Copper-catalysed hydroamidation for the formation of pyrrolinone derivatives

Qian Wen Tan,^a Praful Chovatia^b and Michael C. Willis^{a,*}

^aDepartment of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K.

^b112 - 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RZ, U.K.

michael.willis@chem.ox.ac.uk

Electronic Supplementary Information

Table of Contents

Ι	General Information	S 2
II	Optimisation Tables	S 3
III	Synthesis of α-Keto Amides	S5
IV	Copper-catalysed Synthesis of Pyrrolinone Derivatives	S20
V	Gram-scale Synthesis of Pyrrolinone 3b	S44
VI	References	S45
VII	NMR Spectra	S46

I. General Information

Reactions were performed under inert nitrogen atmosphere with anhydrous solvent unless otherwise stated. All glassware was oven dried at >100 °C, and allowed to cool to room temperature under a positive nitrogen pressure. Reactions were monitored by TLC until deemed complete using aluminum backed silica plates. Plates were visualized under ultraviolet light (254 nm) and/or by staining with KMnO₄. Cooling of reaction mixtures to 0 °C was achieved using an ice water bath.

Reagents were purchased from Sigma-Aldrich Chemical Co. Ltd., Alfa Aesar, Acros Organics Ltd., Fluorochem Ltd. or Strem Chemicals Inc. and were used as supplied. All alkynes were distilled and degassed with N₂ before use. Anhydrous solvents were obtained by passing through anhydrous alumina columns using an Innovative Technology Inc. PS-400-7 solvent purification system, and were degassed with nitrogen flow before use. Column chromatography was carried out using matrix 60 silica. Petrol refers to the fraction of light petroleum ether boiling in the range of 40 - 60 °C.

¹H NMR spectra were obtained on a Bruker AVIII400 (400 MHz) or AVIII500 (500 MHz) spectrometer using the residual solvent as an internal standard. ¹³C NMR spectra were obtained on a Bruker AVIII400 (101 MHz) spectrometer using the residual solvent as an internal standard. Chemical shifts (δ) were reported in parts per million (ppm) with the multiplicities of the spectra reported as following: bs, broad singlet; s, singlet; d, doublet; t, triplet; q, quartet; p, quintet; h, sextet; m, multiplet; app., apparent. Coupling constants (*J*) were given in Hertz (Hz) and rounded to the nearest 0.5 Hz.

Low resolution ESI mass spectra were recorded on a Waters LCT Premier spectrometer. High resolution mass spectrometry measurements were recorded on a Brucker Daltronics MicroTOF (ESI) spectrometer or on a Micromass LCT (FI) spectrometer by the internal service at Chemistry Research Laboratory, University of Oxford.

Infrared spectra were recorded as thin films on a Bruker Tensor 27 FT-IR spectrometer. Melting points were determined using a Stuart Scientific Melting Point Apparatus SMP1.

II. Optimisation Tables

H N Bn O 1a	+ H 2a C ₅ H ₁₁ <u>10 mol% Cu catalyst</u> toluene, 130 °C, 20 h	Bn N Ph H 3a
entry	Copper (I) sources	yield ^b
1	CuBr	0%
2	CuOAc	0%
3	CuMeSal	2%
4	CuBr(PPh ₃) ₃	0%
5	$(CF_3SO_3Cu)_2 \cdot C_6H_6$	5%
6	[(ⁱ Pr)CuCl]	0%
7	$[Cu(C_{12}H_8N_2)[P(C_6H_5)_3]_2]NO_3 \cdot \frac{1}{2}CH_2Cl_2$	0%
8	Cu(OAc) ₂	0%
9	CuBr ₂	0%
10	$Cu(acac)_2$	0%
11	Cu(OTf) ₂	0%
13	13 $CuCO_3 \cdot Cu(OH)_2$ 14 $(CuMeCN)_4PF_6$	
14		
15	(CuMeCN) ₄ OTf	0%
16 ^{<i>c</i>}	(CuMeCN) ₄ BF ₄	0%
^a Reaction	n condition: 130 °C, 20 h, under N ₂ . ^b Yields determin	ed by ¹ H

NMR spectra of the crude reaction mixtures using nitromethane as an internal standard. ^{*c*}KPF₆ (0.03 mmol) added.

C Ph	Bn + H O 2a 1a 2 equiv	℃ ₅ H ₁₁ <u>10 mol% C</u> solvent, ba 130 ℃	u catalyst C ase, ligand ;, 20 h	$ \begin{array}{c} Bn \\ N \\ N \\ C_5H_{11} \\ Ph \\ H \\ 3a \\ \end{array} $
entry	Solvent	Base	Ligand	yield ^b
1	Acetonitrile	-	-	0%
2	o-Xylene	-	-	15%
3	p-Xylene	-	-	16%
4	1,1,2-Trichloroethane	-	-	2%
5	1,2-Dichlorobenzene	-	-	52%
6	α, α, α -Trifluorotoluene	-	-	39%
7	Toluene	K_3PO_4	-	0%
8	Toluene	KH_2PO_4	-	0%
9	Toluene	NaOAc	-	0%
10	Toluene	-	dppe	0%
11	Toluene	-	dppp	0%
12	Toluene	-	dppb	8%
13	Toluene	-	dppBz	9%
14	Toluene	-	dcpe	5%
15	Toluene	-	1,10-phenanthrol	ine 0%
16	Toluene	-	bipyridine	0%

Table S2. Solvent, base and ligand screening for the reaction between 1a and $2a^a$

^{*a*}Reaction condition: 130 °C, 20 h, under N₂. ^{*b*}Yields determined by ¹H NMR spectra of the crude reaction mixtures using nitromethane as an internal standard.

III. Synthesis of *α*-keto amides

 α -Keto acids were either commercially purchased or prepared by oxidation of the corresponding methyl ketones using SeO₂.¹ The crude mixture was filtered through a plug of celite, dried under vacuum and used without further purification.

N-Benzyl-2-oxo-2-phenylacetamide (1a)

General procedure A:²

To a solution of benzoylformic acid (675 mg, 4.5 mmol) and Et₃N (1.25 mL, 9.0 mmol) in 1,2dichloroethane (12 mL) at 0 °C under N₂ atmosphere was added thionyl chloride (653 μ L, 9.0 mmol) dropwise. The mixture was stirred at rt for 20 min before a solution of benzylamine (492 μ L, 4.5 mmol) in 1,2-dichloroethane (6 mL) was added slowly at 0 °C. The solution was heated to 60 °C and left to stir for 16 h. The stirring solution was cooled to rt before the slow addition of aqueous solution of NaHCO₃ (sat., 20 mL). The organic layer was washed with water (3 × 10 mL), dried over MgSO₄, filtered and concentrated under vacuum. The residue was purified by column chromatography (Petrol/EtOAc = 9:1) and recrystallised (Petrol/CH₂Cl₂) to give **1a** as a crystalline white solid (578 mg, 2.4 mmol, 54%).

¹**H NMR (400 MHz, CDCl**₃) δ 8.36 (2H, d, *J* = 7.5 Hz, Ar-*H*), 7.63 (1H, t, *J* = 7.5 Hz, Ar-*H*), 7.49 (2H, t, *J* = 7.5 Hz, Ar-*H*), 7.45 (1H, bs, N-*H*), 7.39 – 7.29 (m, 5H, Ar-*H*), 4.58 (2H, d, *J* = 6.0 Hz, C*H*₂); ¹³**C NMR (101 MHz, CDCl**₃) δ 187.7, 161.7, 137.2, 134.6, 133.4, 131.4, 129.0, 128.6, 128.0, 127.9, 43.6; **LRMS (ESI) m/z**: 262.1 [C₁₅H₁₃NO₂Na, (M+Na)⁺]. This data is consistent with literature.³

General procedure B:⁴

To a solution of benzoylformic acid (1.50 g, 10 mmol) and 1 drop of DMF in CH₂Cl₂ (20 mL) was added oxalyl chloride (1.0 mL, 12 mmol) dropwise, and the yellow mixture was left to stir

at rt for 3 h. The solvent was removed under vacuum and the residue was dissolved in toluene (10 mL). The resulting solution was then added dropwise to a solution of 4-methylbenzenesulfonamide (1.71 g, 10 mmol), DMAP (6.1 mg, 0.05 mmol) and Et₃N (2.8 mL, 20 mmol) in EtOAc (20 mL) at 0 °C. The mixture was left to stir at rt for 18 h. An aqueous solution of HCl (1 M) was added to the mixture until a clear organic layer was obtained. The aqueous layer was extracted with EtOAc (2×40 mL) and the combined organic layer was washed with brine, dried over MgSO₄, filtered and concentrated under vacuum. The residue was purified by column chromatography (CH₂Cl₂/EtOAc/AcOH = 90:10:2) to give **1b** as a light yellow solid (1.91 g, 6.28 mmol, 63%).

¹**H** NMR (400 MHz, CDCl₃) δ 9.64 (1H, bs, N-*H*), 8.25 (2H, d, *J* = 7.5 Hz, Ar-*H*), 8.03 (2H, d, *J* = 8.0 Hz, Ar-*H*), 7.64 (1H, t, *J* = 7.5 Hz, Ar-*H*), 7.45 (2H, t, *J* = 7.5 Hz, Ar-*H*), 7.36 (2H, d, *J* = 8.0 Hz, Ar-*H*), 2.43 (3H, s, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 184.1, 158.2, 145.8, 135.5, 135.0, 131.9, 131.5, 129.9, 128.9, 128.7, 21.8; LRMS (ESI) m/z: 326.0 [C₁₅H₁₃NO₄SNa, (M+Na)⁺]. This data is consistent with literature.⁴

N-((4-Methoxyphenyl)sulfonyl)-2-oxo-2-phenylacetamide (1c)

Compound **1c** was prepared according to general procedure B, using benzoylformic acid (300 mg, 2 mmol), oxalyl chloride (200 μ L, 2.4 mmol), 1 drop of DMF in CH₂Cl₂ (4 mL), toluene (2 mL), 4-methoxybenzenesulfonamide (190 mg, 2 mmol), DMAP (1.2 mg, 0.01 mmol), Et₃N (558 μ L, 4 mmol) and EtOAc (4 mL). The residue was purified by column chromatography (100% Et₂O) to give a white solid (250 mg, 0.79 mmol, 40%)

¹**H** NMR (400 MHz, CDCl₃) δ 9.55 (1H, bs, N-*H*), 8.26 (2H, d, *J* = 7.0 Hz, Ar-*H*), 8.08 (2H, d, *J* = 9.0 Hz, Ar-*H*), 7.65 (1H, t, *J* = 7.5 Hz, Ar-*H*), 7.46 (2H, dd, *J* = 7.5, 7.0 Hz, Ar-*H*), 7.02 (2H, d, *J* = 9.0 Hz, Ar-*H*), 3.88 (3H, s, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 184.2, 164.5, 158.1, 135.5, 131.9, 131.6, 131.2, 129.2, 128.9, 114.4, 55.9; mp (Et₂O): 112 – 116 °C; IR (cm⁻¹) $\tilde{\nu}$ = 3649, 3247, 2980, 2844, 2361, 2342, 1718, 1678, 1595, 1578, 1498, 1419, 1354, 1317, 1265, 1191, 1166, 1089, 1023, 1002, 977, 872, 835, 805, 771, 744, 687, 676, 665, 627; LRMS

(ESI) m/z: 342.0 [C₁₅H₁₃NNaO₅S, (M+Na)⁺]; HRMS (ESI): calcd for [C₁₅H₁₃NNaO₅S, (M+Na)⁺]: 342.04066; found 342.04077.

N-((4-Cyanophenyl)sulfonyl)-2-oxo-2-phenylacetamide (1d)

Compound **1d** was prepared according to general procedure B, using benzoylformic acid (600 mg, 4 mmol), oxalyl chloride (406 μ L, 4.8 mmol), 1 drop of DMF in CH₂Cl₂ (8 mL), toluene (4 mL), 4-cyanobenzenesulfonamide (730 mg, 4 mmol), DMAP (2.4 mg, 0.02 mmol), Et₃N (1.1 mL, 8 mmol) and EtOAc (8 mL). The residue was purified by recrystallisation (Petrol/EtOAc) to give a white solid (823 mg, 2.6 mmol, 66%)

¹**H NMR** (**400 MHz, acetone-***d*₆**)** δ 11.68 (1H, bs, N-*H*), 8.32 (2H, d, *J* = 8.5 Hz, Ar-*H*), 8.13 (2H, d, *J* = 8.5 Hz, Ar-*H*), 8.00 (2H, d, *J* = 8.0 Hz, Ar-*H*), 7.74 (1H, t, *J* = 7.5 Hz, Ar-*H*), 7.60 – 7.51 (2H, dd, *J* = 8.0, 7.5 Hz, Ar-*H*); ¹³**C NMR** (**101 MHz, acetone-***d*₆**)** δ 186.4, 162.6, 143.7, 135.9, 134.1, 133.0, 131.1, 129.9, 129.8, 118.4, 118.0; mp (Petrol/EtOAc): 181 – 183 °C; **IR** (cm⁻¹) $\tilde{\nu}$ = 3657, 3265, 3098, 2981, 2888, 2361, 2341, 2233, 1738, 1673, 1594, 1473, 1462, 1447, 1430, 1383, 1359, 1270, 1172, 1117, 1085, 1003, 967, 955, 879, 846, 831, 803, 746, 686, 671, 643; **LRMS** (**ESI**) m/z: 313.0 [C₁₅H₉N₂O₄S, (M-H)⁻]; **HRMS** (**ESI**): calcd for [C₁₅H₉N₂O₄S, (M-H)⁻]: 313.02885; found 313.02881.

