

dark red crystal, 32.3 mg, 55%, m.p. 72-74 °C

¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 2.8 Hz, 1H), 7.56 (s, 1H), 7.30 – 7.25 (m, 4H), 7.21 – 7.16 (m, 2H), 6.93 (dd, J = 8.8, 2.8 Hz, 1H), 3.89 (s, 3H), 3.74 (s, 3H), 3.15 – 3.07 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 194.4, 156.4, 141.7, 135.3, 132.3, 128.4, 127.1, 125.8, 115.9, 113.9, 113.8, 110.4, 110.3, 103.6, 55.6, 41.3, 33.7, 30.7.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₉H₁₉NO₂) requires m/z 294.1482, found m/z 294.1490.

(3ia) 1-(6-fluoro-1-methyl-1H-indol-3-yl)-3-phenylpropan-1-one

dark red crystal, 37.1 mg, 66%, m.p. 82-84 °C

¹H NMR (400 MHz, CDCl₃) δ 8.32 (dd, J = 8.8, 5.6 Hz, 1H), 7.56 (s, 1H), 7.31 – 7.22 (m, 4H), 7.21 – 7.16 (m, 1H), 7.06 – 7.00 (m, 1H), 6.94 (dd, J = 9.2, 2.0 Hz, 1H), 3.70 (s, 3H), 3.14 – 3.04 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 194.2, 161.5, 159.1, 141.61, 137.5 (d, J = 12.0Hz), 135.44, 128.4 (d, J = 4.0 Hz), 125.9, 123.6 (d, J = 10.0 Hz), 122.6, 116.4, 110.9 (d, J = 24.0 Hz), 96.2 (d, J = 26.0 Hz), 41.3, 33.4, 30.6.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₈H₁₆FN₅O) requires *m/z* 282.1289, found *m/z* 282.1290.

(3ja) 1-(6-bromo-1-methyl-1H-indol-3-yl)-3-phenylpropan-1-one

pink crystal, 52.5 mg, 77%, m.p. 127-128 °C

¹**H NMR (400 MHz, CDCl₃)** δ 8.24 (d, *J* = 8.4 Hz, 1H), 7.55 (s, 1H), 7.43 (d, *J* = 1.6 Hz, 1H), 7.37 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.31 – 7.23 (m, 4H), 7.21 – 7.16 (m, 1H), 3.72 (s, 3H), 3.15 – 3.10 (m, 2H), 3.10 – 3.05 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 194.2, 141.5, 138.1, 135.4, 128.4, 128.4, 126.0, 125.7, 125.0, 123.8, 116.9, 116.4, 112.7, 41.5, 33.5, 30.6.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₈H₁₆BrNO) requires *m/z* 342.0488, found *m/z* 342.0486.

(3ka) 1-(6-methoxy-1-methyl-1H-indol-3-yl)-3-phenylpropan-1-one

crimson liquid, 20.0 mg, 34%

¹H NMR (400 MHz, CDCl₃) δ 8.26 (dd, *J* = 8.8, 0.4 Hz, 1H), 7.52 (d, *J* = 1.2 Hz, 1H), 7.31 – 7.28 (m, 1H), 7.27 – 7.24 (m, 3H), 7.21 – 7.16 (m, 1H), 6.94 (dd, *J* = 8.8, 2.0 Hz, 1H), 6.74 (d, *J* = 2.0 Hz, 1H), 3.86 (s, 3H), 3.72 (s, 3H), 3.15 – 3.05 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 194.5, 157.3, 141.9, 138.4, 134.5, 128.5, 126.0, 123.4, 120.5, 116.5, 111.9, 93.4, 55.8, 41.5, 33.5, 31.0.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₉H₁₉NO₂) requires m/z 294.1489, found m/z 294.1485.

