Dimethylamine adducts of allylic triorganoboranes as effective reagents for Petasis-type homoallylation of primary amines with formaldehyde

Nikolai Yu. Kuznetsov, ${ }^{[a] *}$ Rabdan M. Tikhov, ${ }^{[a]}$ Tatiana V. Strelkova ${ }^{[a]}$ and Yuri N. Bubnov ${ }^{[a],[b]}$
${ }^{[a]}$ A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov 28, 119991, Moscow, Russian Federation. E-mail: nkuznff@ineos.ac.ru
${ }^{[b]}$ N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russian Federation.

Supporting Information

Table of content

Experimental procedures for synthesis of 1b-e	2-S4
Experimental procedures for the aminoallylation	S4-S13
Copies ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C} /{ }^{11} \mathrm{~B}$ spectra of adducts $\mathbf{1 b}$-e	..S14-S28
Copies ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ spectra of homoallylamines	S29-S5

General. The manipulations with sensitive to air compounds were carried out under inert atmosphere of dry Ar. NMR spectra were recorded on Bruker Avance-400 instrument. Chemical shifts are reported in ppm with the solvent resonance as the internal standard: ${ }^{1} \mathrm{H}\left(\mathrm{CHCl}_{3}, 7.26\right.$ ppm $),{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}, 77.16 \mathrm{ppm}\right),{ }^{1} \mathrm{H}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 7.16 \mathrm{ppm}\right),{ }^{13} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 128.06 \mathrm{ppm}\right),{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts are reported in ppm relative to $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$. Column chromatography was carried out using silica gel 60-230 mesh (Merck). Thin layer chromatography was run on AlugramSilG/UV 254 (Macherey-Nagel). Melting points were measured on a Stuart SMP10 capillary melting point apparatus. Triallylborane [1], triprenylborane [2] and triallylboranedimethylamine adduct [3] were prepared according to the described procedures.

Triprenylborane-dimethylamine adduct (1b)

To 2 M solution of $\mathrm{Me}_{2} \mathrm{NH}$ in THF ($8.5 \mathrm{ml}, 17 \mathrm{mmol}$) was added dropwise with stirring triprenylborane $(1.53 \mathrm{~g}, 1.95 \mathrm{ml}, 7.0 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$. The cooling bath was removed and all volatiles were removed in vacuum, first with water-jet pump followed by oil-pump that furnished pure adduct $\mathbf{1 b}(1.84 \mathrm{~g}, 100 \%)$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 5.49(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 3 \mathrm{H}, 3 \mathrm{CH}=), 2.50$ (br. s, $1 \mathrm{H}, \mathrm{NH}$), $1.77(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{Me}), 1.75\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}_{2} \mathrm{~N}\right), 1.68(\mathrm{~s}, 9 \mathrm{H}$, $3 \mathrm{Me}), 1.20\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 128.693 \mathrm{C}, 125.47$ 3C, 37.56 2C, 26.63 3C, 22.76 br. 3C, 18.07 3C. ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta-1.47 \mathrm{ppm}$. $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{BN}$ (263.27): calcd. C, 77.56; H, 13.02; N, 5.32; B, 4.11; found: C, 77.48; H, 12.94; N, 5.35; B, 4.00.

Synthesis of trans-cinnamyl(dipropyl)borane-dimethylamine adduct (1c)

trans-Cinnamyl(dipropyl)borane

$t \operatorname{BuLi}(1.4 \mathrm{M}, 12.8 \mathrm{ml}, 18 \mathrm{mmol})$ was added to a stirred solution of allylbenzene $(2.00 \mathrm{~g}, 16.0$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{ml})$ at -70 to $-60{ }^{\circ} \mathrm{C}$ and stirring was continued for 10 min and then for 40 min at -20 to $-10{ }^{\circ} \mathrm{C}$. The prepared solution of cinnamyllithium was added dropwise via syringe to a solution of $\mathrm{Pr}_{2} \mathrm{BCl}(2.38 \mathrm{~g}, 18.0 \mathrm{mmol})$ in pentane $(10 \mathrm{ml})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction
mixture was then allowed to warm to room temperature before quenching with $\mathrm{TMSCl}(5.1 \mathrm{~mL}$, $40.0 \mathrm{mmol})$. The solvents were removed under reduced pressure and the oily residue was stirred with n-hexane (10 mL) and supernatant was separated from the precipitate of LiCl . The n-hexane solution was concentrated, and vacuum distillation of the residue gave transcinnamyl(dipropyl)borane ($2.78 \mathrm{~g}, 81 \%$) as a colorless liquid, b.p. $94-96^{\circ} \mathrm{C}\left(0.1\right.$ Torr). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 6.41(\mathrm{dt}, J=7.6,15.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}=$), 6.31 (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CHPh}), 2.33$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=$), 1.53 (m., 4H, $2 \mathrm{CH}_{2}$), $1.31\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{~B}\right), 0.97\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 138.58,129.59,128.58$ 2C, 128.31,126.50, 125.77 2C, 33.87 br., 31.18 br. 2C, 18.01 2C, $17.632 \mathrm{C} \mathrm{ppm} .{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 85.24$ (s) ppm. NMR spectra coincide with the literature data [4].

trans-Cinnamyl(dipropyl)borane-dimethylamine adduct (1c)

To 2 M solution of $\mathrm{Me}_{2} \mathrm{NH}$ in THF ($8.0 \mathrm{ml}, \quad 16.0 \mathrm{mmol}$) was added transcinnamyl(dipropyl)borane $(2.46 \mathrm{~g}, 11.5 \mathrm{mmol})$ dropwise with stirring at $-20^{\circ} \mathrm{C}$. The cooling bath was removed and the solution was evaporated to dryness in vacuum to give adduct $\mathbf{1 c}(4.00 \mathrm{~g}$, 97%) as oil which was used without further purification. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.47(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 6.80(\mathrm{dt}, J=8.3$, $15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=$), 6.34 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CHPh}$), 2.31 (br. s, $1 \mathrm{H}, \mathrm{NH}$); 1.68-1.63 (d, $J=$ $5.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.50(\mathrm{dt}, J=24.2,12.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.47(\mathrm{dd}, J=12.4,7.8 \mathrm{~Hz}$, $2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 139.78,137.48,128.892 \mathrm{C}, 126.06,126.03,125.642 \mathrm{C}$, $36.94,29.26$ br., 25.80 br. 2C, 20.59 2C, $19.682 \mathrm{C} \mathrm{ppm} .{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta-1.55$ ppm. $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{BN}$ (259.24): calcd. C, 78.76; H, 11.66; N, 5.40; found: C, 78.50; H, 11.50; N, 5.28.