N-((4-(Trifluoromethyl)phenyl)sulfonyl)-2-oxo-2-phenylacetamide (1e)

Compound **1e** was prepared according to general procedure B, using benzoylformic acid (300 mg, 2 mmol), oxalyl chloride (200 μ L, 2.4 mmol), 1 drop of DMF in CH₂Cl₂ (4 mL), toluene (2 mL), 4-(trifluoromethyl)benzenesulfonamide (450 mg, 2 mmol), DMAP (1.2 mg, 0.01 mmol), Et₃N (558 μ L, 4 mmol) and EtOAc (4 mL). The residue was purified by column chromatography (CH₂Cl₂/EtOAc/AcOH = 90:10:2) to give a white solid (573 mg, 1.6 mmol, 80%).

¹**H** NMR (400 MHz, CDCl₃) δ 9.71 (1H, bs, N-*H*), 8.34 – 8.23 (4H, m, Ar-*H*), 7.85 (2H, d, *J* = 8.0 Hz, Ar-*H*), 7.67 (1H, t, *J* = 7.5 Hz, Ar-*H*), 7.48 (2H, dd, *J* = 8.0, 7.5 Hz, Ar-*H*); ¹³C NMR (101 MHz, CDCl₃) δ 183.6, 158.1, 141.3, 136.1 (q, ²*J*_{C-F} = 33.0 Hz), 135.8, 131.7, 131.6, 129.4, 129.0, 126.5 (q, ³*J*_{C-F} = 4.0 Hz), 123.1 (q, ¹*J*_{C-F} = 277.0 Hz); ¹⁹F NMR (377 MHz, CDCl₃) - 63.3; mp (CH₂Cl₂/EtOAc/AcOH): 124 – 127 °C; IR (cm⁻¹) $\tilde{\nu}$ = 3657, 2981, 2972, 2930, 2890, 2859, 2360, 2342, 1742, 1684, 1597, 1461, 1449, 1375, 1323, 1242, 1172, 1139, 1110, 1092, 1063, 1019, 967, 956, 877, 845, 845, 796, 771, 744, 713, 688; LRMS (ESI) m/z: [C₁₅H₁₀F₃NNaO₄S, (M+Na)⁺]; HRMS (ESI): calcd for [C₁₅H₁₀F₃NNaO₄S, (M+Na)⁺]: 380.01748; found 380.01746.

N-((4-Nitrophenyl)sulfonyl)-2-oxo-2-phenylacetamide (1f)

Compound **1f** was prepared according to general procedure B, using benzoylformic acid (750 mg, 5 mmol), oxalyl chloride (510 μ L, 6 mmol), 1 drop of DMF in CH₂Cl₂ (10 mL), toluene (5 mL), 4-nitrobenzenesulfonamide (1.01 g, 5 mmol), DMAP (3 mg, 0.025 mmol), Et₃N (1.4 mL, 10 mmol) and EtOAc (10 mL). The residue was purified by recrystallisation (Petrol/CH₂Cl₂) to give a white solid (1.27 g, 3.8 mmol, 76%)

¹**H** NMR (400 MHz, CDCl₃) δ 9.68 (1H, bs, N-*H*), 8.39 – 8.33 (4H, m, Ar-*H*), 8.28 (2H, d, *J* = 8.0 Hz, Ar-*H*), 7.72 – 7.63 (1H, m, Ar-*H*), 7.49 (2H, dd, *J* = 8.0, 8.0 Hz, Ar-*H*); ¹³C NMR (101 MHz, CDCl₃) δ 183.4, 158.0, 151.2, 143.3, 135.9, 131.64, 131.61, 130.3, 129.1, 124.5; mp (Petrol/CH₂Cl₂): 143 – 145 °C; IR (cm⁻¹) $\tilde{\nu}$ = 3657, 3240, 2981, 2888, 2360, 2341, 2163, 1736, 1674, 1594, 1527, 1473, 1462, 1449, 1384, 1355, 1313, 1270, 1252, 1171, 1086, 1002, 967, 956, 913, 890, 854, 823, 798, 737, 684, 672, 623; LRMS (ESI) m/z: 357.0 [C₁₄H₁₀N₂NaO₆S, (M+Na)⁺]; HRMS (ESI): calcd for [C₁₄H₁₀N₂NaO₆S, (M+Na)⁺]: 357.01518; found 357.01547.

N-(Methylsulfonyl)-2-oxo-2-phenylacetamide (1g)

Compound **1g** was prepared according to general procedure B, using benzoylformic acid (300 mg, 2 mmol), oxalyl chloride (200 μ L, 2.4 mmol), 1 drop of DMF in CH₂Cl₂ (4 mL), toluene (10 mL), methanesulfonamide (190 mg, 2 mmol), DMAP (1.2 mg, 0.01 mmol), Et₃N (558 μ L, 4 mmol) and EtOAc (4 mL). The residue was purified by column chromatography (CH₂Cl₂/EtOAc/AcOH = 80:20:2) to give a white solid (95 mg, 0.42 mmol, 21%).

¹**H** NMR (400 MHz, CDCl₃) δ 9.44 (1H, bs, N-*H*), 8.33 (2H, d, *J* = 8.0 Hz, Ar-*H*), 7.70 (1H, t, *J* = 8.0 Hz, Ar-*H*), 7.52 (2H, t, *J* = 8.0 Hz, Ar-*H*), 3.39 (3H, s, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 183.5, 159.1, 135.5, 131.5, 131.3, 128.7, 41.4; **mp** (CH₂Cl₂/EtOAc/AcOH): 128 – 131 °C; **IR** (cm⁻¹) $\tilde{\nu}$ = 3238, 3045, 2981, 2360, 1714, 1687, 1598, 1432, 1400, 1332, 1320, 1279, 1135, 989, 970, 886, 684, 669, 607; **LRMS** (ESI) m/z: 226.0 [C₉H₈NO₄S, (M-H)⁻]; HRMS (ESI): calcd for [C₉H₉NO₄SNa, (M+Na)⁺]: 250.01445; found 250.01466. This data is consistent with literature.⁴

N-Hexyl-2-oxo-2-phenylacetamide (1h)

Compound **1h** was prepared according to general procedure A, using benzoylformic acid (750 mg, 5.0 mmol), Et₃N (1.4 mL, 10.0 mmol), thionyl chloride (725 μ L, 10.0 mmol), hexylamine (660 μ L, 5.0 mmol) and 1,2-dichloroethane (20 mL). The residue was purified by column chromatography (Petrol/Et₂O = 9:1) to give a yellow oil (1.0 g, 4.3 mmol, 86%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.29 (2H, d, *J* = 7.5 Hz, Ar-*H*), 7.58 (1H, t, *J* = 7.5 Hz, Ar-*H*), 7.43 (2H, dd, *J* = 7.5, 7.5 Hz, Ar-*H*), 7.30 (1H, bs, N-*H*), 3.35 (2H, dt, *J* = 6.5, 6.5 Hz, NHC*H*₂), 1.62 – 1.49 (2H, m, NHCH₂C*H*₂), 1.40 – 1.21 (6H, m, 3 × C*H*₂), 0.87 (3H, t, *J* = 6.0 Hz, C*H*₃); ¹³C NMR (101 MHz, CDCl₃) δ 188.1, 162.0, 134.3, 133.4, 131.1, 128.4, 39.5, 31.4, 29.2, 26.5, 22.5, 14.0; **IR** (cm⁻¹) $\tilde{\nu}$ = 3657, 3308, 2981, 2931, 2889, 1659, 1597, 1523, 1449, 1381, 1318, 1260, 1216, 1177, 1155, 1073, 954, 816, 745, 687, 672; **LRMS** (ESI) m/z: 234.2 [C₁₄H₂₀NO₂, $(M+H)^+$]; **HRMS (ESI)**: calcd for [C₁₄H₂₀NO₂, (M+H)⁺]: 234.14886; found 234.14905. This data is consistent with literature.⁵

N-Cyclopropyl-2-oxo-2-phenylacetamide (1i)

Compound **1i** was prepared according to general procedure A, using benzoylformic acid (600 mg, 4.0 mmol), Et₃N (1.12 mL, 8.0 mmol), thionyl chloride (580 μ L, 8.0 mmol), cyclopropylamine (280 μ L, 4.0 mmol) and 1,2-dichloroethane (16 mL). The residue was purified by column chromatography (Petrol/Et₂O = 9:1) and recrystallisation (Petrol/Et₂O) to give a white solid (374 mg, 2.0 mmol, 49%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.33 (2H, d, *J* = 8.0 Hz, Ar-*H*), 7.61 (1H, t, *J* = 7.5 Hz, Ar-*H*), 7.46 (2H, dd, *J* = 8.0, 7.5 Hz, Ar-*H*), 7.17 (1H, bs, N-*H*), 2.89 – 2.83 (1H, m, NHC*H*), 0.92 – 0.85 (2H, m, C*H*₂), 0.67 – 0.62 (2H, m, C*H*₂); ¹³**C** NMR (101 MHz, CDCl₃) δ 187.7, 163.2, 134.5, 133.3, 131.4, 128.6, 22.7, 6.7, 6.6; mp (Petrol/Et₂O): 69 – 71 °C; IR (cm⁻¹) $\tilde{\nu}$ = 3275, 3068, 2981, 2360, 2341, 1653, 1596, 1519, 1449, 1362, 1284, 1234, 1202, 1180, 1051, 931, 850, 792, 747, 688, 670; LRMS (ESI) m/z: 188.1 [C₁₁H₁₀NO₂, (M-H)⁻]; HRMS (ESI): calcd for [C₁₁H₁₂NO₂, (M+H)⁺]: 190.08626; found 190.08626

N-Cyclohexyl-2-oxo-2-phenylacetamide (1j)

Compound **1j** was prepared according to general procedure A, using benzoylformic acid (450 mg, 3.0 mmol), Et₃N (836 μ L, 6.0 mmol), thionyl chloride (435 μ L, 6.0 mmol), cyclohexanamine (343 μ L, 3.0 mmol) and 1,2-dichloroethane (12 mL). The residue was purified by column chromatography (Petrol/Et₂O = 9:1) and recrystallisation (Petrol/Et₂O) to give a white solid (295 mg, 1.3 mmol, 43%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.33 (2H, d, *J* = 8.0 Hz, Ar-*H*), 7.61 (1H, t, *J* = 7.0 Hz, Ar-*H*), 7.47 (2H, dd, *J* = 8.0, 7.0 Hz, Ar-*H*), 6.99 (1H, bs, N-*H*), 3.85 (1H, tdt, *J* = 11.0, 8.0, 4.0 Hz, NHC*H*), 2.02 – 1.93 (2H, m, C*H*₂), 1.79 – 1.73 (2H, m, C*H*₂), 1.67 – 1.62 (1H, m, C*H*_AH_B),

1.47 – 1.33 (2H, m, CH₂), 1.31 – 1.19 (3H, m, CH₂, CH_AH_B); ¹³C NMR (101 MHz, CDCl₃) δ 188.2, 161.0, 134.4, 133.6, 131.3, 128.6, 48.6, 32.8, 25.5, 24.8; mp (Petrol/Et₂O): 114 – 116 °C; IR (cm⁻¹) $\tilde{\nu}$ = 3274, 3085, 2935, 2855, 2360, 1680, 1664, 1640, 1596, 1551, 1449, 1246, 1217, 1179, 1153, 1088, 961, 838, 752, 693, 672; HRMS (FI): calcd for [C₁₄H₁₈NO₂, (M+H)⁺]: 232.13321; found 232.13335. This data is consistent with literature.⁶

N-(Cyclopropylmethyl)-2-oxo-2-phenylacetamide (1k)

Compound **1k** was prepared according to general procedure A, using benzoylformic acid (600 mg, 4.0 mmol), Et₃N (1.12 mL, 8.0 mmol), thionyl chloride (580 μ L, 8.0 mmol), cyclopropylmethanamine (350 μ L, 4.0 mmol) and 1,2-dichloroethane (16 mL). The residue was purified by column chromatography (Petrol/Et₂O = 95:5) and recrystallisation (Petrol/Et₂O) to give a white solid (381 mg, 1.9 mmol, 47%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.33 (2H, d, *J* = 8.0 Hz, Ar-*H*), 7.61 (1H, t, *J* = 7.5 Hz, Ar-*H*), 7.47 (2H, dd, *J* = 7.5, 8.0 Hz, Ar-*H*), 7.21 (1H, bs, N-*H*), 3.25 (2H, dd, *J* = 6.5, 6.5 Hz, NHC*H*₂), 1.11 – 0.96 (1H, m, C*H*), 0.61 – 0.50 (2H, m, CH(C*H*₂)), 0.30 – 0.24 (2H, m, CH(C*H*₂)); ¹³C NMR (101 MHz, CDCl₃) δ 188.1, 161.7, 134.5, 133.5, 131.3, 128.6, 44.4, 10.6, 3.7; mp (Petrol/Et₂O): 38 – 40 °C; IR (cm⁻¹) $\tilde{\nu}$ = 3305, 3080, 2981, 2361, 2341, 1657, 1596, 1523, 1449, 1268 1217, 1023, 833, 746, 688, 672; LRMS (ESI) m/z: 226.0 [C₁₂H₁₃NNaO₂, (M+Na)⁺]; HRMS (ESI): calcd for [C₁₂H₁₃NNaO₂, (M+Na)⁺]: 226.08385; found 226.08417.