(3la) 1-(1-benzyl-5-bromo-1H-indol-3-yl)-3-phenylpropan-1-one

nacarat oil, 27.5 mg, 33%

¹**H NMR (400 MHz, CDCl₃)** δ 8.60 (d, *J* = 1.6 Hz, 1H), 7.63 (s, 1H), 7.34 – 7.26 (m, 5H), 7.26 – 7.22 (m, 3H), 7.20 – 7.15 (m, 1H), 7.12 – 7.07 (m, 3H), 5.26 (s, 2H), 3.15 – 3.10 (m, 2H), 3.10 – 3.05 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 194.2, 141.5, 135.6, 135.2, 135.1, 129.1, 128.4, 128.3, 128.0, 126.9, 126.5, 126.0, 125.3, 116.4, 111.5, 50.9, 41.5, 30.6.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₂₄H₂₀BrNO) requires *m/z* 418.0801, found *m/z* 418.0802.

(3ma) 1-(1H-indol-3-yl)-3-phenylpropan-1-one

rufous powder, 21.4 mg, 43%, m.p. 157-159 °C

¹H NMR (400 MHz, DMSO-*d*₆) δ 11.90 (s, 1H), 8.35 (d, *J* = 3.2 Hz, 1H), 8.22 – 8.19 (m, 1H), 7.47 – 7.44 (m, 1H), 7.32 – 7.24 (m, 4H), 7.23 – 7.14 (m, 3H), 3.22 – 3.16 (m, 2H), 3.00 – 2.95 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 194.3, 141.7, 136.7, 133.9, 128.4, 128.3, 125.8, 125.4, 122.7, 121.7, 121.4, 116.3, 112.1, 30.4.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₇H₁₅NO) requires *m/z* 250.1226, found *m/z* 250.1225.

(3na) 1-(4-chloro-1H-indol-3-yl)-3-phenylpropan-1-one

=0

dark red liquid, 27.7 mg, 49%

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.16 (s, 1H), 8.37 (d, *J* = 3.1 Hz, 1H), 7.46 – 7.41 (m, 1H), 7.31 – 7.24 (m, 4H), 7.20 – 7.14 (m, 3H), 3.26 - 3.20 (m, 2H), 2.99 - 2.92 (m, 2H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 192.9, 141.6, 138.8, 134.7, 128.5, 128.3, 125.8, 125.7, 123.6, 122.9, 122.5, 117.3, 111.2, 42.0, 30.4.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₇H₁₄ClNO) requires *m/z* 284.0837, found *m/z* 284.0844.

(3oa) 1-(4-methyl-1H-indol-3-yl)-3-phenylpropan-1-one

brown powder, 27.3 mg, 52%, m.p. 110-112 °C

¹H NMR (400 MHz, CDCl₃) δ 8.87 (s, 1H), 7.30 – 7.22 (m, 5H), 7.21 – 7.13 (m, 3H), 7.03 – 7.00 (m, 1H), 3.18 – 3.13 (m, 2H), 3.11 – 3.05 (m, 2H), 2.82 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 194.9, 141.5, 137.3, 133.2, 132.0, 128.5, 128.4, 126.0, 124.4, 124.1, 123.9, 119.7, 109.0, 42.4, 31.2, 23.0.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₈H₁₇NO) requires m/z 264.1383, found m/z 264.1381.

(3pa) 1-(5-chloro-1H-indol-3-yl)-3-phenylpropan-1-one

brown yellow powder, 26.6 mg, 47%, m.p. 188-189 °C

¹**H NMR (400 MHz, DMSO-** d_6) δ 12.10 (s, 1H), 8.43 (d, J = 2.8 Hz, 1H), 8.19 (d, J = 2.0 Hz, 1H), 7.48 (d, J = 8.8 Hz, 1H), 7.31 – 7.24 (m, 4H), 7.24 – 7.20 (m, 1H), 7.19 – 7.13 (m, 1H), 3.22 – 3.17 (m, 2H), 3.00 – 2.94 (m, 2H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 194.4, 141.6, 135.3, 135.2, 128.4, 128.3, 126.6, 126.5, 125.8, 122.8, 120.5, 115.9, 113.8, 39.0, 30.2.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₇H₁₄ClNO) requires *m/z* 284.0837, found *m/z* 284.0835.