Triallylborane-1,4-diazabicyclo[2.2.2]octane adduct (1d)

To a solution of dried and recrystallized DABCO ($2.7 \mathrm{~g}, 24.1 \mathrm{mmol}$) in DCM (10 ml) was added triallylborane ($3.23 \mathrm{~g}, 4.17 \mathrm{ml}, 24.1 \mathrm{mmol}$) with stirring and cooling in an ice-bath. The solvent
was removed in vacuum to give adduct $\mathbf{1 d}(5.93 \mathrm{~g}, 100 \%)$ as white crystalline solid, m.p. 58-59 ${ }^{\circ} \mathrm{C}$ (under Ar in a sealed capillary) which is not sensitive to air at ambient temperature (20 min exposure). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.11-6.00(\mathrm{~m}, 3 \mathrm{H}, 3 \mathrm{CH}=), 4.78-4.70\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}=\right)$, $2.91\left(\mathrm{~s}, 12 \mathrm{H}, 6 \mathrm{CH}_{2} \mathrm{~N}\right), 1.32\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 143.80 3C, 110.71 3C, 46.26 br. 6C, 29.10 br. 3C ppm. ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.74$ ppm. $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{BN}_{2}$ (246.2): calcd. C, 73.18; H, 11.05; N, 11.38; B, 4.39; found: C, 73.21; H, 11.17; N, 11.31; B, 4.27.

Triallylborane-trimethylamine adduct (1e) [5]

A current of dry trimethylamine (from $\mathrm{Me}_{3} \mathrm{NHCl}$ and KOH) was passed through a solution of triallylborane ($2.0 \mathrm{ml}, 1.55 \mathrm{~g}, 11.6 \mathrm{mmol}$) in pentane (5 ml) upon cooling in an ice-bath. Then the solvent was evaporated under reduced pressure and the vessel was filled with argon to give the adduct $\mathbf{1 e}(2.24 \mathrm{~g}, 100 \%)$ as colorless, moderately pyrophoric liquid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{C}_{6} \mathrm{D}_{6}$): δ 6.18-6.07 (m, 3H, 3CH=), 4.89-4.81 (m, 6H, $3 \mathrm{CH}_{2}=$), $1.95(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{Me}) ; 1.38(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 144.15$ 3C, 110.62 3C, $49.293 \mathrm{C}, 29.73$ br. 3C ppm. ${ }^{11}$ B NMR ($128 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 0.98 \mathrm{ppm}$.

General procedure for homoallylation of primary amines with dimethylamine adducts of allylic triorganoboranes

To a solution of primary amine (1 mmol) in $\mathrm{MeOH}(0.5-0.8 \mathrm{ml})$ was added 37% solution of formaldehyde ($74-81 \mu \mathrm{~L}, 1.0-1.1 \mathrm{mmol}$). The mixture was left for 20 min to ensure complete formation of an aminal, followed by addition of an allylborane-dimethylamine adduct. The reaction was stirred for 30 min at ambient temperature and 1 h at $40^{\circ} \mathrm{C}$. The progress of the reaction was monitored by TLC and NMR. After completion the reaction mixture was concentrated on the rotavapor under reduced pressure. In case of volatile amine equivalent amount of 6 M HCl solution was added before eveporation. The dry residue was treated with $\mathrm{NaOH} 20 \%$ and extracted with a mixture of $\mathrm{Et}_{2} \mathrm{O} / n-\mathrm{C}_{5} \mathrm{H}_{12}$, organic layer was washed with NaOH 10%, dried with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and concentrated. The resulting oil was purified by FC to give corresponding homoallylamine derivative. Alternatevely amine was isolated as hydrochloride salt by treatment of its etheral solution with 4 M HCl in dioxane.

$\mathrm{N}, \mathrm{N}-\mathrm{Di}(3-b u t e n y l)$ amine hydrochloride (2a)

A solution of adduct $\mathbf{1 a}(0.72 \mathrm{~g}, 4.0 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{ml})$ was combined with methanolic 7 M $\mathrm{NH}_{3}(2.0 \mathrm{ml}, 14 \mathrm{mmol})$ followed by dropwise addition of 37% solution of formaldehyde $(0.88$ $\mathrm{ml}, 12.0 \mathrm{mmol}$) with stirring and external cooling with ice-bath. The obtained solution was heated on a water bath for 3 days at $55^{\circ} \mathrm{C}$, the progress of the reaction was monitored by ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR. When the signal of ammonia adduct ($\delta^{11} \mathrm{~B}-8.7 \mathrm{ppm}$) was disappeared $6 \mathrm{M} \mathrm{HCl}(5 \mathrm{ml}$, 30 mmol) was added and the volatiles were removed on the rotavapor under reduced pressure. The dry solid residue was extracted with boiling CHCl_{3} twice. Extracts were dried with MgSO_{4}, filtered and concentrated to give pure amine salt $\mathbf{2 a}(0.68 \mathrm{~g}, 70 \%)$ as white solid, m.p. 251-252 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.60$ (br. s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 5.76 (ddt, $J=13.0,10.5,6.7 \mathrm{~Hz}, 2 \mathrm{H}$, $2 \mathrm{CH}=$), $5.17-5.10\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}=\right), 3.10-2.87\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{NCH}_{2}\right), 2.67(\mathrm{dd}, J=14.8,6.8 \mathrm{~Hz}, 4 \mathrm{H}$, $2 \mathrm{CH}_{2} \mathrm{CH}=$) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 132.56$ 2C, 118.64 2C, 47.05 2C, 30.09 2C ppm. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{ClN}$ (161.67): C, 59.43 ; H, 9.98; N, 8.66; found: C, 59.42; H, 9.92; N, 8.70.