N-(Cyclohexylmethyl)-2-oxo-2-phenylacetamide (11)

Compound **11** was prepared according to general procedure A, using benzoylformic acid (600 mg, 4.0 mmol), Et₃N (1.12 mL, 8.0 mmol), thionyl chloride (580 μ L, 8.0 mmol), cyclohexylmethanamine (510 μ L, 4.0 mmol) and 1,2-dichloroethane (16 mL). The residue was purified by column chromatography (Petrol/Et₂O = 95:5) and recrystallisation (Petrol/Et₂O) to give a white solid (720 mg, 2.9 mmol, 73%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.34 (2H, d, *J* = 8.0 Hz, Ar-*H*), 7.62 (1H, t, *J* = 7.5 Hz, Ar-*H*), 7.47 (2H, dd, *J* = 8.0, 7.5 Hz, Ar-*H*), 7.15 (1H, bs, N-*H*), 3.24 (2H, dd, *J* = 6.5, 6.5 Hz, NHC*H*₂), 1.81 – 1.72 (4H, m, Cy-C*H*₂), 1.71 – 1.63 (1H, m, Cy-C*H*_AH_B), 1.51 – 1.64 (1H, m, NHCH₂C*H*), 1.33 – 1.08 (3H, m, Cy-C*H*₂, Cy-CH_A*H*_B), 1.04 – 0.94 (2H, m, Cy-C*H*₂); ¹³C NMR (101 MHz, CDCl₃) δ 188.1, 161.9, 134.5, 133.5, 131.4, 128.6, 45.7, 38.0, 30.9, 26.4, 25.9; mp (Petrol/Et₂O): 94 – 96 °C; IR (cm⁻¹) $\tilde{\nu}$ = 3273, 2981, 2926, 2854, 2361, 2341, 1664, 1597, 1524, 1449, 1225, 1178, 905, 726, 688, 672, 648; LRMS (ESI) m/z: 244.1 [C₁₅H₁₈NO₂, (M-H)⁻]; HRMS (ESI): calcd for [C₁₅H₂₀NO₂, (M+H)⁺]: 246.14886; found 246.14874.

N-(Thiophen-2-ylmethyl)-2-oxo-2-phenylacetamide (1m)

Compound **1m** was prepared according to general procedure A, using benzoylformic acid (750 mg, 5.0 mmol), Et₃N (1.4 mL, 10.0 mmol), thionyl chloride (725 μ L, 10.0 mmol), 2-(aminomethyl)thiophene (513 μ L, 5.0 mmol) and 1,2-dichloroethane (20 mL). The residue was purified by column chromatography (Petrol/Et₂O = 4:1) and recrystallisation (Petrol/Et₂O) to give a white solid (655 mg, 2.7 mmol, 53%).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.30 (2H, d, J = 7.0 Hz, Ar-H), 7.58 (1H, t, J = 7.5 Hz, Ar-H), 7.44 (2H, app. t, J = 7.5, 7.0 Hz, Ar-H), 7.41 (1H, bs, N-H), 7.21 (1H, d, J = 5.0 Hz, Ar-H), 6.99 (1H, d, J = 3.5 Hz, Ar-H), 6.92 (1H, dd, J = 5.0, 3.5 Hz, Ar-H), 4.69 (2H, d, J = 6.0 Hz, C H_2); ¹³**C NMR** (**101 MHz**, **CDCl**₃) δ 187.4, 161.4, 139.5, 134.6, 133.3, 131.4, 128.6, 127.1, 126.7, 125.8, 38.2; **mp** (**Petrol/Et₂O**): 95 – 97 °C; **IR** (**cm**⁻¹) $\tilde{\nu} = 3661, 3255, 3085, 2981, 2888, 2361, 2341, 1681, 1639, 1595, 1563, 1533, 1451, 1431, 1371, 1347, 1219, 1179, 1053, 1041, 1022, 1001, 940, 928, 853, 800, 749, 688, 630;$ **LRMS**(**ESI**)**m/z**: 244.0 [C₁₃H₁₀NO₂S, (M-H)⁻];**HRMS**(**ESI**)**m/z**: calcd for [C₁₃H₁₀NO₂S, (M-H)⁻]: 244.04377; found 244.04355.

Compound **1n** was prepared according to general procedure A, using benzoylformic acid (450 mg, 3.0 mmol), Et₃N (836 μ L, 6.0 mmol), thionyl chloride (435 μ L, 6.0 mmol),

allylamine (343 μ L, 3.0 mmol) and 1,2-dichloroethane (12 mL). The residue was purified by column chromatography (Petrol/Et₂O = 9:1) and recrystallisation (Petrol/Et₂O) to give a white solid (229 mg, 1.2 mmol, 40%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.35 (2H, d, *J* = 8.0 Hz, Ar-*H*), 7.63 (1H, t, *J* = 7.0 Hz, Ar-*H*), 7.48 (2H, dd, *J* = 8.0, 7.0 Hz, Ar-*H*), 7.18 (1H, bs, N-*H*), 5.90 (ddt, *J* = 17.0, 10.0, 5.5 Hz, CH₂C*H*CH_AH_B), 5.28 (1H, dd, *J* = 17.0, 1.0 Hz, CHC*H*_AH_B), 5.22 (dd, *J* = 10.0, 1.0 Hz, CHCH_AH_B), 4.02 (2H, dd, *J* = 5.5, 1.5 Hz, C*H*₂CHCH_AH_B); ¹³C NMR (101 MHz, CDCl₃) δ 187.7, 161.7, 134.6, 133.4, 133.1, 131.4, 128.7, 117.4, 41.8; mp (Petrol/Et₂O): 58 – 60 °C; IR (cm⁻¹) $\tilde{\nu}$ = 3259, 3098, 2918, 2360, 1681, 1653, 1635, 1595, 1571, 1451, 1430, 1265, 1227, 1179, 1018, 993, 943, 928, 892, 690; HRMS (FI): calcd for [C₁₁H₁₂NO₂, (M+H)⁺]: 190.08625; found 190.08626. This data is consistent with literature.⁷

N-Phenyl-2-oxo-2-phenylacetamide (10)

Compound **10** was prepared according to general procedure A, using benzoylformic acid (600 mg, 4.0 mmol), Et₃N (1.12 mL, 8.0 mmol), thionyl chloride (580 μ L, 8.0 mmol), aniline (364 μ L, 4.0 mmol) and 1,2-dichloroethane (16 mL). The residue was purified by column chromatography (Petrol/Et₂O = 9:1) to give a yellow solid (788 mg, 3.5 mmol, 87%).

¹**H NMR** (400 MHz, CDCl₃) δ 9.04 (1H, bs, N-*H*), 8.40 (2H, d, *J* = 8.0 Hz, Ar-*H*), 7.71 (2H, d, *J* = 8.5 Hz, Ar-*H*), 7.64 (2H, dd, *J* = 8.0, 7.0 Hz, Ar-*H*), 7.49 (1H, t, *J* = 7.0 Hz, Ar-*H*), 7.39 (2H, dd, *J* = 8.5, 7.5 Hz, Ar-*H*), 7.20 (1H, t, *J* = 7.5 Hz, Ar-*H*); ¹³C **NMR** (101 MHz, CDCl₃) δ 187.5, 159.1, 136.7, 134.7, 133.1, 131.5, 129.3, 128.6, 125.3, 120.0; mp (Petrol/Et₂O): 59 – 61 °C; **IR** (cm⁻¹) $\tilde{\nu}$ = 3346, 3062, 1667, 1595, 1530, 1495, 1445, 1278, 1241, 1171, 1080, 1030, 1004, 989, 907, 879, 789, 744, 688; **HRMS** (**FI**): calcd for [C₁₄H₁₂NO₂, (M+H)⁺]⁺: 226.08626; found 226.08629. This data is consistent with literature.⁶

N-Benzyl-2-oxo-2-(*p*-tolyl)acetamide (1p)

Compound **1p** was prepared according to general procedure A, using crude 2-oxo-2-(*p*-tolyl)acetic acid (985 mg, 6.0 mmol), Et₃N (1.67 mL, 12.0 mmol), thionyl chloride (871 μ L, 12.0 mmol), benzylamine (655 μ L, 6.0 mmol) and 1,2-dichloroethane (24 mL). The residue was purified by column chromatography (100% CH₂Cl₂) and recrystallised in Petrol/Et₂O to give white crystals (341 mg, 1.3 mmol, 22%)

¹H NMR (400 MHz, CDCl₃) δ 8.29 (2H, d, *J* = 8.5 Hz, Ar-*H*), 7.45 (1H, s, N-*H*), 7.39 – 7.26 (7H, m, Ar-*H*), 4.57 (2H, d, *J* = 6.0 Hz, C*H*₂), 2.43 (3H, s, C*H*₃); ¹³C NMR (101 MHz, CDCl₃) δ 187.1, 161.9, 145.8, 137.3, 131.5, 130.9, 129.4, 128.9, 128.0, 127.9, 43.6, 22.0; mp (Petrol/Et₂O): 82 – 84 °C; IR (cm⁻¹) $\tilde{\nu}$ = 3267, 3092, 2925, 1675, 1642, 1605, 1567, 1497, 1454, 1431, 1409, 1382, 1364, 1308, 1226, 1210, 1176, 1118, 1083, 1060, 1031, 1017, 939, 904, 839, 790, 767, 730, 697, 680, 618; LRMS (ESI) m/z: 276.0 [C₁₆H₁₅NNaO₂, (M+Na)⁺]; HRMS (ESI) m/z: calcd for [C₁₆H₁₅NNaO₂, (M+Na)⁺]: 276.09950; found 276.09949. This data is consistent with literature.⁸

N-Benzyl-2-oxo-2-(3-methoxyphenyl)acetamide (1q)

Compound **1q** was prepared according to general procedure A, using crude 2-(3-methoxyphenyl)-2-oxoacetic acid (1.26 g, 7.0 mmol), Et₃N (1.95 mL, 14.0 mmol), thionyl chloride (1.02 mL, 14.0 mmol), benzylamine (765 μ L, 7.0 mmol) and 1,2-dichloroethane (28 mL). The residue was purified by column chromatography (100% CH₂Cl₂) to give an orange oil (893 mg, 3.3 mmol, 47%).

¹**H NMR (400 MHz, CDCl**₃) δ 8.01 (1H, d, *J* = 8.0 Hz, Ar-*H*), 7.86 (1H, s, Ar-*H*), 7.43 (1H, bs, N-*H*), 7.42 – 7.28 (6H, m, Ar-*H*), 7.18 (1H, d, *J* = 8.0 Hz, Ar-*H*), 4.57 (2H, d, *J* = 6.0 Hz, CH₂), 3.86 (3H, s, CH₃); ¹³**C NMR (101 MHz, CDCl**₃) δ 187.4, 161.7, 159.6, 137.2, 134.5,

129.7, 129.0, 128.0, 127.95, 124.3, 121.7, 114.8, 55.6, 43.6; **IR** (**cm**⁻¹) $\tilde{\nu}$ = 3307, 3066, 3031, 2980, 2836, 2361, 1658, 1596, 1580, 1521, 1485, 1454, 1429, 1360, 1324, 1288, 1252, 1195, 1174, 1082, 1042, 994, 952, 876, 823, 782, 765, 730, 699, 683; **LRMS** (**ESI**) **m/z**: 292.0 [C₁₆H₁₆NO₃, (M+H)⁺]; **HRMS** (**ESI**) **m/z**: calcd for [C₁₆H₁₆NO₃, (M+H)⁺]: 292.09441; found 292.09424.

N-Benzyl-2-oxo-2-(4-(trifluoromethyl)phenyl)acetamide (1r)

Compound **1r** was prepared according to general procedure A, using crude 2-oxo-2-(4-(trifluoromethyl)phenyl)acetic acid (1.31 g, 6.0 mmol), Et₃N (1.67 mL, 12.0 mmol), thionyl chloride (871 μ L, 12.0 mmol), benzylamine (655 μ L, 6.0 mmol) and 1,2-dichloroethane (24 mL). The residue was purified by column chromatography (Petrol/Et₂O 95:5) and recrystallised in Petrol/Et₂O to give light orange crystals (454 mg, 1.5 mmol, 25%).

¹H NMR (400 MHz, CDCl₃) δ 8.47 (2H, d, *J* = 8.0 Hz, Ar-*H*), 7.74 (2H, d, *J* = 8.0 Hz, Ar-*H*), 7.51 (1H, bs, N-*H*), 7.41 – 7.27 (5H, m, Ar-*H*), 4.58 (2H, d, *J* = 6.0 Hz, C*H*₂); ¹³C NMR (101 MHz, CDCl₃) δ 186.7, 160.9, 137.0, 136.1, 135.4 (q, *J* = 33.0 Hz), 131.7, 129.0, 128.1, 128.0, 125.6 (q, *J* = 4.0 Hz), 123.6 (q, *J* = 273.0 Hz), 43.7; ¹⁹F NMR (377 MHz, CDCl₃) -63.3; mp (Petrol/Et₂O): 104 – 106 °C; IR (cm⁻¹) $\tilde{\nu}$ = 3377, 2981, 2889, 2361, 1665, 1532, 1506, 1455, 1409, 1323, 1248, 1213, 1167, 1124, 1110, 1068, 1029, 1016, 937, 901, 863, 830, 802, 765, 731, 698, 640; LRMS (ESI) m/z: 330.2 [C₁₆H₁₂F₃NNaO₂, (M+Na)⁺]; HRMS (ESI) m/z: calcd for [C₁₆H₁₃F₃NO₂, (M+H)⁺]: 308.08929; found 308.08939. This data is consistent with literature.⁸

Compound **1s** was prepared according to general procedure A, using crude 2-(3-nitrophenyl)-2-oxoacetic acid (1.4 g, 5.0 mmol), Et₃N (1.39 mL, 10.0 mmol), thionyl chloride (725 μ L, 10.0 mmol), benzylamine (546 μ L, 5.0 mmol) and 1,2-dichloroethane (20 mL). The residue was purified by column chromatography (Petrol/CH₂Cl₂ 1:1) and recrystallised in Petrol/Et₂O to give light yellow crystals (380 mg, 1.3 mmol, 30%).