(3qa) 1-(5-bromo-1H-indol-3-yl)-3-phenylpropan-1-one

brownish powder, 35.9 mg, 55%, m.p. 182-183 °C

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.11 (s, 1H), 8.41 (d, *J* = 2.8 Hz, 1H), 8.36 (d, *J* = 2.0 Hz, 1H), 7.44 (d, *J* = 8.4 Hz, 1H), 7.34 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.31 – 7.24 (m, 4H), 7.19 – 7.13 (m, 1H), 3.19 (t, *J* = 7.6 Hz, 2H), 2.96 (t, *J* = 7.6 Hz, 2H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 194.4, 141.6, 135.4, 135.1, 128.4, 128.2, 127.2, 125.8, 125.3, 123.5, 115.79, 114.5, 114.2, 38.9, 30.2.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₇H₁₄BrNO) requires *m/z* 328.0332, found *m/z* 328.0344.

(3ra) 1-(5-methyl-1H-indol-3-yl)-3-phenylpropan-1-one

white powder, 20.0 mg, 38%, m.p. 208-210 °C

¹H NMR (400 MHz, DMSO-*d*₆) δ 11.79 (s, 1H), 8.28 (d, *J* = 3.1 Hz, 1H), 8.02 (s, 1H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.31 – 7.24 (m, 4H), 7.19 – 7.14 (m, 1H), 7.02 (dd, *J* = 8.4, 2.0 Hz, 1H), 3.20 – 3.14 (m, 2H), 2.99 – 2.94 (m, 2H), 2.40 (s, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 194.2, 141.7, 135.0, 133.9, 130.4, 128.4, 128.2, 125.8, 125.7, 124.2, 121.2, 115.9, 111.7, 30.4, 21.4.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₈H₁₇NO) requires m/z 264.1383, found m/z 264.1386.

(3sa) 1-(6-methyl-1H-indol-3-yl)-3-phenylpropan-1-one

dark red oily liquid, 36.8 mg, 70%

¹H NMR (400 MHz, DMSO-*d*₆) δ 11.77 (s, 1H), 8.27 (d, *J* = 3.2 Hz, 1H), 8.07 (d, *J* = 8.0 Hz, 1H), 7.32 – 7.23 (m, 5H), 7.19 – 7.13 (m, 1H), 7.02 – 6.99 (m, 1H), 3.20 – 3.14 (m, 2H), 3.00 – 2.93 (m, 2H), 2.40 (s, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 194.1, 141.8, 137.1, 132.0, 128.4, 128.3, 125.8, 123.3, 121.1, 116.3, 111.8, 38.0, 30.4, 21.3.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₈H₁₇NO) requires m/z 264.1383, found m/z 264.1383.

(3ta) 3-phenyl-1-(2-phenyl-1H-indol-3-yl)propan-1-one

celadon crystal, 29.9 mg, 46%, m.p. 187-188 °C

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.09 (s, 1H), 8.22 – 8.18 (m, 1H), 7.62 – 7.58 (m, 2H), 7.56 – 7.51 (m, 3H), 7.45 – 7.42 (m, 1H), 7.26 – 7.15 (m, 4H), 7.13 – 7.08 (m, 1H), 6.99 – 6.94 (m, 2H), 2.84 – 2.78 (m, 2H), 2.76 – 2.71 (m, 2H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 195.7, 144.5, 141.4, 135.5, 132.8, 129.9, 129.3, 128.5, 128.2, 128.1, 127.1, 125.7, 122.9, 121.8, 121.6, 113.9, 111.7, 42.7, 30.4.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₂₃H₁₉NO) requires *m/z* 326.1539, found *m/z* 326.1540.

(3ua) 1-(2-methyl-1H-indol-3-yl)-3-phenylpropan-1-one

pink crystal, 41.0 mg, 78%, m.p. 141-142 °C

¹H NMR (400 MHz, DMSO-*d*₆) δ 11.83 (s, 1H), 8.02 − 7.96 (m, 1H), 7.39 − 7.34 (m, 1H), 7.20 − 7.10 (m, 3H), 3.21 (t, *J* = 7.2 Hz, 2H), 2.98 (t, *J* = 7.2 Hz, 2H), 2.68 (s, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 194.5, 144.1, 142.0, 134.8, 128.4, 126.7, 125.7, 121.7, 121.3, 120.6, 113.1, 111.2, 43.4, 29.7, 15.3.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₈H₁₇NO) requires *m/z* 264.1383, found *m/z* 264.1387.