3-Butenylamine hydrochloride (2b)

4 M HCl solution in dioxane ($12 \mathrm{ml}, 48.0 \mathrm{mmol}$) was added to $\mathrm{MeOH}(45 \mathrm{ml})$ followed by addition of methanolic 7 M NH 3 ($33.0 \mathrm{ml}, 0.23 \mathrm{~mol}$). To this mixture 37% solution of formaldehyde ($0.88 \mathrm{ml}, 12.0 \mathrm{mmol}$) was added dropwise with stirring. After then adduct $\mathbf{1 a}$ (0.75 $\mathrm{g}, 4.2 \mathrm{mmol}$) was appended to the mixture and left for 3 days at $55^{\circ} \mathrm{C}$ in a sealed vessel. The progress of the reaction was monitored by ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR. When the signal of ammonia adduct ($\delta{ }^{11} \mathrm{~B}-8.7 \mathrm{ppm}$) was disappeared $6 \mathrm{M} \mathrm{HCl}(30 \mathrm{ml}, 0.18 \mathrm{~mol})$ was added and the volatiles were removed on the rotavapor under reduced pressure. The dry solid residue was extracted with boiling CHCl_{3} trice. Extracts were dried with MgSO_{4}, filtered and concentrated to give a mixture of mono- and dibutenylamine salts in molar ratio 4:1. The powder of hydrochlorides was covered with $\mathrm{Et}_{2} \mathrm{O} / n$-heptane (40 ml) and treated with $50 \% \mathrm{KOH}$. Organic extract was separated dried over pellets of KOH and distilled at atmospheric pressure. Distillate containing homoallylamine was cooled and treated with 4 M HCl in dioxane ($2.0 \mathrm{ml}, 8.0 \mathrm{mmol}$) to give hydrochloride salt of homoallylamine ($0.69 \mathrm{~g}, 54 \%$) as white crystalls. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta 8.21$ (br.s, $3 \mathrm{H}, \mathrm{NH}_{3}$); 5.79 (ddt, $J=16.9,10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=$); 5.15-5.05 (m, 2H, CH $\mathrm{CH}_{2}=$); 2.83-2.76 (m,
$2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}_{3}$), $2.34\left(\mathrm{dd}, J=14.8,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{2} \mathrm{CH}=\right) \mathrm{ppm}$. NMR spectra coincide with the literature data [6].

N -Allyl- N -(3-butenyl)amine hydrochloride (2c)

To a solution of allylamine ($0.46 \mathrm{~g}, 0.60 \mathrm{ml}, 8.0 \mathrm{mmol}$) in $\mathrm{MeOH}(1.8 \mathrm{ml})$ was added 37% formaldehyde ($0.37 \mathrm{ml}, 5.0 \mathrm{mmol}$) and the solution was left for 20 min followed by the addition of $\mathbf{1 a}$ adduct ($0.32 \mathrm{~g}, 1.8 \mathrm{mmol}$). After 30 min , the reaction mixture was heated on the water bath for 1 h at $40^{\circ} \mathrm{C}$ to complete the reaction. Dissolved amines were treated with 4 M HCl in dioxane $(2.5 \mathrm{ml}, 10.0 \mathrm{mmol})$ to avoid loss of the product during evaporation. The volatiles were removed under reduced pressure and the residue was treated with $20 \% \mathrm{NaOH}$, extracted with $\mathrm{Et}_{2} \mathrm{O} / n$ pentane (3:1). The combined extracts were dried with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and heated to evaporate allylamine at ambient pressure. The residual free amine was treated with 4.5 M HCl in $\mathrm{Et}_{2} \mathrm{O}$, precipitate was collected by filtration, dried in vacuum to give hydrochloride salt $\mathbf{2 c}$ ($0.58 \mathrm{~g}, 78 \%$), as white crystalline solid, m.p. $192-194{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.67$ (br.s, $2 \mathrm{H}, \mathrm{NH}_{2}$), $6.10-$ $6.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=), 5.77-5.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=), 5.48-5.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right), 5.15-5.08(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2}=$), 3.58 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}=$), 2.93 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}$), $2.62-2.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 132.53,127.78,124.14,118.60,49.65,45.61,30.08 \mathrm{ppm}$. NMR spectra coincide with the literature data [7].

N-Allyl- N-(2,2-dimethyl-3-butenyl)amine hydrochloride (2d)

To a solution of allylamine ($0.114 \mathrm{~g}, 0.15 \mathrm{ml}, 2.0 \mathrm{mmol}$) in $\mathrm{MeOH}(0.6 \mathrm{ml})$ was added 37% formaldehyde ($74 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) and the solution was left for 20 min followed by addition of $\mathbf{1 b}$ adduct ($0.105 \mathrm{~g}, 0.4 \mathrm{mmol}$). After 30 min , the reaction mixture was heated on the water bath for 1 h at $40^{\circ} \mathrm{C}$ to complete the reaction. The volatiles were removed under reduced pressure and the residue was treated with $20 \% \mathrm{NaOH}$, extracted with $\mathrm{Et}_{2} \mathrm{O} / n$-pentane (3:1)., extracts were dried with $\mathrm{K}_{2} \mathrm{CO}_{3}$, evaporated and the product was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and transferred to hydrochloride by addtion of 4 M HCl in dioxane ($0.3 \mathrm{ml}, 1.2 \mathrm{mmol}$). The mixture was evaporated, triturated in $\mathrm{Et}_{2} \mathrm{O}$. The precipitate was filtered, washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuum to give $\mathbf{2 d}$ ($139 \mathrm{mg}, 79 \%$) as white powder, m.p. $135-136{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz ,
CDCl_{3}): $\delta 9.19$ (br. s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 6.07 (ddt, $J=14.2,10.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}={ }_{\text {allyl }}$), 5.83 (dd, $J=$ $17.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=$ prenyl$), 5.45-5.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}={ }_{\text {allyl }}\right.$), $5.18-5.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}={ }_{\text {prenyl }}\right), 3.62$ (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{\text {allyl }}$), $2.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{\text {prenyl }}\right), 1.19$ ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{Me}$) ppm. ${ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 142.98,128.30,124.29,115.16,55.87,51.05,36.42,25.182 \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{ClN}$ (175.7): C, 61.52; H, 10.33; N, 7.97; found: C, 61.48; H, 10.34; N, 7.93.