¹**H** NMR (400 MHz, CDCl₃) δ 9.21 (1H, s, Ar-*H*), 8.75 (1H, d, *J* = 8.0 Hz, Ar-*H*), 8.47 (1H, d, *J* = 8.0 Hz, Ar-*H*), 7.70 (1H, t, *J* = 8.0 Hz, Ar-*H*), 7.52 (1H, bs, N-*H*), 7.41 – 7.28 (5H, m, Ar-*H*), 4.59 (2H, d, *J* = 6.0 Hz, C*H*₂); ¹³C NMR (101 MHz, CDCl₃) δ 185.3, 160.4, 148.3, 137.0, 136.8, 134.6, 129.9, 129.1, 128.6, 128.2, 128.1, 126.3, 43.8; mp (Petrol/Et₂O): 106 – 108 °C; IR (cm⁻¹) $\tilde{\nu}$ = 3385, 2980, 2888, 2361, 1669, 1613, 1530, 1497, 1474, 1455, 1437, 1382, 1349, 1251, 1214, 1153, 1081, 1030, 953, 801, 732, 700, 670; LRMS (ESI) m/z: 307.0 [C₁₅H₁₂N₂NaO₄, (M+Na)⁺]; HRMS (ESI) m/z: calcd for [C₁₅H₁₂N₂NaO₄, (M+Na)⁺]: 307.06893; found 307.06903.

Compound **1t** was prepared according to general procedure A, using crude 2-(3-bromophenyl)-2-oxoacetic acid (1.6 g, 7.0 mmol), Et₃N (1.95 mL, 14.0 mmol), thionyl chloride (1.02 mL, 14.0 mmol), benzylamine (765 μ L, 7.0 mmol) and 1,2-dichloroethane (28 mL). The residue was purified by column chromatography (Petrol/Et₂O 95:5) and recrystallised in Petrol/Et₂O to give white crystals (839 mg, 2.6 mmol, 38%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.53 (1H, bs, Ar-*H*), 8.35 (1H, d, *J* = 8.0 Hz, Ar-*H*), 7.77 (1H, d, *J* = 8.0 Hz, Ar-*H*), 7.49 (1H, s, N-*H*), 7.40 – 7.32 (6H, m, Ar-*H*), 4.58 (2H, d, *J* = 6.0 Hz, CH₂); ¹³C NMR (101 MHz, CDCl₃) δ 186.2, 161.0, 137.4, 137.0, 135.1, 134.1(2 × C), 130.2, 130.0, 129.0, 128.0, 122.8, 43.7; mp (Petrol/Et₂O): 70 – 71 °C; IR (cm⁻¹) $\tilde{\nu}$ = 3308, 3065, 2981, 2889, 2360, 1680, 1663, 1587, 1561, 1521, 1497, 1455, 1414, 1383, 1361, 1289, 1242, 1211, 1166, 1070, 1029, 999, 950, 900, 776, 720, 698, 677; LRMS (ESI) m/z [relative intensity]: 340.0 [100, [C₁₅H₁₃⁷⁹BrNO₂, (M(⁷⁹Br)+H)⁺]], 342.0 [100, [C₁₅H₁₃⁸¹BrNO₂,

 $(M(^{81}Br)+H)^+]$; **HRMS (ESI) m/z**: calcd for $[C_{15}H_{13}^{79}BrNO_2, (M(^{79}Br)+H)^+]$: 318.01242; found 318.01245, calcd for $[C_{15}H_{13}^{81}BrNO_2, (M(^{81}Br)+H)^+]$: 320.01037; found 320.01030.

N-Benzyl-2-oxo-2-(3-cyanophenyl)acetamide (1u)

Compound **1u** was prepared according to general procedure A, using 2-(3-cyanophenyl)-2oxoacetic acid (1.05 g, 6.0 mmol), Et₃N (1.67 mL, 12.0 mmol), thionyl chloride (871 μ L, 12.0 mmol), benzylamine (655 μ L, 6.0 mmol) and 1,2-dichloroethane (24 mL). The residue was purified by column chromatography (Petrol/Et₂O 4:1) and recrystallised in Petrol/Et₂O to give white crystals (390 mg, 1.5 mmol, 25%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.73 (1H, s, Ar-*H*), 8.61 (1H, d, *J* = 8.0 Hz, Ar-*H*), 7.89 (1H, d, *J* = 8.0 Hz, Ar-*H*), 7.62 (1H, dd, *J* = 8.0, 8.0 Hz, Ar-*H*), 7.49 (1H, s, N-*H*), 7.41 – 7.30 (5H, m, Ar-*H*), 4.57 (2H, d, *J* = 6.0 Hz, C*H*₂); ¹³**C** NMR (101 MHz, CDCl₃) δ 185.4, 160.5, 137.2, 136.8, 135.3, 135.1, 134.2, 129.6, 129.1, 128.2, 128.1, 117.9, 113.2, 43.8; mp (Petrol/Et₂O): 70 – 71 °C; IR (cm⁻¹) $\tilde{\nu}$ = 3350, 3068 2981, 2233, 1668, 1599, 1523, 1498, 1476, 1455, 1426, 1361, 1292, 1238, 1159, 1070, 1029, 953, 828, 788, 762, 730, 700, 680; LRMS (ESI) m/z: 287.0 [C₁₆H₁₂N₂NaO₂, (M+Na)⁺]; HRMS (ESI) m/z: calcd for [C₁₆H₁₃N₂O₂, (M+H)⁺]: 265.09715; found 265.09729.

N-Benzyl-4-methyl-2-oxopentanamide (1v)

Compound **1v** was synthesised by modifying a literature procedure.⁹ A solution of 4-methyl-2-oxovaleric acid (370 μ L, 3.0 mmol), Et₃N (418 μ L, 3.0 mmol), DMAP (37 mg, 0.3 mmol), *N*,*N*'-dicyclohexylcarbodiimide (469 μ L, 3.0 mmol) in 1,2-dichloroethane (10 mL) was stirred at rt until efferevescence was no longer observed. Benzylamine (328 μ L, 3.0 mmol) was then added dropwise and the reaction mixture was left to stir at rt overnight before heating at 60 °C for 4 hours. The crude mixture was then filtered through a plug of celite, purified by column chromatography (Petrol/Et₂O 95:5) and recrystallisation (Petrol/Et₂O) to give a white solid (125 mg, 0.6 mmol, 19%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.24 (5H, m, Ar-*H*), 4.46 (2H, d, *J* = 6.0 Hz,NC*H*₂), 2.83 (2H, d, *J* = 7.0 Hz, C*H*₂), 2.24 – 2.12 (1H, m, C*H*), 0.95 (6H, dd, *J* = 7.0 Hz, 2 × C*H*₃); ¹³C NMR (101 MHz, CDCl₃) δ 198.9, 160.2, 137.2, 129.0, 128.03, 127.99, 45.5, 43.5, 24.5, 22.7; mp (Petrol/Et₂O): 68 – 70 °C; IR (cm⁻¹) $\tilde{\nu}$ = 3281, 2981, 2889, 2361, 1721, 1671, 1530, 1457, 1433, 1383, 1252, 1149, 1078, 954, 816, 750, 699, 679; LRMS (ESI) m/z: 220.2 [C₁₃H₁₈NO₂, (M+H)⁺]; HRMS (ESI) m/z: calcd for [C₁₃H₁₈NO₂, (M+H)⁺]: 220.13321; found 220.13344.

N-Benzyl-2-cyclopentyl-2-oxoacetamide (1w)

Compound **1w** was synthesised by modifying a literature procedure⁹. A solution of 4-methyl-2-oxovaleric acid (370 μ L, 3.0 mmol), Et₃N (418 μ L, 3.0 mmol), DMAP (37 mg, 0.3 mmol), *N*,*N*'-dicyclohexylcarbodiimide (469 μ L, 3.0 mmol) in 1,2-dichloroethane (10 mL) was stirred at rt until efferevescence was no longer observed. Benzylamine (328 μ L, 3.0 mmol) was then added dropwise and the reaction mixture was left to stir at rt overnight before heating at 60 °C for 4 hours. The crude mixture was then filtered through a plug of celite, purified by column chromatography (Petrol/Et₂O 95:5) and recrystallisation (Petrol/Et₂O) to give white crystals (94 mg, 0.4 mmol, 7%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.25 (5H, m, Ar-*H*), 4.48 (2H, d, *J* = 6.0 Hz, NC*H*₂), 3.81 (1H, tt, *J* = 9.0, 7.0 Hz, C*H*), 2.00 – 1.87 (2H, m, C*H*₂), 1.81 – 1.70 (2H, m, C*H*₂), 1.69 – 1.57 (4H, m, 2 × C*H*₂); ¹³C NMR (101 MHz, CDCl₃) δ 200.9, 160.3, 137.2, 129.0, 128.01, 127.95, 44.8, 43.6, 29.1, 26.4; mp (Petrol/Et₂O): 47 – 49 °C; IR (cm⁻¹) $\tilde{\nu}$ = 3328, 2980, 2889, 2360, 1717, 1680, 1666, 1534, 1496, 1473, 1453, 1428, 1382, 1252, 1153, 1126, 1070, 1028, 954, 881, 817, 781, 724, 695; LRMS (ESI) m/z: 254.2 [C₁₄H₁₇NNaO₂, (M+Na)⁺]; HRMS (ESI) m/z: calcd for [C₁₄H₁₈NO₂, (M+H)⁺]: 232.13321; found 232.13306.

N-Tosyl-2-(3-nitrophenyl)-2-oxo-acetamide (1x)

Compound **1x** was prepared according to general procedure B, using crude 2-(3-nitrophenyl)-2-oxoacetic acid (1.95 g, 10.0 mmol), oxalyl chloride (1.01 mL, 12 mmol), 1 drop of DMF in CH₂Cl₂ (20 mL), toluene (10 mL), 4-methylbenzenesulfonamide (1.71 g, 10 mmol), DMAP (6 mg, 0.05 mmol), Et₃N (2.8 mL, 20 mmol) and EtOAc (20 mL). The residue was purified by recrystallisation (Petrol/Acetone) to give a light yellow solid (1.21 g, 3.5 mmol, 35%).

¹**H** NMR (400 MHz, *d*₆-DMSO) δ 8.53 (1H, d, *J* = 8.0 Hz, Ar-*H*), 8.49 (1H, s, Ar-*H*), 8.23 (1H, d, *J* = 8.0 Hz, Ar-*H*), 7.92 – 7.82 (4H, m, Ar-*H*), 7.49 (2H, d, *J* = 8.0 Hz, Ar-*H*), 2.43 (3H, s, CH₃); ¹³**C** NMR (101 MHz, *d*₆-DMSO) δ 185.3, 163.3, 148.3, 145.3, 136.6, 136.0, 133.7, 131.4, 130.3, 129.4, 128.1, 124.6, 21.6; mp (Petrol/Acetone): 189 – 190 °C; IR (cm⁻¹) $\tilde{\nu}$ = 3292, 3111, 3068, 2981, 2361, 2341, 1726, 1686, 1611, 1575, 1530, 1428, 1348, 1287, 1258, 1190, 1172, 1136, 1086, 1010, 948, 890, 861, 831, 816, 798, 786, 733, 695, 676; LRMS (ESI) m/z: 371.0[C₁₅H₁₂N₂NaO₆S, (M+Na)⁺]; HRMS (ESI): calcd for [C₁₄H₁₀N₂NaO₆S, (M+Na)⁺]: 371.03083; found 371.03088.

IV. Copper-catalysed Synthesis of Pyrrolinone Derivatives

General procedure C:

To an oven-dried, round-bottomed 10 mL microwave reaction vial equipped with a stirrer was added [Cu(MeCN)₄]BF₄ (9.4 mg, 0.03 mmol) and α -keto amide 1 (0.36 mmol, 1.2 equiv.). The vial was sealed with a microwave vial cap, and then evacuated under vacuum (<1 mbar) and back-filled with N₂ gas for 3 times. Degassed dry toluene (0.5 mL) and degassed alkyne (0.30 mmol, 1.0 equiv.) were then added respectively. The solution was stirred and heated at 130 °C for 20 h. The reaction mixture was diluted with CH₂Cl₂, filtered through a plug of celite and concentrated under reduced pressure. The residue was purified by column chromatography to give the resulting product.

(E)-1-Benzyl-5-hexylidene-3-phenyl-1,5-dihydro-2H-pyrrol-2-one (3a)

Compound **3a** was synthesised according to general procedure C using **1aa** (86 mg, 0.36 mmol), 1-octyne (44 μ L, 0.30 mmol), purified by column chromatography (Petrol/EtOAc = 95:5) and obtained as a yellow oil (60 mg, 0.14 mmol, 60%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.06 – 7.99 (2H, m, Ar-*H*), 7.44 – 7.38 (3H, m, 2 × Ar-*H* and C=C*H*), 7.37 – 7.28 (3H, m, Ar-*H*), 7.26 – 7.20 (3H, m, Ar-*H*), 5.39 (1H, t, *J* = 8.0 Hz, C=C*H*CH₂), 4.92 (2H, s, NC*H*₂), 2.32 (2H, app. q, *J* = 8.0 Hz, C=CHC*H*₂), 1.44 – 1.39 (2H, m, C=CHCH₂C*H*₂), 1.35 – 1.13 (4H, m, C*H*₂C*H*₂CH₃), 0.86 (3H, t, *J* = 7.0 Hz, C*H*₃); ¹³C NMR (101 MHz, CDCl₃) δ 168.8, 137.9, 137.6, 133.4, 131.7, 128.8, 128.7, 128.6, 127.4, 127.2, 127.0, 125.2, 116.4, 42.9, 31.3, 30.0, 27.7, 22.5, 14.1; **IR** (cm⁻¹) $\tilde{\nu}$ = 2927, 2858, 2360, 1683, 1494, 1402, 1346, 1177, 1075, 1029, 848, 751, 694, 668; **LRMS** (ESI) m/z: 354.2

[C₂₃H₂₅NONa, (M+Na)⁺]; **HRMS (ESI)**: calcd for [C₂₃H₂₆NO, (M+H)⁺]: 332.20089; found 332.20068.