(5aa) 1-(4-(dimethylamino)phenyl)-3-phenylpropan-1-one

transparent crystal, 7.59 mg, 15%, m.p. 76-78 °C

¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 – 7.85 (m, 2H), 7.32 – 7.23 (m, 4H), 7.22 – 7.16 (m, 1H), 6.66 – 6.61 (m, 2H), 3.22 – 3.17 (m, 2H), 3.04 (s, 8H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 197.3, 153.3, 141.8, 130.2, 128.4, 125.9, 124.9, 110.6, 39.9, 39.7, 30.7.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₇H₁₉NO) requires *m/z* 254.1539, found *m/z* 254.1538.

(7aa) 3-phenyl-1-(1H-pyrrol-2-yl)propan-1-one

light yellow solid, 22 mg, 55%, m.p 54-56 °C

¹H NMR (400 MHz, Chloroform-*d*) δ 9.77 (s, 1H), 7.32 – 7.22 (m, 4H), 7.22 – 7.17 (m, 1H), 6.92 – 6.89 (m, 1H), 6.28 – 6.23 (m, 1H), 3.15 – 3.01 (m, 4H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 189.7, 141.2, 131.7, 128.4, 126.1, 124.7, 116.2, 110.5, 39.57, 30.7.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₃H₁₃NO) requires *m/z* 200.1070, found *m/z* 200.1070.

(9aa) 3-phenyl-1-(3,4,5-trimethoxyphenyl)propan-1-one

transparent liquid, 16.2 mg, 27%

¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.48 (d, *J* = 8.8 Hz, 1H), 7.32 – 7.22 (m, 4H), 7.22 – 7.16 (m, 1H), 6.71 (d, *J* = 8.9 Hz, 1H), 3.92 (s, 3H), 3.90 (s, 3H), 3.86 (s, 3H), 3.32 – 3.25 (m, 2H), 3.06 – 2.99 (m, 2H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 199.9, 157.2, 153.9, 142.0, 141.6, 128.4, 125.9, 125.5, 107.1, 61.4, 60.8, 56.1, 44.6, 30.5.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₈H₂₀O) requires m/z 301.1434, found m/z 301.1433.

(11aa) 1-(3,4-dimethoxyphenyl)-3-phenylpropan-1-one

light yellow liquid, 6.48 mg, 12%

¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.53 (d, *J* = 1.9 Hz, 1H), 7.33 – 7.24 (m, 5H), 7.24 – 7.18 (m, 1H), 6.87 (d, *J* = 8.4 Hz, 1H), 3.94 (s, 3H), 3.93 (s, 3H), 3.29 – 3.24 (m, 2H), 3.09 – 3.04 (m, 2H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 197.8, 153.2, 149.0, 141.4, 130.1, 128.5, 126.1, 122.6, 110.1, 109.9, 56.0, 40.0, 30.4.

HRMS (ESI+): exact mass calculated for $[M+H]^+$ (C₁₇H₁₈O₃) requires *m/z* 271.1329, found *m/z* 271.1331.
Separate characterization of 3aa of table 4

2A 🔶 3aa

¹H NMR (400 MHz, Chloroform-*d*) δ 8.42 – 8.37 (m, 1H), 7.55 (s, 1H), 7.30 – 7.23 (m, 7H), 7.20 – 7.15 (m, 1H), 3.71 (s, 3H), 3.15 – 3.05 (m, 4H).

2B → 3aa

¹H NMR (400 MHz, Chloroform-*d*) δ 8.41 – 8.37 (m, 1H), 7.56 (s, 1H), 7.31 – 7.23 (m, 7H), 7.21 – 7.15 (m, 1H), 3.72 (s, 3H), 3.15 – 3.05 (m, 4H).

2C → 3aa

¹H NMR (400 MHz, Chloroform-*d*) δ 8.41 – 8.36 (m, 1H), 7.55 (s, 1H), 7.31 – 7.23 (m, 7H), 7.22 – 7.15 (m, 1H), 3.71 (s, 3H), 3.15 – 3.04 (m, 4H).