N-(But-3-enyl)hepta-1,6-dien-4-amine hydrochloride (2e)

The reaction was performed following the procedure described for 2d. Hepta-1,6-dien-4-amine $(0.56 \mathrm{~g}, 5.0 \mathrm{mmol}), 1 \mathrm{a}(0.39 \mathrm{~g}, 2.2 \mathrm{mmol}), 37 \% \mathrm{CH}_{2} \mathrm{O}(0.48 \mathrm{~g}, 0.44 \mathrm{ml}, 6.0 \mathrm{mmol})$ in $\mathrm{MeOH}(1.8$ $\mathrm{ml})$ that gave $2 \mathrm{e}(0.81 \mathrm{~g}, 80 \%)$ as white powder, m.p. $72-73{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 9.46 (br. s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 5.81 (ddt, $J=17.3,10.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{CH}=$), 5.71 (ddt, $J=16.9,10.2,6.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}=$), 5.19-5.15 (m, 4H, 2CH2$=$), 5.13-5.05 (m, 2H, CH2 $=$), $3.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHN}), 3.00(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 2.73-2.62 (m, 4H, ($\left.\mathrm{CH}_{2}\right)_{2} \mathrm{CHN}$), $2.53\left(\mathrm{dt}, J=14.7,7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$) ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 132.79,132.03$ 2C, $120.042 \mathrm{C}, 118.31,57.14,44.53,34.532 \mathrm{C}$, 30.10 ppm. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{ClN}$ (201.74): C, $65.49 ; \mathrm{H}, 9.99$; N, 6.94; found: C, $65.51 ; \mathrm{H}$, 9.94; N, 6.97.

(R)- N-(-1-Phenylethyl)but-3-en-1-amine (2f)

To a solution $(R)-1$-phenylethylamine $(0.121 \mathrm{~g}, 0.128 \mathrm{ml}, 1.0 \mathrm{mmol})$ in $\mathrm{MeOH}(0.5 \mathrm{ml})$ was added 37% formaldehyde $(81 \mu \mathrm{~L}, 1.1 \mathrm{mmol})$ and $\operatorname{DABCO}(0.11 \mathrm{~g}, 1.0 \mathrm{mmol})$ then the mixture was left for 20 min followed by the addition of adduct $\mathbf{1 a}(68 \mathrm{mg}, 0.38 \mathrm{mmol})$. The reaction mixture was stirred for 1 h at $25^{\circ} \mathrm{C}$ and 1 h at $40^{\circ} \mathrm{C}$, the progress of the reaction was monitored by NMR. After completion all volatiles were removed under reduced pressure and the residue was treated with $20 \% \mathrm{NaOH}$, extracted with $\mathrm{Et}_{2} \mathrm{O} / n$-pentane (3:1), extracts were washed with water, dried with $\mathrm{K}_{2} \mathrm{CO}_{3}$, evaporated and the residual oil was subjected to chromatography (n hexane/EtOAc, 1:1) that afford $\mathbf{2 f}(0.146 \mathrm{~g}, 82 \%)$ as oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-$ 7.29 (m, 4H, Ph), 7.28-7.21 (m, 1H, Ph), 5.76 (ddt, $J=17.0,10.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=$), $5.14-4.98$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}=$), $3.77(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHPh}$), 2.63-2.47 (m, 2H, CH2N), $2.24(\mathrm{q}, J=6.7 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=$), 1.36 (d, $J=6.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Me}$ and NH) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ
$145.80,136.60,128.45$ 2C, $126.89,126.60$ 2C, 116.35, $58.29,46.75,34.41,24.41 \mathrm{ppm}$. NMR spectra coincide with the literature data [8].

(R)-2-(But-3-enylamino)-2-phenylethanol (2g)

To a solution of (R)-phenylglycinol $(0.137 \mathrm{~g}, 1.0 \mathrm{mmol})$ in $\mathrm{MeOH}(0.5 \mathrm{ml})$ was added 37% formaldehyde ($81 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) with stirring, after 2 min (before starting of precipitation) 1a $(68 \mathrm{mg}, 0.38 \mathrm{mmol})$ was added. The reaction mixture was heated at $50^{\circ} \mathrm{C}$ for 1 h , and then evaporated under reduced pressure. To the oily residue $5 \% \mathrm{NaOH}$ was added and extracted with n-hexane ($5 \mathrm{ml} \times 3$). The combined extracts were washed with $10 \% \mathrm{NaOH}$, dried with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and evaporated to dryness to give pure amine $\mathbf{2 g}(0.153 \mathrm{~g}, 80 \%)$ as oil, which was crystallized upon cooling, m.p. $55-56{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}-63.9\left(\mathrm{C}, 1.5\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ [lit. [9] m.p. $46-48{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}-57.4$ (C, 1.5 in CHCl_{3}); [10] m.p. $46{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}-64.9\left(\mathrm{C}, 0.5\right.$ in $\left.\left.\mathrm{CHCl}_{3}\right)\right] .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.34-7.27(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 5.78$ (ddt, $J=17.0,10.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}=$), $5.14-5.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right), 3.80(\mathrm{dd}, J=8.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}), 3.73(\mathrm{dd}, J=10.8,4.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.58\left(\mathrm{dd}, J=10.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \underline{H}_{\mathrm{B}} \mathrm{OH}\right), 2.70-2.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.27(\mathrm{q}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=$) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.68,136.35,128.65,127.60$, $127.29,116.59,66.69,64.66,46.37,34.34$. NMR spectra coincide with the literature data [9 , 10].