(E)-isomer configuration was confirmed by NOESY experiments.

Irradiation of H_A found that H_A and H_C are spatially closer together compared to H_A and H_B , indicating that **11a** has an (*E*)-configuration.

(*E*)-5-Hexylidene-3-phenyl-1-tosyl-1,5-dihydro-2*H*-pyrrol-2-one (3b)

Compound **3b** was synthesised according to general procedure C using α -keto amide **1ab** (109 mg, 0.36 mmol), 1-octyne (44 μ L, 0.30 mmol), purified by column chromatography (Petrol/EtOAc = 9:1) and obtained as a yellow oil (98 mg, 0.25 mmol, 83%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.94 (2H, d, *J* = 8.5 Hz, Ar-*H*), 7.83 – 7.78 (2H, m, Ar-*H*), 7.58 (1H, s, C=C*H*), 7.39 – 7.29 (5H, m, Ar-*H*), 6.88 (1H, t, *J* = 8.5 Hz, C=C*H*CH₂), 2.43 (2H, q, *J* = 8.5 Hz, C=CHCH₂), 2.40 (3H, s, Ar-CH₃) 1.61 – 1.52 (2H, m, C=CHCH₂CH₂), 1.39 – 1.32 (4H, m, CH₂CH₂CH₃), 0.94 – 0.90 (3H, m, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 166.9, 145.2, 135.9, 134.5, 131.4, 130.04, 130.01, 129.8, 129.4, 128.7, 128.1, 127.3, 122.9, 31.5, 29.7, 28.5, 22.6, 21.8, 14.1; **IR** (cm⁻¹) $\tilde{\nu}$ = 2970, 2927, 2360, 1698, 1635, 1597, 1493, 1447, 1306, 1220, 1171, 1145, 1124, 1092, 1006, 991, 814, 773; **LRMS** (ESI) m/z: 396.2 [C₂₃H₂₆NO₃S, (M+H)⁺]; HRMS (ESI): calcd for [C₂₃H₂₆NO₃S, (M+H)⁺]: 396.16279; found 396.16229.

(*E*)-5-Hexylidene-1-((4-methoxyphenyl)sulfonyl)-3-phenyl-1,5-dihydro-2*H*-pyrrol-2-one

Compound **3c** was synthesised according to general procedure C using α -keto amide **1ac** (115 mg, 0.36 mmol), 1-octyne (44 μ L, 0.30 mmol), purified by column chromatography (Petrol/EtOAc = 4:1) and obtained as a yellow solid (92 mg, 0.22 mmol, 75%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.00 (2H, d, *J* = 9.0 Hz , Ar-*H*), 7.80 (2H, d, *J* = 8.5 Hz, Ar-*H*), 7.57 (1H, s, C=C*H*), 7.41 – 7.23 (3H, m, Ar-*H*), 6.96 (2H, d, *J* = 8.5 Hz, Ar-*H*), 6.88 (1H, t, *J* = 8.0 Hz, C=C*H*CH₂), 3.83 (3H, s, OCH₃), 2.43 (2H, q, *J* = 8.5 Hz, C=CHCH₂), 1.60 – 1.52 (2H, m, C=CHCH₂CH₂), 1.41 – 1.27 (4H, m, CH₂CH₂CH₃), 0.92 (3H, t, *J* = 7.0 Hz, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 167.0, 164.0, 134.6, 131.4, 130.4, 130.3, 130.1, 129.9, 129.3, 128.7, 127.3, 122.9, 114.3, 55.8, 31.5, 29.7, 28.5, 22.6, 14.1; mp (Petrol/Et₂O): 96 – 98 °C; IR (cm⁻¹) $\tilde{\nu}$ = 3084, 2955, 2927, 2857, 2362, 2342, 1718, 1635, 1595, 1578, 1498, 1461, 1449, 1417, 1388, 1364, 1305, 1264, 1246, 1190, 1168, 1143, 1122, 1092, 1025, 1007, 994, 920, 866, 834, 804, 785, 750, 718, 692, 666, 647, 627, 615; LRMS (ESI) m/z: 412.2 [C₂₅H₂₆NO₄S, (M+H)⁺]; HRMS (ESI): calcd for [C₂₅H₂₆NO₄S, (M+H)⁺]: 412.15771; found 412.15759.

(E)-5-Hexylidene-1-((4-cyano)sulfonyl)-3-phenyl-1,5-dihydro-2H-pyrrol-2-one (3d)

Compound **3d** was synthesised according to general procedure C, using α -keto amide **1ad** (113 mg, 0.36 mmol), 1-octyne (44 μ L, 0.30 mmol), purified by column chromatography (Petrol/Et₂O = 9:1) and obtained as a white solid (79 mg, 0.19 mmol, 65%).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.18 (2H, d, *J* = 8.5 Hz, Ar-*H*), 7.82 (2H, d, *J* = 8.5 Hz, Ar-*H*), 7.77 (2H, dd, *J* = 8.0, 2.0 Hz, Ar-*H*), 7.62 (1H, s, C=C*H*), 7.42 – 7.30 (3H, m, Ar-*H*), 6.88 (1H, t, *J* = 8.5 Hz, C=C*H*CH₂), 2.50 – 2.39 (2H, m, C=CHC*H*₂), 1.66 – 1.53 (2H, m, C=CHCH₂C*H*₂), 1.41 – 1.31 (4H, m, C*H*₂C*H*₂CH₃), 0.93 (3H, t, *J* = 7.0 Hz, C*H*₃); ¹³**C NMR** (**101 MHz**, **CDCl**₃) δ 166.8, 142.5, 134.2, 132.9, 131.3, 130.6, 129.7, 129.6, 128.83, 128.82, 127.3, 123.4, 117.7, 117.2, 31.5, 29.6, 28.6, 22.6, 14.1; **mp** (**Petrol/Et₂O**): 112 – 114 °C; **IR** (**cm**⁻¹) $\tilde{\nu}$ = 3095, 2956, 2928, 2858, 2349, 2234, 1722, 1635, 1490, 1449, 1394, 1369, 1305 1285, 1244, 1189, 1174, 1120, 1090, 1007, 995, 867, 838, 785, 750, 720, 692, 631; **LRMS** (**ESI**) **m/z**: 407.2 [C₂₃H₂₃N₂O₃S, (M+H)⁺]; **HRMS** (**ESI**): calcd for [C₂₃H₂₃N₂O₃S, (M+H)⁺]: 407.14239; found 407.14175.

(*E*)-5-Hexylidene-3-phenyl-1-((4-(trifluoromethyl)phenyl)sulfonyl)-1,5-dihydro-2*H*-pyrrol-2-one (3e)

Compound **3e** was synthesised according to general procedure C, using α -keto amide **1ae** (129 mg, 0.36 mmol), 1-octyne (44 μ L, 0.30 mmol), purified by column chromatography (Petrol/Et₂O = 9:1) and obtained as a yellow solid (94 mg, 0.21 mmol, 70%).

¹H NMR (400 MHz, CDCl₃) δ 8.21 (2H, d, *J* = 8.0 Hz, Ar-*H*), 7.80–7.77 (4H, m, Ar-*H*), 7.62 (1H, s, C=C*H*), 7.41 – 7.31 (3H, m, Ar-*H*), 6.90 (1H, t, *J* = 8.0 Hz, C=C*H*CH₂), 2.51 – 2.40 (2H, m, C=CHC*H*₂), 1.63 – 1.52 (2H, m, C=CHCH₂C*H*₂), 1.42 – 1.31 (4H, m, *CH*₂C*H*₂CH₃), 0.94 (3H, t, *J* = 7.0 Hz, *CH*₃); ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 142.1, 135.5 (q, *J* = 34.0 Hz), 134.3, 131.4, 130.5, 129.7, 129.6, 128.8, 128.7, 127.3, 126.3 (q, *J* = 3.0 Hz), 123.3, 123.1 (q, *J* = 273.0 Hz), 31.5, 29.6, 28.5, 22.6, 14.1; ¹⁹F NMR (377 MHz, CDCl₃) -63.3; mp (Petrol/Et₂O): 85 – 87 °C; IR (cm⁻¹) $\tilde{\nu}$ = 2960, 2930, 2361, 2255, 1720, 1492, 1450, 1406, 1371, 1322, 1243, 1176, 1140, 1109, 1094, 1063, 1007, 995, 905, 843, 785, 726, 692, 649, 607; LRMS (ESI) m/z: 450.2 [C₂₃H₂₃F₃NO₃S, (M+H)⁺]; HRMS (ESI): calcd for [C₂₃H₂₃F₃NO₃S, (M+H)⁺]: 450.13453; found 450.13440.

(*E*)-5-Hexylidene-1-((4-nitrophenyl)sulfonyl)-3-phenyl-1,5-dihydro-2*H*-pyrrol-2-one (3f)

Compound **3f** was synthesised according to general procedure C, using α -keto amide **1af** (120 mg, 0.36 mmol), 1-octyne (44 μ L, 0.30 mmol), purified by column chromatography (Petrol/Et₂O = 4:1) and obtained as a yellow solid (55 mg, 0.13 mmol, 43%).

¹**H NMR** (400 MHz, **CDCl**₃); δ 8.36 (2H, d, J = 9.0 Hz , Ar-H), 8.27 (2H, d, J = 9.0 Hz , Ar-H), 7.80 – 7.73 (2H, m, Ar-H), 7.62 (1H, s, C=CH), 7.41 – 7.32 (3H, m, Ar-H), 6.90 (1H, t, J = 8.0 Hz, C=CHCH₂), 2.46 (2H, dd, J = 15.0, 8.0 Hz, C=CHCH₂), 1.65 – 1.53 (2H, m, C=CHCH₂CH₂), 1.44 – 1.33 (4H, m, CH₂CH₂CH₃), 0.93 (3H, t, J = 7.0 Hz, CH₃); ¹³C **NMR** (101 MHz, CDCl₃) δ 166.8, 150.9, 144.0, 134.2, 131.5, 130.6, 129.8, 129.7, 129.6, 128.9, 127.3, 124.4, 123.5, 31.6, 29.7, 28.6, 22.6, 14.2; **mp** (**Petrol/Et₂O**): 90 – 92 °C; **IR** (**cm**⁻¹) $\tilde{\nu} = 3658, 2981, 2889, 2360, 2341, 1721, 1636, 1607, 1532, 1473, 1462, 1382, 1251, 1151, 1089, 1073, 1007, 955, 855, 816, 785, 741, 683, 669, 648, 609;$ **LRMS**(**ESI**)**m/z**: 427.2 [C₂₂H₂₃N₂O₅S, (M+H)⁺];**HRMS**(**ESI**): calcd for [C₂₂H₂₃N₂O₅S, (M+H)⁺]: 427.13222; found 427.13232.

(*E*)-5-Hexylidene-1-(methylsulfonyl)-3-phenyl-1,5-dihydro-2*H*-pyrrol-2-one (3g)

Compound **3g** was synthesised according to general procedure C, using α -keto amide **1ag** (82 mg, 0.36 mmol), 1-octyne (44 μ L, 0.30 mmol), purified by column chromatography (Petrol/EtOAc = 9:1) and obtained as a yellow oil (41 mg, 0.13 mmol, 43%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.89 – 7.85 (2H, m, Ar-*H*), 7.64 (1H, s, C=C*H*), 7.47 – 7.33 (3H, m, Ar-*H*), 6.74 (1H, t, *J* = 8.0 Hz, C=C*H*CH₂), 3.41 (3H, s, SO₂C*H*₃), 2.47 – 2.36 (2H, m, C=CHC*H*₂), 1.56 – 1.50 (2H, m, C=CHCH₂C*H*₂), 1.37 – 1.32 (4H, m, C*H*₂C*H*₂C*H*₃), 0.92 (3H, t, *J* = 7.0 Hz, C*H*₃); ¹³C **NMR** (101 MHz, CDCl₃) δ 167.7, 134.3, 131.2, 130.0, 129.9, 129.5, 128.8, 127.3, 123.4, 41.9, 31.5, 29.5, 28.5, 22.5, 14.0; **IR** (cm⁻¹) $\tilde{\nu}$ = 2929, 2960, 2361, 1714, 1492, 1449, 1355, 1325, 1220, 1165, 1124, 995, 963, 865, 772, 691; **LRMS** (ESI) m/z: 342.0 [C₁₇H₂₁NO₃SNa, (M+Na)⁺]; **HRMS** (ESI): calcd for [C₁₇H₂₂NO₃S, (M+H)⁺]: 320.13149; found 320.13137.

(*E*)-1-Hexyl-5-hexylidene-3-phenyl-1,5-dihydro-2*H*-pyrrol-2-one (3h)

Compound **3h** was synthesised according to general procedure C, using α -keto amide **1ah** (84 mg, 0.36 mmol), 1-octyne (44 μ L, 0.30 mmol), purified by column chromatography (Petrol/Et₂O = 95:5) and obtained as a yellow oil (51 mg, 0.16 mmol, 52%).