2D 🔶 3aa

¹H NMR (400 MHz, Chloroform-*d*) δ 8.41 – 8.36 (m, 1H), 7.56 (s, 1H), 7.31 – 7.22 (m, 7H), 7.20 – 7.15 (m, 1H), 3.72 (s, 3H), 3.15 – 3.05 (m, 4H).

2E → 3aa

¹H NMR (400 MHz, Chloroform-*d*) δ 8.41 – 8.36 (m, 1H), 7.55 (s, 1H), 7.30 – 7.22 (m, 7H), 7.20 – 7.15 (m, 1H), 3.71 (s, 3H), 3.15 – 3.05 (m, 4H).

2F → 3aa

¹H NMR (400 MHz, Chloroform-*d*) δ 8.42 – 8.37 (m, 1H), 7.65 (s, 1H), 7.34 – 7.25 (m, 7H), 7.22 – 7.16 (m, 1H), 3.80 (s, 3H), 3.23 – 3.08 (m, 4H).

2G 🔶 3aa

¹H NMR (400 MHz, Chloroform-*d*) δ 8.41 – 8.36 (m, 1H), 7.54 (s, 1H), 7.30 – 7.23 (m, 7H), 7.20 – 7.15 (m, 1H), 3.70 (s, 3H), 3.15 – 3.05 (m, 4H).

2H → 3aa

¹H NMR (400 MHz, Chloroform-*d*) δ 8.42 – 8.37 (m, 1H), 7.64 (s, 1H), 7.33 – 7.25 (m, 7H), 7.22 – 7.16 (m, 1H), 3.79 (s, 3H), 3.19 – 3.07 (m, 4H).

2I **→** 3aa

¹H NMR (400 MHz, Chloroform-*d*) δ 8.42 – 8.37 (m, 1H), 7.64 (s, 1H), 7.34 – 7.25 (m, 7H), 7.22 – 7.17 (m, 1H), 3.80 (s, 3H), 3.19 – 3.07 (m, 4H).

2J → 3aa

¹H NMR (400 MHz, Chloroform-*d*) δ 8.42 – 8.37 (m, 1H), 7.62 (s, 1H), 7.33 – 7.25 (m, 7H), 7.22 – 7.16 (m, 1H), 3.78 (s, 3H), 3.18 – 3.07 (m, 4H).

2K 🔶 3aa

¹H NMR (400 MHz, Chloroform-*d*) δ 8.41 – 8.37 (m, 1H), 7.61 (s, 1H), 7.32 – 7.24 (m, 7H), 7.21 – 7.16 (m, 1H), 3.77 (s, 3H), 3.18 – 3.07 (m, 4H).

2L →3aa

¹H NMR (400 MHz, Chloroform-*d*) δ 8.42 – 8.37 (m, 1H), 7.57 (s, 1H), 7.31 – 7.23 (m, 7H), 7.20 – 7.15 (m, 1H), 3.73 (s, 3H), 3.16 – 3.05 (m, 4H).

2M→ 3aa

¹H NMR (400 MHz, Chloroform-*d*) δ 8.41 – 8.37 (m, 1H), 7.57 (s, 1H), 7.31 – 7.23 (m, 7H), 7.20 – 7.15 (m, 1H), 3.74 (s, 3H), 3.16 – 3.05 (m, 4H).

2N 🔶 3aa

¹H NMR (400 MHz, Chloroform-*d*) δ 8.42 – 8.37 (m, 1H), 7.63 (s, 1H), 7.34 – 7.26 (m, 7H), 7.22 – 7.17 (m, 1H), 3.79 (s, 3H), 3.20 – 3.08 (m, 4H).

Recycling experiment characterization

2k-recycled

¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 – 7.26 (m, 4H), 7.25 – 7.21 (m, 1H), 3.65 (s, 2H), 3.49 (t, *J* = 6.8 Hz, 2H), 3.41 (t, *J* = 6.8 Hz, 2H), 1.95 – 1.87 (m, 2H), 1.87 – 1.79 (m, 2H).

Copies of NMR Spectra

S42

S45

Separate copies of ¹H NMR spectra of 3aa of table 4

References

1. J. Deruiter, B. E. Swearingen, V. Wandrekar, C. A. Mayfield, J. Med. Chem. 1989, 32, 1033.