(S)-2-(But-3-enylamino)-3-phenylpropanoic acid (2h)

(S)-Phenylalanine ($0.165 \mathrm{~g}, 1.0 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(3.6 \mathrm{ml})$ containing MeONa (0.3 $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.21 \mathrm{~g}, 0.292 \mathrm{ml}, 2.1 \mathrm{mmol})$, to this solution was added 37% formaldehyde (81 $\mu \mathrm{L}, 1.1 \mathrm{mmol})$ with stirring. After 10 min adduct $1 \mathrm{a}(68 \mathrm{mg}, 0.38 \mathrm{mmol})$ was added and the mixture was left for 3 h at $25^{\circ} \mathrm{C}$. Neutralization of excess of $\mathrm{Et}_{3} \mathrm{~N}$ was performed by addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution, after that $\mathbf{2 h}$ was precipitated of the solution. The precipitate was filtered washed successively with chilled aqueous MeOH and $\mathrm{Et}_{2} \mathrm{O}$ to furnish pure aminoacid $\mathbf{2 h}(0.208$ g, 95%) as white crystals, m.p. $266{ }^{\circ} \mathrm{C}$ (sub.), $[\alpha]_{\mathrm{D}}{ }^{25}+28.9$ (C, 1 in 6 M HCl). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O} / \mathrm{DCl}\right): \delta 6.75-6.53(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 5.09-5.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=), 4.48-4.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right)$,
$3.62(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}), 2.65\left(\mathrm{dd}, J=14.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 2.57(\mathrm{dd}, J=14.3,7.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \underline{\mathrm{H}}_{\mathrm{B}} \mathrm{Ph}\right), 2.46\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 1.72\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{D}_{2} \mathrm{O} / \mathrm{DCl}\right): ~ \delta 169.69,132.98,132.00,128.86$ 2C, 128.64 2C, 127.52, 118.40, 60.24, 45.37, 34.21, 29.16 ppm. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}$ (219.28): C, 71.21; H, 7.81; N, 6.39; found: C, $71.25 ; \mathrm{H}, 7.80 ; \mathrm{N}, 6.39$.

N-(But-3-enyl)benzenamine (2i)

To a solution of aniline ($0.14 \mathrm{~g}, 1.5 \mathrm{mmol}$) in $\mathrm{MeOH}(0.6 \mathrm{ml})$ was added 37% solution of formaldehyde ($0.118 \mathrm{ml}, 0.129 \mathrm{~g}, 1.6 \mathrm{mmol}$), DABCO ($0.17 \mathrm{~g}, 1.5 \mathrm{mmol}$) and after 20 min adduct $\mathbf{1 a}(97 \mathrm{mg}, 0.54 \mathrm{mmol})$ was added to the solution. The mixture was left for 30 min at 25 ${ }^{\circ} \mathrm{C}$, and 1 h at $40^{\circ} \mathrm{C}$, after then evaporated under reduced pressure. The resulting oil was treated with $10 \% \mathrm{NaOH}$ and extracted with n-pentane ($5 \mathrm{ml} \times 3$), dried with $\mathrm{K}_{2} \mathrm{CO}_{3}$, evaporated and purified by FC $\left(\mathrm{R}_{\mathrm{f}}=0.67, n-\mathrm{C}_{6} \mathrm{H}_{14} / \mathrm{EtOAc}, 4: 1\right)$ to give amine $\mathbf{2 i}(0.196 \mathrm{~g}, 89 \%)$ as yellowish oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 6.80(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 6.70$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}$), 5.92 (ddt, $J=17.0,10.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=$), $5.26-5.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right.$), 3.74 (br. s, $1 \mathrm{H}, \mathrm{NH}$), $3.26\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.$), 2.47 (q, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=$) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.33$, 135.88, 129.32 2C, 117.42, 117.15, 112.96 2C, 42.86, 33.70 ppm. NMR spectra coincide with the literature data [11].

N-(But-3-enyl)benzene-1,2-diamine (2j)

The reaction was performed following the procedure described for $\mathbf{2 f}$. o-Phenylenediamine ($0.108 \mathrm{~g}, 1.0 \mathrm{mmol}$), 37% formaldehyde ($81 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$), DABCO ($0.11 \mathrm{~g}, 1.0 \mathrm{mmol}$), 1a (68 $\mathrm{mg}, 0.38 \mathrm{mmol})$ and $\mathrm{MeOH}(0.6 \mathrm{ml})$. According to ${ }^{1} \mathrm{H}$ NMR the reaction mixture consisted of $\mathbf{2 j}: 1,2-\mathrm{di}$ (homoallylamine)-derivative in ratio 4.2:1. The mixture was separated by $\mathrm{FC}\left(\mathrm{R}_{\mathrm{f}}=0.21\right.$, $n-\mathrm{C}_{6} \mathrm{H}_{14} / \mathrm{EtOAc}, 4: 1$) to give $\mathbf{2 j}\left(97 \mathrm{mg}, 60 \%\right.$) as yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 6.96-6.89 (m, 1H, Ph), 6.82-6.73 (m, 3H, Ph), 5.94 (ddt, $J=17.0,10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=$), 5.31-5.16 (m, 2H, CH2 $=$), 3.39 (br. s, $3 \mathrm{H}, \mathrm{NH}_{2}$ and NH), $3.24\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.$), $2.50(\mathrm{q}$,
$J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=$) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 137.71,135.98,134.21,120.60$, $118.50,116.91,116.38,111.71,43.06,33.74 \mathrm{ppm}$. NMR spectra coincide with the literature data [12].