¹H NMR (400 MHz, CDCl₃) δ 7.98 (2H, d, *J* = 7.5 Hz, Ar-*H*), 7.44 – 7.30 (4H, m, 3 × Ar-*H*, C=C*H*), 5.45 (1H, t, *J* = 8.0 Hz, C=C*H*CH₂), 3.66 (2H, t, *J* = 7.5 Hz, NCH₂), 2.46 – 2.35 (2H, m, C=CHCH₂), 1.65 – 1.58 (2H, m, NCH₂CH₂), 1.57 – 1.46 (2H, m, C=CHCH₂CH₂), 1.41 – 1.22 (10H, m, N(CH₂)₂C*H*₂C*H*₂C*H*₂, C*H*₂C*H*₂CH₃), 0.96 – 0.84 (5H, m, N(CH₂)₅C*H*₂, C*H*₃); ¹³C NMR (101 MHz, CDCl₃) δ 168.7, 138.3, 133.5, 131.9, 128.7, 128.6, 127.4, 124.7, 114.9, 39.3, 31.7, 31.5, 30.2, 29.0, 27.9, 26.7, 22.7, 22.6, 14.2; **IR** (cm⁻¹) $\tilde{\nu}$ = 3657, 2981, 2931, 2889, 2349, 1684, 1647, 1461, 1382, 1251, 1153, 1073, 956, 818, 787, 748, 693, 649; **LRMS (ESI)** m/z: 326.2 [C₂₂H₃₂NO, (M+H)⁺]; **HRMS (ESI**): calcd for [C₂₂H₃₂NO, (M+H)⁺]: 326.24784; found 326.24736. (*E*)-1-Cyclopropyl-5-hexylidene-3-phenyl-1,5-dihydro-2*H*-pyrrol-2-one (3i)

Compound **3i** was synthesised according to general procedure C, using α -keto amide **1ai** (68 mg, 0.36 mmol), 1-octyne (44 μ L, 0.30 mmol), purified by column chromatography (Petrol/Et₂O = 95:5) and obtained as a yellow oil (56 mg, 0.20 mmol, 69%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.93 (2H, d, *J* = 7.5 Hz, Ar-*H*), 7.38 (2H, dd, *J* = 7.5, 7.5 Hz, Ar-*H*), 7.35 – 7.29 (2H, m, Ar-*H*, C=C*H*), 5.83 (1H, t, *J* = 8.0 Hz, C=C*H*CH₂), 2.54 (1H, tt, *J* = 7.0, 4.0 Hz, NC*H*), 2.44 – 2.34 (2H, m, C=CHC*H*₂), 1.58 – 1.48 (2H, m, C=CHCH₂C*H*₂3), 1.40 – 1.29 (4H, m, C*H*₂C*H*₂CH₃), 1.06 – 0.98 (2H, m, NCHC*H*₂), 0.94 – 0.88 (5H, m, C*H*₃, NCHC*H*₂); ¹³C NMR (101 MHz, CDCl₃) δ 169.4, 139.2, 133.0, 131.9, 128.6, 128.6, 127.4, 124.7, 116.1, 31.5, 30.2, 27.9, 22.6, 21.4, 14.2, 6.4; **IR** (cm⁻¹) $\tilde{\nu}$ = 3661, 2981, 2889, 2361, 2341, 1681, 1462, 1421, 1382, 1241, 1152, 1073, 904, 788, 724, 649; **LRMS (ESI)** m/z: 282.2 [C₁₉H₂₄NO, (M+H)⁺]; **HRMS (ESI**): calcd for [C₁₉H₂₄NO, (M+H)⁺]: 282.18524; found 282.18494.

(E)-1-Cyclohexyl-5-hexylidene-3-phenyl-1,5-dihydro-2H-pyrrol-2-one (3j)

Compound **3j** was synthesised according to general procedure C, using α -keto amide **1aj** (83 mg, 0.36 mmol), 1-octyne (44 μ L, 0.30 mmol), purified by column chromatography (Petrol/Et₂O = 95:5) and obtained as a yellow oil (41 mg, 0.12 mmol, 42%).

¹**H NMR (400 MHz, CDCl**₃) δ 7.95 (2H, d, *J* = 7.0 Hz, Ar-*H*), 7.43 – 7.27 (4H, m, 3 × Ar-*H*, C=C*H*), 5.61 (1H, t, *J* = 8.0 Hz, C=C*H*CH₂), 3.96 (1H, p, *J* = 12.0 Hz, C_{cy}*H*), 2.43 – 2.37 (2H, m, C=CHCH₂), 2.26 – 2.11 (2H, m, C_{cy}H₂), 1.92 – 1.82 (2H, m, C_{cy}H₂), 1.77 – 1.68 (4H, m, 2 × C_{cy}H₂), 1.58 – 1.48 (2H, m, C=CHCH₂CH₂), 1.42 – 1.31 (4H, m, CH₂CH₂CH₃), 1.31 – 1.15

(2H, m, $C_{cy}H_2$), 0.92 (3H, t, J = 6.5 Hz, CH_3); ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 138.0, 133.3, 131.9, 128.6, 128.5, 127.5, 125.1, 115.5, 52.2, 31.6, 30.4, 30.3, 28.2, 26.6, 25.6, 22.6, 14.2, 1.2; **IR** (cm⁻¹) $\tilde{\nu} = 3661$, 2981, 2933, 2361, 2341, 1676, 1640, 1450, 1308, 1347, 1259, 1205, 1152, 1073, 905, 788, 726, 693, 648; **LRMS** (ESI) m/z: 346.2 [$C_{22}H_{29}NNaO$, (M+Na)⁺]; **HRMS** (ESI): calcd for [$C_{22}H_{30}NO$, (M+H)⁺]: 324.23219; found 324.23199.

(*E*)-1-(Cyclopropylmethyl)-5-hexylidene-3-phenyl-1,5-dihydro-2*H*-pyrrol-2-one (3k)

Compound **3k** was synthesised according to general procedure C, using α -keto amide **1ak** (73 mg, 0.36 mmol), 1-octyne (44 μ L, 0.30 mmol), purified by column chromatography (Petrol/Et₂O = 95:5) and obtained as a yellow oil (44 mg, 0.15 mmol, 50%).

¹H NMR (400 MHz, CDCl₃) δ 7.97 (2H, d, *J* = 7.5 Hz, Ar-*H*), 7.42 – 7.37 (3H, m, 2 × Ar-*H*, C=C*H*), 7.33 (1H, t, *J* = 7.5 Hz, Ar-*H*), 5.54 (1H, t, *J* = 8.0 Hz, C=C*H*CH₂), 3.58 (2H, d, *J* = 7.0 Hz, NC*H*₂), 2.48 – 2.37 (2H, m, C=CHC*H*₂), 1.60 – 1.46 (2H, m, C=CHCH₂C*H*₂), 1.40 – 1.30 (4H, m, C*H*₂C*H*₂CH₃), 1.15 – 1.01 (1H, m, C*H*(CH₂)₂), 0.96 – 0.87 (3H, m, C*H*₃), 0.54 – 0.44 (2H, m, 1 × CH(C*H*₂)₂), 0.43 – 0.34 (2H, m, 1 × CH(C*H*₂)₂); ¹³C NMR (101 MHz, CDCl₃) δ 168.8, 138.6, 133.6, 131.9, 128.7, 128.6, 127.4, 124.8, 115.1, 43.3, 31.5, 30.2, 27.9, 22.6, 14.2, 10.9, 3.9; **IR** (cm⁻¹) $\tilde{\nu}$ = 3657, 2981, 2889, 2349, 1687, 1491, 1461, 1383, 1252, 1153, 1073, 1021, 955, 789, 749, 694, 650; **LRMS** (ESI) m/z: 296.2 [C₂₀H₂₆NO, (M+H)⁺]; **HRMS** (ESI): calcd for [C₂₀H₂₆NO, (M+H)⁺]: 296.20089; found 296.20062.

Compound **31** was synthesised according to general procedure C, using α -keto amide **1al** (88 mg, 0.36 mmol), 1-octyne (44 μ L, 0.30 mmol), purified by column chromatography (Petrol/Et₂O = 95:5) and obtained as a yellow oil (46 mg, 0.14 mmol, 45%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (2H, d, *J* = 7.5 Hz, Ar-*H*), 7.43 – 7.35 (3H, m, 2 × Ar-*H*, C=C*H*), 7.32 (1H, t, *J* = 7.0 Hz, Ar-*H*), 5.45 (1H, t, *J* = 8.0 Hz, C=C*H*CH₂), 3.51 (2H, d, *J* = 7.0 Hz, NCH₂), 2.48 – 2.35 (2H, m, C=CHCH₂), 1.78 – 1.69 (3H, m, C_{cy}*H*, C_{cy}*H*₂), 1.68 – 1.61 (2H, m, C_{cy}*H*₂), 1.56 – 1.47 (2H, m, C=CHCH₂C*H*₂), 1.40 – 1.30 (4H, m, C*H*₂C*H*₂C*H*₃), 1.22 – 1.14 (2H, m, C_{cy}*H*₂), 1.08 – 0.95 (2H, m, C_{cy}*H*₂), 0.95 – 0.88 (3H, m, C*H*₃); ¹³C NMR (101 MHz, CDCl₃) δ 169.1, 138.8, 133.3, 131.9, 128.7, 128.6, 127.4, 124.6, 115.3, 45.5, 37.7, 31.5, 31.1, 30.2, 27.9, 26.5, 26.0, 25.9, 22.6, 14.2; **IR** (cm⁻¹) $\tilde{\nu}$ = 3657, 2981, 2928, 2349, 1678, 1646, 1448, 1381, 1345, 1251, 1153, 1073, 956, 906, 838,787, 727, 693, 649; **LRMS (ESI) m/z**: 338.2 [C₂₃H₃₂NO, (M+H)⁺]; **HRMS (ESI)**: calcd for [C₂₃H₃₂NO, (M+H)⁺]: 338.24784; found 338.24756.

(*E*)-5-Hexylidene-3-phenyl-1-(thiophen-2-ylmethyl)-1,5-dihydro-2*H*-pyrrol-2-one (3m)

Compound **3m** was synthesised according to general procedure C, using α -keto amide **1am** (88 mg, 0.36 mmol), 1-octyne (44 μ L, 0.30 mmol), purified by column chromatography (Petrol/Et₂O = 95:5) and obtained as a yellow oil (54 mg, 0.16 mmol, 53%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.94 (2H, d, *J* = 7.0 Hz, Ar-*H*), 7.39 – 7.31 (3H, m, Ar-*H*), 7.29 (1H, d, *J* = 7.0 Hz, Ar-*H*), 7.12 (1H, d, *J* = 5.0 Hz, Ar-*H*), 6.93 (1H, s, C=C*H*), 6.87 (1H, dd, *J* = 5.0, 3.5 Hz, Ar-*H*), 5.51 (1H, t, *J* = 8.0 Hz, C=C*H*CH₂), 4.99 (2H, s, NC*H*₂), 2.32 (2H, q, *J* = 8.0 Hz, C=CHC*H*₂), 1.48 – 1.36 (2H, m, C*H*₂CH₂CH₂CH₃), 1.32 – 1.17 (4H, m, C*H*₂C*H*₂CH₃), 0.84 (3H, t, *J* = 7.0 Hz, C*H*₃); ¹³C NMR (101 MHz, CDCl₃) δ 168.3, 140.2, 137.5, 133.3, 131.6, 128.8, 128.6, 127.4, 126.8, 125.9, 125.3, 125.0, 116.0, 37.8, 31.3, 30.0, 27.8, 22.6, 14.1; IR (cm⁻¹) $\tilde{\nu}$ = 3369, 3069, 2955, 2927, 2857, 2360, 1685, 1491, 1431, 1410, 1340, 1238, 1180,

1128, 1074, 924, 852, 789, 747, 694, 649; **MS (ESI) m/z**: 338.2 [C₂₁H₂₄NOS, (M+H)⁺]; **HRMS** (**ESI) m/z**: calcd for [C₂₁H₂₄NOS, (M+H)⁺]: 338.15731; found 338.15689.

(E)-1-Allyl-5-hexylidene-3-phenyl-1,5-dihydro-2H-pyrrol-2-one (3n)

Compound **3n** was synthesised according to general procedure C, using α -keto amide **1an** (68 mg, 0.36 mmol), 1-octyne (44 μ L, 0.30 mmol), purified by column chromatography (Petrol/Et₂O = 95:5) and obtained as a yellow oil (43 mg, 0.15 mmol, 51%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.98 (2H, d, *J* = 7.0 Hz, Ar-*H*), 7.43 – 7.30 (4H, m, 3 × Ar-*H*, C=C*H*), 5.90 – 5.78 (1H, m, NCH₂C*H*=CH₂), 5.46 (1H, t, *J* = 8.0 Hz, C=C*H*CH₂), 5.19 – 5.08 (2H, m, NCH₂CH=C*H*₂), 4.35 – 4.27 (2H, m, NCH₂), 2.44 – 2.34 (2H, m, C=CHCH₂), 1.55 – 1.45 (2H, m, C=CHCH₂CH₂), 1.41 – 1.28 (4H, m, C*H*₂C*H*₂CH₃), 0.91 (3H, t, *J* = 6.5 Hz, C*H*₃); ¹³C NMR (101 MHz, CDCl₃) δ 168.5, 138.0, 133.3, 131.8, 128.8, 128.6, 127.4, 125.1, 116.4, 116.0, 100.1, 41.6, 31.5, 30.1, 27.9, 22.6, 14.2; **IR** (cm⁻¹) $\tilde{\nu}$ = 3661, 2981, 2889, 2361, 2341, 1681, 1647, 1382, 1251, 1153, 1073, 942, 905, 727, 693, 648; **LRMS** (ESI) m/z: 304.2 [C₁₉H₂₃NNaO, (M+Na)⁺]; **HRMS** (ESI): calcd for [C₁₉H₂₃NNaO, (M+Na)⁺]: 304.16719; found 304.16727.

(*E*)-5-Hexylidene-1,3-diphenyl-1,5-dihydro-2*H*-pyrrol-2-one and (*Z*)-5-Hexylidene-1,3-diphenyl-1,5-dihydro-2*H*-pyrrol-2-one (30)

Compound **30** was synthesised according to general procedure C, using α -keto amide **1ao** (81 mg, 0.36 mmol), 1-octyne (44 μ L, 0.30 mmol), purified by column chromatography (Petrol/Et₂O = 95:5) and obtained as a yellow oil containing an inseparable mixture of (*E*) and (*Z*) isomers (56 mg, 0.18 mmol, 59%), *E/Z* ratio 3:1.

Major (*E*)-isomer: ¹H NMR (400 MHz, CDCl₃) δ 8.12 (2H, d, *J* = 7.0 Hz, Ar-*H*), 7.65 (1H, s, C=C*H*), 7.59 – 7.36 (8H, m, Ar-*H*), 5.50 (1H, t, *J* = 8.5 Hz, C=C*H*CH₂), 2.53 – 2.42 (2H, m, C=CHC*H*₂), 1.59 – 1.48 (2H, m, C=CHCH₂C*H*₂), 1.46 – 1.36 (4H, m, C*H*₂C*H*₂CH₃), 1.05 – 0.94 (3H, m, C*H*₃); ¹³C NMR (101 MHz, CDCl₃) 168.3, 139.4, 134.8, 132.97, 131.7, 129.3, 128.9, 128.64, 128.4, 127.8, 127.51, 125.3, 117.0, 31.5, 29.9, 27.9, 22.6, 14.1; Minor (*Z*)-isomer: ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 7.98 (2H, m, Ar-*H*), 7.76 – 7.67 (1H, m, Ar-*H*), 7.65 – 7.34 (7H, m, Ar-*H*), 7.25 (1H, s, C=C*H*), 5.38 (1H, t, *J* = 8.0 Hz, C=C*H*CH₂), 1.83 – 1.72 (2H, m, C=CHC*H*₂), 1.46 – 1.26 (4H, m, C=CH₂CH₂C*H*₂C*H*₂), 1.28 – 1.10 (2H, m, C*H*₂CH₃), 0.94 – 0.86 (3H, m, 3H, C*H*₃); ¹³C NMR (101 MHz, CDCl₃) 170.2, 138.1, 137.1, 133.04, 131.6, 129.2, 128.7, 128.60, 128.56, 128.2, 127.50, 127.2, 119.7, 31.4, 29.3, 27.4, 22.4, 14.0; **IR (cm**⁻¹) $\tilde{\nu}$ = 3065, 2955, 2927, 2856, 1693, 1597, 1500, 1449, 1404, 1352, 1224, 1159, 1120, 1073, 1027, 964, 909, 851, 785, 749, 730, 693, 651; LRMS (ESI) m/z: 318.2 [C₂₂H₂₄NO, (M+H)⁺]; HRMS (ESI): calcd for [C₂₂H₂₄NO, (M+H)⁺]: 318.18524; found 318.18493.

Compound **4a** was synthesised according to general procedure C, using α -keto amide **1ba** (91 mg, 0.36 mmol), 1-octyne (44 μ L, 0.30 mmol), purified by column chromatography (Petrol/Et₂O = 95:5) and obtained as a yellow oil (42 mg, 0.12 mmol, 41%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.05 (2H, d, *J* = 8.0 Hz, Ar-*H*), 7.50 (1H, s, C=C*H*), 7.45 – 7.40 (2H, m, Ar-*H*), 7.38 – 7.31 (5H, m, Ar-*H*), 5.48 (1H, t, *J* = 8.0 Hz, C=C*H*CH₂), 5.03 (2H, s, NC*H*₂), 2.50 (3H, s, Ar-C*H*₃), 2.47 – 2.40 (2H, m, C=CHC*H*₂), 1.55 – 1.48 (2H, m, C*H*₂CH₂CH₂CH₃), 1.42 – 1.32 (4H, m, C*H*₂C*H*₂CH₃), 0.98 (3H, t, *J* = 7.0 Hz, C*H*₃); ¹³C NMR (101 MHz, CDCl₃) δ 169.0, 138.8, 138.0, 137.7, 133.3, 129.4, 128.9, 128.7, 127.8, 127.2, 127.0, 124.3, 115.9, 42.9, 31.3, 30.0, 27.7, 22.5, 21.5, 14.1; IR (cm⁻¹) $\tilde{\nu}$ = 2981, 2930, 2889, 2349, 1699, 1512, 1495, 1458, 1393, 1252, 1153, 1077, 954, 823, 748, 701, 648; LRMS (ESI) m/z: 346.2 [C₂₄H₂₈NO, (M+H)⁺]; HRMS (ESI): calcd for [C₂₄H₂₈NO, (M+H)⁺]: 346.21654; found 346.21634.

(*E*)-1-Benzyl-5-hexylidene-3-(3-methoxyphenyl)-1,5-dihydro-2*H*-pyrrol-2-one (4b)

Compound **4b** was synthesised according to general procedure C, using α -keto amide **1bb** (97 mg, 0.36 mmol), 1-octyne (44 μ L, 0.30 mmol), purified by column chromatography (Petrol/Et₂O = 95:5) and obtained as a yellow oil (64 mg, 0.18 mmol, 59%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.67 (1H, s, Ar-*H*), 7.55 (1H, d, *J* = 7.5 Hz, Ar-*H*), 7.41 (1H, s, C=C*H*), 7.34 – 7.25 (3H, m, Ar-*H*), 7.25 – 7.17 (3H, m, Ar-*H*), 6.90 (1H, d, *J* = 8.0 Hz, Ar-*H*), 5.38 (1H, t, *J* = 8.0 Hz, C=C*H*CH₂), 4.90 (2H, s, NC*H*₂), 3.84 (3H, s, OC*H*₃), 2.30 (2H, q, *J* = 8.0 Hz, C=CHC*H*₂), 1.44 – 1.32 (2H, m, C*H*₂CH₂CH₂CH₃), 1.32 – 1.13 (4H, m, C*H*₂C*H*₂CH₃), 0.84 (3H, t, *J* = 7.0 Hz, C*H*₃); ¹³C NMR (101 MHz, CDCl₃) δ 168.8, 159.8, 137.9, 137.6, 133.1, 133.0, 129.6, 128.7, 127.3, 127.0, 125.5, 119.8, 116.6, 115.1, 112.3, 55.4, 42.9, 31.3, 29.9, 27.8, 22.5, 14.1; **IR (cm**⁻¹) $\tilde{\nu}$ = 2928, 2857, 2361, 2012, 1722, 1683, 1575, 1534, 1488, 1455, 1434, 1412, 1371, 1336, 1287, 1252, 1207, 1180, 1153, 1112, 1044, 1012, 963, 842, 790, 729, 695, 649; **LRMS (ESI) m/z**: 362.2 [C₂₄H₂₈NO₂, (M+H)⁺]; **HRMS (ESI) m/z**: calcd for [C₂₄H₂₈NO₂, (M+H)⁺]: 362.21146; found 362.21149.

(E)-1-Benzyl-5-hexylidene-3-(4-(trifluoromethyl)phenyl)-1,5-dihydro-2H-pyrrol-2-one

Compound **4c** was synthesised according to general procedure C, using α -keto amide **1bc** (111 mg, 0.36 mmol), 1-octyne (44 μ L, 0.30 mmol), purified by column chromatography (Petrol/Et₂O = 95:5) and obtained as a brown oil (85 mg, 0.21 mmol, 71%).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.07 (2H, d, *J* = 8.0 Hz, Ar-*H*), 7.59 (2H, d, *J* = 8.0 Hz, Ar-*H*), 7.45 (1H, s, C=C*H*), 7.28 – 7.20 (2H, m, Ar-*H*), 7.21 – 7.12 (3H, m, Ar-*H*), 5.40 (1H, t, *J* = 8.0 Hz, C=C*H*CH₂), 4.85 (2H, s, NC*H*₂), 2.28 (2H, q, *J* = 8.0 Hz, C=CHC*H*₂), 1.40 – 1.29 (2H, m, C*H*₂CH₂CH₂CH₃), 1.28 – 1.08 (4H, m, C*H*₂C*H*₂CH₃), 0.79 (3H, t, *J* = 7.0 Hz, C*H*₃); ¹³C **NMR** (**101 MHz**, **CDCl**₃) δ 168.4, 137.7, 137.4, 135.2, 132.0, 130.4 (q, *J* = 32.0 Hz), 128.8, 127.6, 127.4, 127.0, 126.9, 125.5 (q, *J* = 4.0 Hz), 124.2 (q, *J* = 273.0 Hz), 118.1, 43.0, 31.3, 29.9, 27.9, 22.6, 14.1; ¹⁹F **NMR** (**377 MHz**, **CDCl**₃) -62.7; **IR** (**cm**⁻¹) $\tilde{\nu}$ = 2980, 2889, 1684, 1616, 1461, 1382, 1324, 1251, 1164, 1126, 1070, 1018, 954, 842, 757, 729, 698, 612; **LRMS** (**ESI**) **m**/z:

400.2 [C₂₄H₂₅F₃NO, (M+H)⁺]; **HRMS (ESI) m/z**: calcd for [C₂₄H₂₅F₃NO, (M+H)⁺]: 400.18828; found 400.18787.

(E)-1-Benzyl-5-hexylidene-3-(3-nitrophenyl)-1,5-dihydro-2H-pyrrol-2-one (4d)

Compound **4d** was synthesised according to general procedure C, using α -keto amide **1bd** (102 mg, 0.36 mmol), 1-octyne (44 μ L, 0.30 mmol), purified by column chromatography (Petrol/EtOAc = 9:1) and obtained as a light yellow solid (86 mg, 0.23 mmol, 76%).

¹H NMR (400 MHz, CDCl₃) δ 8.80 (1H, s, Ar-*H*), 8.49 (1H, d, *J* = 8.0 Hz, Ar-*H*), 8.19 (1H, d, *J* = 8.0 Hz, Ar-*H*), 7.65 – 7.57 (2H, m, Ar-*H*, C=CH), 7.36 – 7.20 (5H, m, Ar-*H*), 5.52 (1H, t, *J* = 8.0 Hz, C=CHCH₂), 4.93 (2H, s, NCH₂), 2.37 (2H, q, *J* = 8.0 Hz, C=CHCH₂), 1.48 – 1.38 (2H, m, CH₂CH₂CH₂CH₂CH₃), 1.34 – 1.18 (4H, m, CH₂CH₂CH₃), 0.86 (3H, t, *J* = 7.0 Hz, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 168.1, 148.5, 137.6, 137.2, 133.4, 133.3, 131.0, 129.7, 128.8, 127.5, 127.1, 127.0, 123.2, 122.0, 118.8, 43.0, 31.3, 29.9, 28.0, 22.5, 14.1; mp (Petrol/Et₂O): 80 – 82 °C; IR (cm⁻¹) $\tilde{\nu}$ = 2980, 2889, 2360, 2341, 1724, 1686, 1529, 1473, 1462, 1382, 1350, 1252, 1152, 1073, 955, 810, 732, 701; LRMS (ESI) m/z: 377.2 [C₂₃H₂₅N₂O₃, (M+H)⁺]; HRMS (ESI) m/z: calcd for [C₂₃H₂₅N₂O₃, (M+H)⁺]: 377.18597; found 377.18582. (E)-1-Benzyl-3-(3-bromophenyl)-5-hexylidene-1,5-dihydro-2H-pyrrol-2-one (4e)

Compound **4e** was synthesised according to general procedure C, using α -keto amide **1be** (115 mg, 0.36 mmol), 1-octyne (44 μ L, 0.30 mmol), purified by column chromatography (Petrol/Et₂O = 95:5) and obtained as a brown oil (80 mg, 0.20 mmol, 65%).

¹**H** NMR (400 MHz, CDCI₃) δ 8.08 (1H, s, Ar-*H*), 7.90 (1H, d, *J* = 8.0 Hz, Ar-*H*), 7.41 – 7.33 (2H, m, Ar-*H*), 7.25 – 7.09 (6H, m, Ar-*H*), 5.34 (1H, t, *J* = 8.0 Hz, C=CHCH₂), 4.81 (2H, s, NCH₂), 2.29 – 2.16 (2H, m, C=CHCH₂), 1.37 – 1.25 (2H, m, CH₂CH₂CH₂CH₃), 1.25 – 1.05 (4H, m, CH₂CH₂CH₃), 0.77 (3H, t, *J* = 7.0 Hz, CH₃); ¹³C NMR (101 MHz, CDCI₃) δ 168.3, 137.7, 137.4, 133.7, 131.8, 131.6, 130.14, 130.13, 128.7, 127.3, 127.0, 126.1, 126.0, 122.8, 117.5, 42.9, 31.3, 29.9, 27.8, 22.5, 14.1; mp (Petrol/Et₂O): 65 – 67 °C; IR (cm⁻¹) $\tilde{\nu}$ = 2980, 2889, 1724, 1683, 1556, 1473, 1462, 1382, 1252, 1152, 1074, 954, 790, 729, 696; LRMS (ESI) m/z: 410.0 [C₂₃H₂₅⁷⁹BrNO, (M+H)⁺]; HRMS (ESI) m/z: calcd for [C₂₃H₂₅⁷⁹BrNO, (M+H)⁺]: 410.11140; found 410.11127.