N-(3-Butenyl)-1-adamantanamine (2k)

The reaction was performed following the procedure described for 2f. 1-Adamantaneamine ($0.151 \mathrm{~g}, 1.0 \mathrm{mmol}$), 37% formaldehyde ($81 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$), DABCO ($0.11 \mathrm{~g}, 1.0 \mathrm{mmol}$), $1 \mathbf{1 a}$ (68 $\mathrm{mg}, 0.38 \mathrm{mmol})$ and $\mathrm{MeOH}(0.6 \mathrm{ml})$. The mixture was separated by FC in EtOAc to give $\mathbf{2 k}$ (80 $\mathrm{mg}, 39 \%$) as oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.74$ (ddt, $J=17.2,10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=$), $5.07\left(\mathrm{dd}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}=\right), 5.00\left(\mathrm{dd}, J=10.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \underline{H}_{\mathrm{B}}=\right), 2.62(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 2.19 (q, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=$), 2.03 ($\mathrm{s}, 3 \mathrm{H}, 3 \mathrm{CH}(\mathrm{Ad})$), 1.69-1.52 (m, $12 \mathrm{H}, 6 \mathrm{CH}_{2}(\mathrm{Ad})$), 1.06 (br. s, NH) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 136.85,116.33,50.33$, 42.87 3C, 39.47, 36.86 3C, 35.22, 29.67 3C ppm. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}$ (205.34): C, 81.89; H, 11.29; N, 6.82; found: C, 81.85; H, 11.42; N, 6.69.

N-(But-3-en-1-yl)-1-cyclohexyl-1H-pyrazol-5-amine (21)

The reaction was performed following the procedure described for 2f. 1-Cyclohexyl-1H-pyrazol5 -amine ($0.165 \mathrm{~g}, 1.0 \mathrm{mmol}$), 37% formaldehyde ($81 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$), DABCO ($0.11 \mathrm{~g}, 1.0$ $\mathrm{mmol})$, $\mathbf{1 a}(68 \mathrm{mg}, 0.38 \mathrm{mmol})$ and $\mathrm{MeOH}(0.6 \mathrm{ml})$. The mixture was separated by $\mathrm{FC}(n-$ $\mathrm{C}_{6} \mathrm{H}_{14} / \mathrm{EtOAc}, 1: 1$) to give $2 \mathrm{l}(0.136 \mathrm{~g}, 62 \%)$ as yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28$ (s, 1H, Pyr), 5.80 (ddt, $J=17.1,10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=$), 5.44 (s, 1H, Pyr), 5.16-5.07 (m, 2H, $\mathrm{CH}_{2}=$), 3.73 (ddd, $\left.J=15.1,9.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}\right), 3.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3.12(\mathrm{q}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}$), $2.37\left(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\right.$), $1.93-1.78\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.68(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.42-1.16\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \underline{\mathrm{H}}_{\mathrm{B}}\right.$ and $\left.\mathrm{CH}_{2}\right) \mathrm{ppm}$. Several signals are broaden and splitted, because of dynamic process in the molecule, ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.62$, (138.11, 137.98), 135.56, 117.38, 88.33, (55.95, 55.85), 45.03, 33.71, 32.26 2C, 25.78 br. 2C, 25.36 ppm. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{3}$ (219.33): C, 71.19; H, 9.65; N, 19.16; found: C, 71.00; H, 9.71; N, 18.99.

4-Bromo-1-cyclohexyl-1H-pyrazol-5-amine

To a chilled to $0^{\circ} \mathrm{C}$ solution of 1-cyclohexyl-1 H -pyrazol-5-amine ($1.39 \mathrm{~g}, 8.45 \mathrm{mmol}$) in DCM $(25 \mathrm{ml})$ NBS $(1.58 \mathrm{~g}, 8.87 \mathrm{mmol})$ was added portionwise. The mixture was stirred for 2 h at rt . The reaction mixture was concentrated, dissolved in $\mathrm{Et}_{2} \mathrm{O} / n$-hexane and stirred with $10 \% \mathrm{NaOH}$ $(6 \mathrm{ml})$. Organic layer was washed with water and dried with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and evaporated that give rise to solid residue which was recrystallized from EtOAc / n-hexane mixture to give bromopyrazole ($1.47 \mathrm{~g}, 71 \%$) as beige transparent crystals, m.p. $111-112{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.30 (br. s, 1H, CH= Pyr), 3.90 (br. s, $1 \mathrm{H}, \mathrm{CH}$), 3.62 (br. s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 1.90-1.73 (br. m, 7 H , chexyl), 1.36 (br. m, 3H, c-hexyl) ppm. Several signals are broaden and splitted ${ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.05$, (137.51 and 137.40), $78.49,57.25,32.13 \mathrm{br}$. 2C, 25.68 br 2 $2 \mathrm{C}, 25.25 \mathrm{br}$. ppm. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{BrN}_{3}$ (244.13): C, 44.28; H, 5.78; N, 17.21; found: C, 44.39; H, 5.84; N, 17.18.

4-Bromo-N-(but-3-en-1-yl)-1-cyclohexyl-1H-pyrazol-5-amine (2m)

The reaction was performed following the procedure described for 2f. 4-Bromo-1-cyclohexyl$1 H$-pyrazol-5-amine ($0.794 \mathrm{~g}, 3.25 \mathrm{mmol}$), 37% formaldehyde ($0.239 \mathrm{ml}, 3.25 \mathrm{mmol}$), DABCO $(0.39 \mathrm{~g}, 3.5 \mathrm{mmol}), 1 \mathbf{a}(0.21 \mathrm{~g}, 1.17 \mathrm{mmol})$ and $\mathrm{MeOH}(1.8 \mathrm{ml})$. The mixture was separated by FC ($n-\mathrm{C}_{6} \mathrm{H}_{14} / \mathrm{EtOAc}, 5: 1$) to give $\mathbf{2 m}(0.268 \mathrm{~g}, 28 \%)$ as yellow oil and starting bromopyrazol ($0.46 \mathrm{~g}, 58 \%$) as solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33$ (s, 1H, Pyr), 5.81 (ddt, $J=17.1$, $10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=)$, $5.18-5.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right.$), 4.06 (tt, $J=10.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}$), 3.14$2.99\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.$ and NH), $2.31\left(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\right), 1.93-1.77\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.69$ $\left(\mathrm{d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right.$), 1.44-1.16 (m, $3 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$ and CH_{2}) ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3} : $\delta 143.30,138.09,135.36,117.55,84.22,56.84,48.10,34.73,32.722 \mathrm{C}, 25.832 \mathrm{C}$, 25.30. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{BrN}_{3}$ (298.23): C, 52.36 ; $\mathrm{H}, 6.76$; $\mathrm{N}, 14.09$; found: $\mathrm{C}, 52.64 ; \mathrm{H}$, 6.77; N, 13.97.

Synthesis of 2m through the bromination of 21.

To a solution of N-butenylpyrazol $21(0.118 \mathrm{~g}, 0.54 \mathrm{mmol})$ in DCM (3 ml) cooled in an ice bath NBS ($96 \mathrm{mg}, 0.54 \mathrm{mmol}$) was added at $5{ }^{\circ} \mathrm{C}$, after then cooling bath was removed and the
mixture was stirred at rt for 5 min . The progress of the reaction was monitored by TLC (EtOAc $/ n-\mathrm{C}_{6} \mathrm{H}_{14}, 1: 5$). In order to remove succinimide $20 \% \mathrm{NaOH}$ was added and the mixture was vigorously stirred for 15 min . Organic layer was separated, washed with water, dried with $\mathrm{K}_{2} \mathrm{CO}_{3}$, evaporated and purified by FC to give bromide $\mathbf{2 m}(0.148 \mathrm{~g}, 92 \%)$ as yellow oil.

trans- N-Allyl-4-phenylbut-3-en-1-amine hydrochloride (2n)

The reaction was performed following the procedure described for $\mathbf{2 d}$. Allylamine $(0.114 \mathrm{~g}, 0.15$ $\mathrm{ml}, 2.0 \mathrm{mmol}), 37 \%$ formaldehyde ($81 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$), $\mathbf{1 c}(0.285 \mathrm{~g}, 1.1 \mathrm{mmol})$ and $\mathrm{MeOH}(0.6$ ml), the reaction mixture was stirred for 30 min at rt , after then evaporated under reduced pressure. The product was extracted with n-hexane, the combined extracts were washed with $20 \% \mathrm{NaOH}$, dried with $\mathrm{K}_{2} \mathrm{CO}_{3}$, evaporated. The residue was taken up in $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{ml})$ and treated with HCl 3 M in $\mathrm{Et}_{2} \mathrm{O}(0.4 \mathrm{ml}, 1.2 \mathrm{mmol})$, the separated oil gradually crystallized that give 2 n ($0.182 \mathrm{~g}, 74 \%$) as white powder, m.p. $168-169{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.76(\mathrm{~s}, 2 \mathrm{H}$, NH_{2}), 7.48-7.12 (m, 5H, Ph), $6.51(\mathrm{dd}, J=15.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}=), 6.29-5.98(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}=$ ally $1 \mathrm{and} \mathrm{CH}=\mathrm{CHPh}), 5.62-5.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right), 3.64-3.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{\text {ally }}\right), 3.04(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}$), $2.82\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 136.70,133.60,128.612 \mathrm{C}$, 127.77, 127.65, $126.342 \mathrm{C}, 124.19,123.92,49.68,45.97,29.54 \mathrm{ppm}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ClN}$ (223.74): C, 69.79; H, 8.11; N, 6.26; found: C, 69.64; H, 7.94; N, 6.34.

(R, E)-4-Phenyl- N-(1-phenylethyl)but-3-en-1-amine (20)

and a mixture of (2S)- and (2R)-2-phenyl- N-[(1R)-1-phenylethyl]-3-buten-1-amines (2p)

To a solution of (R)-1-phenylethylamine $(0.121 \mathrm{~g}, 0.128 \mathrm{ml}, 1.0 \mathrm{mmol})$ in $\mathrm{MeOH}(0.8 \mathrm{ml})$ was added 37% formaldehyde $(81 \mu \mathrm{~L}, 1.1 \mathrm{mmol})$ and $\operatorname{DABCO}(0.11 \mathrm{~g}, 1.0 \mathrm{mmol})$ the mixture was
stirred for 20 min at rt , after then cooled to $-20^{\circ} \mathrm{C}$ followed by the addition of adduct $\mathbf{1 c}(0.285$ $\mathrm{g}, 1.1 \mathrm{mmol}$) with stirring for 1 h . All volatiles were removed under reduced pressure and the residue was treated with $10 \% \mathrm{NaOH}$, extracted with n-hexane, the combined extracts were washed with $3 \% \mathrm{NaOH}$, dried with $\mathrm{K}_{2} \mathrm{CO}_{3}$, evaporated and the residual oil was subjected to chromatography (EtOAc) that afford in upper fraction a mixture of diastereomers (2.5:1) $\mathbf{2 p}$ $(0.136 \mathrm{~g}, 54 \%)$ as oil, $\mathrm{R}_{\mathrm{f}}=0.6(\mathrm{EtOAc})$ and in lower fraction amine $2 \mathrm{o}(55 \mathrm{mg}, 22 \%)$ as oil, $\mathrm{R}_{\mathrm{f}}=$ 0.39 (EtOAc).

20: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.22(\mathrm{~m}, 10 \mathrm{H}, 2 \mathrm{Ph}), 6.48(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}=)$, $6.19\left(\mathrm{dt}, J=15.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\right.$), $3.84(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{MeCH}), 2.68$ (ddd, $J=18.2$, $11.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}$), $2.64\left(\mathrm{ddd}, J=18.2,11.4,5.8 \mathrm{~Hz}, 1 \mathrm{H} \mathrm{CH}_{\mathrm{A}} \underline{\mathrm{H}}_{\mathrm{B}} \mathrm{N}\right.$), $2.43(\mathrm{q}, J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.98 (br. s, $1 \mathrm{H}, \mathrm{NH}$), 1.41 (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $145.57,137.57,131.66,128.57$ br. 4C, $128.29,127.10$ br. 4C, 126.71 br., 126.10 br., (58.44, 58.36), 47.12, 33.67, (24.61, 24.37, 24.12) ppm. HRMS (ESI): calcld for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ 252.1747; found: 252.1751 .

2p: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51-7.11(\mathrm{~m}, 10 \mathrm{H}, 2 \mathrm{Ph}), 6.12-5.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=) 5.25-5.00$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}=$), 3.93-3.70 (m, 1H, PhCHN), 3.67-3.41 (m, 1H, PhCH), 2.92-2.68 (m, 2H, CH $)_{2}$), 1.65 (br. s, $1 \mathrm{H}, \mathrm{NH}$), $1.38-1.35$ (m, 3H, Me) ppm. HRMS (ESI): calcld for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ 252.1747; found: 252.1751.

References:

[^0]
${ }^{11} \mathrm{~B}, \mathrm{CDCl}_{3}, 128 \mathrm{MHz}$

${ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

${ }^{11} \mathrm{~B}, \mathrm{CDCl}_{3}, 128 \mathrm{MHz}$

1	T	1	1	1	1	1	1	1	1	1	1	1	1	1	1
120	110	100	90	80	70	60	50	$\begin{gathered} 40 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	30	20	10	0	-10	-20	-30

		¢ $\stackrel{\text { ¢ }}{\text { ¢ }}$	
11	4		$11<$

${ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}$

${ }^{11} \mathrm{~B}, \mathrm{C}_{6} \mathrm{D}_{6}, 128 \mathrm{MHz}$

${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}$

${ }^{11} \mathrm{~B}, \mathrm{C}_{6} \mathrm{D}_{6}, 128 \mathrm{MHz}$

${ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{11} \mathrm{~B}, \mathrm{CDCl}_{3}, 128 \mathrm{MHz}$

${ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

${ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

${ }^{1} \mathrm{H}, \mathrm{DMSO}-\mathrm{D}_{6}, 400 \mathrm{MHz}$

11	＋	

$\mathrm{H}_{2}{ }^{+} \mathrm{Cl}^{-}$
${ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

T	T	1	T	1		1	T		1	1	1	1	1	1	1	1	1	1	1	T
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	－10
										pp										

${ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

$$
\iiint \int
$$

${ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

${ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

${ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

-169.6885

$f^{132.9831} \begin{aligned} & 131.9988 \\ & 128.8634 \\ & 128.6447 \\ & 127.5218 \\ & -118.4001\end{aligned}$

${ }^{13} \mathrm{C}, \mathrm{D}_{2} \mathrm{O} / \mathrm{DCl}, 101 \mathrm{MHz}$

${ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

${ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

${ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

${ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

	1	T	1	1	1	1	T		1	1	1	1	1	T	1	1	1	1	1	T
190	180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f1}(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0	-10

${ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

	1	1					1	T	1		1	1	1		1	T	1			T
190	180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0	10

${ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

$\iiint \int J$


~~~~
\({ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}, 101 \mathrm{MHz}\)




\({ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}, 101 \mathrm{MHz}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline T & 1 & 1 & 1 & , & 1 & 1 & 1 & 1 & 1 & 1-1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \\
\hline 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \[
\begin{gathered}
90 \\
\mathrm{f} 1(\mathrm{ppm})
\end{gathered}
\] & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 \\
\hline
\end{tabular}

\({ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}\)


\({ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}, 101 \mathrm{MHz}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 \\
\hline & & & & & & & & & & f1 (ppm) & & & & & & & & & & \\
\hline
\end{tabular}~~~~


[^0]:    ${ }^{1}$ L. I. Zakharkin, V. I. Stanko, Izv. Acad. Nauk SSSR, Ser. Khim. 1960, 1896, (Chem. Abstr. 1961, 55, 15337d).
    ${ }^{2}$ Yu. N. Bubnov, I. V. Zhun', E. V. Klimkina, A. V. Ignatenko, Z. A. Starikova, Eur. J. Org. Chem. 2000, 3323.
    ${ }^{3}$ N. Yu. Kuznetsov, R. M. Tikhov, T. V. Strelkova, Yu. N. Bubnov, Org. Lett., 2018, 20, 3549.
    ${ }^{4}$ Yu. N. Bubnov, N. Yu. Kuznetsov, F. V. Pastukhov, V. V. Kublitsky, Eur. J. Org. Chem. 2005, 4633.
    ${ }^{5}$ V. S. Bogdanov, T. K. Baryshnikova, V. G. Kiselev, B. M. Mikhailov, Zh. Obshch. Khim., 1971, 41, 1533 (in Russian).
    ${ }^{6}$ N. Yu. Kuznetsov, R. M. Tikhov, I. A. Godovikov, V. N. Khrustalev, Yu. N. Bubnov, Org. Biomol. Chem., 2016, 14, 4283.
    ${ }^{7}$ T. Matsuo, T. Yoshida, A. Fujii, K. Kawahara and S. Hirota, Organometallics, 2013, 32, 5313.
    ${ }^{8}$ K. Csatayová, S. G. Davies, A. M. Fletcher, J. G. Ford, D. J. Klauber, P. M. Roberts and J. E. Thomson, J. Org. Chem., 2014, 79, 10932.
    ${ }^{9}$ N. Zill, A. Schoenfelder, N. Girard, M. Taddei and A. Mann, J. Org. Chem., 2012, 77, 2246.
    ${ }^{10}$ C. Agami, F. Couty, M. Poursoulis and J. Vaissermann, Tetrahedron, 1992, 48, 431.
    ${ }^{11}$ J. Zheng, L. Huang, C. Huang, W. Wu and H. Jiang, J. Org. Chem., 2015, 80, 1235.
    ${ }^{12}$ D. Anastasiou, E. M. Campi, H. Chaouk and W. R. Jackson, Tetrahedron, 1992, 48, 7467.