(E)-3-(1-Benzyl-5-hexylidene-2-oxo-2,5-dihydro-1H-pyrrol-3-yl)benzonitrile (4f)

Compound **4f** was synthesised according to general procedure C, using α -keto amide **1bf** (95 mg, 0.36 mmol), 1-octyne (44 μ L, 0.30 mmol), purified by column chromatography (Petrol/Et₂O = 9:1) and obtained as a yellow solid (79 mg, 0.22 mmol, 74%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.34 (1H, s, Ar-*H*), 8.25 (1H, d, *J* = 8.0 Hz, Ar-*H*), 7.59 (1H, d, *J* = 8.0 Hz, Ar-*H*), 7.54 – 7.45 (2H, m, Ar-*H*, C=C*H*), 7.36 – 7.16 (5H, m, Ar-*H*), 5.49 (1H, t, *J* = 8.0 Hz, C=C*H*CH₂), 4.90 (2H, s, NC*H*₂), 2.34 (2H, q, *J* = 8.0 Hz, C=CHC*H*₂), 1.48 – 1.34 (2H, m, C*H*₂CH₂CH₂CH₃), 1.29 – 1.17 (4H, m, C*H*₂C*H*₂CH₃), 0.84 (3H, t, *J* = 7.0 Hz, C*H*₃); ¹³C NMR (101 MHz, CDCl₃) δ 168.1, 137.5, 137.2, 132.9, 131.8, 131.5, 131.0, 130.8, 129.4, 128.7, 127.4, 127.0, 126.7, 118.7, 118.5, 112.8, 42.9, 31.2, 29.8, 27.9, 22.5, 14.0; mp (Petrol/Et₂O): 72 – 74 °C; IR (cm⁻¹) $\tilde{\nu}$ = 2981, 2889, 2361, 2341, 2230, 1683, 1649, 1473, 1461, 1382, 1252, 1154, 1073, 955, 803, 729, 687, 655; LRMS (ESI) m/z: 357.2 [C₂₄H₂₅N₂O, (M+H)⁺]; HRMS (ESI) m/z: calcd for [C₂₄H₂₅N₂O, (M+H)⁺]: 357.19614; found 357.19608.

(*E*)-1-Benzyl-5-hexylidene-3-isobutyl-1,5-dihydro-2*H*-pyrrol-2-one (4g)

Compound **4g** was synthesised according to general procedure C, using α -keto amide **1bg** (79 mg, 0.36 mmol), 1-octyne (44 μ L, 0.30 mmol), purified by column chromatography (Petrol/Et₂O = 95:5) and obtained as a brown oil (18 mg, 0.06 mmol, 19%).

¹**H NMR** (**400 MHz, CDCl**₃) δ 7.26 – 7.11 (3H, m, Ar-*H*), 7.11 – 7.06 (2H, m, Ar-*H*), 6.82 (1H, s, C=C*H*), 5.13 (1H, t, *J* = 8.0 Hz, C=C*H*CH₂), 4.75 (2H, s, NCH₂), 2.23 (2H, d, *J* = 7.0 Hz, CHCH₂), 2.15 (2H, q, *J* = 8.0 Hz, C=CHCH₂), 2.00 – 1.85 (1H, m, C*H*CH₂), 1.34 – 1.05 (6H, m, CH₂CH₂CH₂CH₃), 0.89 (6H, d, *J* = 6.5 Hz, 2 × CH₃), 0.77 (3H, t, *J* = 7.0 Hz, CH₃); ¹³C **NMR** (**101 MHz, CDCl**₃) δ 170.6, 138.3, 137.9, 136.8, 128.6, 127.2, 127.0, 126.9, 114.1, 42.9, 34.9, 31.3, 30.0, 27.50, 27.48, 22.7, 22.5, 14.1; **IR** (**cm**⁻¹) $\tilde{\nu}$ = 2980, 2889, 2361, 2341, 1690, 1473, 1462, 1383, 1252, 1153, 1074, 954, 819, 728, 697; **LRMS** (**ESI**) **m/z**: 312.2 [C₂₁H₃₀NO, (M+H)⁺]; **HRMS** (**ESI**) **m/z**: calcd for [C₂₁H₃₀NO, (M+H)⁺]: 312.23219; found 312.23163.
(*E*)-1-Benzyl-3-cyclopentyl-5-hexylidene-1,5-dihydro-2*H*-pyrrol-2-one (4h)

Compound **4h** was synthesised according to general procedure C, using α -keto amide **1bh** (83 mg, 0.36 mmol), 1-octyne (44 μ L, 0.30 mmol), purified by column chromatography (Petrol/EtOAc = 95:5) and obtained as a yellow oil (39 mg, 0.12 mmol, 40%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.27 – 7.07 (5H, m, Ar-*H*), 6.78 (1H, s, C=C*H*), 5.12 (1H, t, *J* = 8.0 Hz, C=C*H*CH₂), 4.75 (2H s, NC*H*₂), 2.93 – 2.80 (1H, m, C_{cyclopentane}*H*), 2.22 – 2.08 (2H, m, C=CHC*H*₂), 2.06 – 1.91 (2H, m, C_{cyclopentane}*H*₂), 1.75 – 1.43 (6H, m, 2 × C_{cyclopentane}*H*₂, C*H*₂CH₂CH₂CH₃), 1.34 – 1.07 (6H, m, C_{cyclopentane}*H*₂, C*H*₂C*H*₂CH₃), 0.78 (3H, t, *J* = 7.0 Hz, C*H*₃); ¹³C **NMR** (101 MHz, CDCl₃) δ 170.2, 142.1, 138.3, 137.9, 128.6, 127.2, 127.0, 124.1, 114.0, 42.8, 37.0, 32.2, 31.3, 30.0, 27.5, 25.4, 22.6, 14.1; **IR** (cm⁻¹) $\tilde{\nu}$ = 2981, 2889, 2361, 2341, 1704, 1679, 1456, 1393, 1252, 1152, 1072, 955, 817, 700; **LRMS** (ESI) m/z: 324.2 [C₂₂H₃₀NO, (M+H)⁺]; **HRMS** (ESI) m/z: calcd for [C₂₂H₃₀NO, (M+H)⁺]: 324.23219; found 324.23224.

(*E*)-1-Benzyl-5-(cyclohexylmethylene)-3-phenyl-1,5-dihydro-2*H*-pyrrol-2-one (5a)

Compound **5a** was synthesised according to general procedure C using α -keto amide **1aa** (86 mg, 0.36 mmol) and 3-cyclohexyl-1-propyne (43 μ L, 0.30 mmol), purified by column chromatography (Petrol/Et₂O = 9:1) and obtained as a yellow oil (52 mg, 0.15 mmol, 50%).

¹**H NMR** (**400 MHz, CDCl**₃) δ 8.06 – 7.98 (2H, m, Ar-*H*), 7.45 – 7.39 (3H, m, 2 × Ar-*H*, C=C*H*), 7.38 – 7.27 (3H, m, Ar-*H*), 7.25 – 7.20 (3H, m, Ar-*H*), 5.27 (1H, d, *J* = 10.0 Hz, C=C*H*CH), 4.90 (2H, s, NC*H*₂), 2.57 – 2.43 (1H, m, C=CHC*H*), 1.78 – 1.61 (5H, m, 2 × C*H*₂, C*H*_AH_B), 1.40 – 1.24 (2H, m, C*H*₂), 1.24 – 1.05 (3H, m, CH₂, CH_AH_B); ¹³C **NMR** (**101 MHz**, **CDCl**₃) δ 168.9, 137.6, 136.7, 133.5, 128.8, 128.70, 128.65, 127.4, 127.3, 127.1, 125.5, 122.0, 42.9, 37.3, 34.1, 25.8, 25.7; **IR** (**cm**⁻¹) $\tilde{\nu}$ = 2981, 2889, 1685, 1473, 1462, 1383, 1252, 1153, 1073, 954, 816, 695; **LRMS** (**ESI**) **m/z**: 344.2 [C₂₄H₂₆NO, (M+H)⁺]; **HRMS** (**ESI**) **m/z**: calcd for [C₂₂H₂₄NO, (M+H)⁺]: 344.20089; found 344.20094.

1-Benzyl-5-cyclohexylidene-3-phenyl-1,5-dihydro-2*H*-pyrrol-2-one (5b)

Compound **5b** was synthesised according to general procedure C using α -keto amide **1aa** (86 mg, 0.36 mmol) and cyclohexylacetylene (39 µL, 0.30 mmol), purified by column chromatography (Petrol/EtOAc = 95:5) and obtained as a yellow solid (45 mg, 0.14 mmol, 46%).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.06 – 8.00 (2H, m, Ar-*H*), 7.63 (1H, s, C=*CH*), 7.46 – 7.38 (2H, m, Ar-*H*), 7.37 – 7.28 (3H, m, Ar-*H*), 7.27 – 7.18 (1H, m, Ar-*H*), 7.12 (2H, d, *J* = 7.5 Hz, Ar-*H*), 5.18 (2H, s, C*H*₂), 2.53 – 2.45 (2H, m, C*H*₂), 2.44 – 2.34 (2H, m, C*H*₂), 1.70 – 1.60 (2H, m, C*H*₂), 1.59 – 1.48 (2H, m, C*H*₂), 1.31 – 1.19 (2H, m, C*H*₂); ¹³**C NMR** (**101 MHz**, **CDCl**₃) δ 170.9, 138.4, 132.6, 132.1, 131.8, 130.3, 128.7, 128.6, 128.3, 128.2, 127.2, 126.9, 126.0, 45.9, 33.0, 31.0, 29.1, 28.0, 26.5; **mp** (**Petrol/Et₂O**): 117 – 119 °C; **IR** (**cm**⁻¹) $\tilde{\nu}$ = 2981, 2930, 2889, 2854, 2361, 2341, 1673, 1492, 1449, 1381, 1352, 1327, 1251, 1224, 1168, 1074, 1028, 997, 947, 892, 854, 787, 749, 725, 694, 652; **LRMS** (**ESI**) **m/z**: 330.2 [C₂₃H₂₄NO, (M+H)⁺]; **HRMS** (**ESI**) **m/z**: calcd for [C₂₃H₂₄NO, (M+H)⁺]: 330.18524; found 330.18503.

1-Benzyl-5-cyclopentylidene-3-phenyl-1,5-dihydro-2*H***-pyrrol-2-one** (5c)

Compound **5c** was synthesised according to general procedure C using α -keto amide **1aa** (86 mg, 0.36 mmol) and cyclopentylacetylene (35 μ L, 0.30 mmol), purified by column chromatography (Petrol/Acetone = 95:5) and obtained as a white solid (46 mg, 0.15 mmol, 48%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.03 (2H, d, *J* = 7.0 Hz, Ar-*H*), 7.46 – 7.18 (7H, m, Ar-*H*), 7.13 (2H, d, *J* = 7.0 Hz, Ar-*H*), 5.13 (2H, s, NC*H*₂), 2.72 (2H, tp, *J* = 5.0, 2.0 Hz, C*H*₂), 2.51 (2H, tp, *J* = 5.0, 2.0 Hz, C*H*₂), 1.75 – 1.61 (4H, m, 2 × C*H*₂); ¹³C NMR (101 MHz, CDCl₃) δ 169.9, 138.8, 133.9, 132.2, 131.7, 130.5, 128.8, 128.7, 128.6, 128.4, 127.2, 127.0, 125.9, 44.4, 33.0, 30.9, 27.2, 25.8; mp (Petrol/Et₂O): 143 – 146 °C; IR (cm⁻¹) $\tilde{\nu}$ = 2981, 2888, 2361, 2341, 1674, 1490, 1473, 1462, 1383, 1252, 1152, 1073, 954, 816, 787, 748, 725, 694, 669, 652; LRMS (ESI) m/z: 316.2 [C₂₂H₂₂NO, (M+H)⁺]; HRMS (ESI) m/z: calcd for [C₂₂H₂₂NO, (M+H)⁺]: 316.16959; found 316.16968.

(*E*)-1-Benzyl-5-(3-methylbutylidene)-3-phenyl-1,5-dihydro-2*H*-pyrrol-2-one (5d)

Compound **5d** was synthesised according to general procedure C using α -keto amide **1aa** (86 mg, 0.36 mmol) and 5-methyl-1-hexyne (40 μ L, 0.30 mmol), purified by column chromatography (Petrol/Et₂O = 95:5) and obtained as a yellow solid (52 mg, 0.16 mmol, 55%).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.02 (2H, d, *J* = 7.0 Hz, Ar-*H*), 7.45 – 7.40 (3H, m, Ar-*H*), 7.37 – 7.28 (3H, m, 2 × Ar-*H*, C=C*H*), 7.26 – 7.20 (3H, m, Ar-*H*), 5.39 (1H, t, *J* = 8.5 Hz, C=C*H*CH₂), 4.93 (2H, s, NC*H*₂), 2.22 (2H, dd, *J* = 8.5, 7.0 Hz, C=CHC*H*₂), 1.73 – 1.59 (1H, m, C*H*(CH₃)₂), 0.84 (6H, d, *J* = 7.0 Hz, 2 × C*H*₃); ¹³**C NMR** (101 MHz, CDCl₃) δ 168.9, 138.5, 137.6, 133.5, 131.8, 128.8, 128.71, 128.67, 127.5, 127.3, 127.0, 125.4, 115.2, 43.0, 36.7, 29.4, 22.3; **mp** (**Petrol/Et₂O**): 81 – 82 °C; **IR** (**cm**⁻¹) $\tilde{\nu}$ = 2981, 2889, 2361, 2341, 1683, 1648, 1490, 1462, 1383, 1296, 1252, 1153, 1073, 953, 854, 786, 749, 730, 694, 649; **LRMS** (**ESI**) **m/z**: 318.2 [C₂₂H₂₄NO, (M+H)⁺]; **HRMS** (**ESI**) **m/z**: calcd for [C₂₂H₂₄NO, (M+H)⁺]: 318.18524; found 318.18530.

(*E*)-1-Benzyl-3-phenyl-5-(2-phenylethylidene)-1,5-dihydro-2*H*-pyrrol-2-one (5e)

Compound **5e** was synthesised according to general procedure C using α -keto amide **1aa** (86 mg, 0.36 mmol) and 4-phenyl-1-butyne (42 μ L, 0.30 mmol), purified by column chromatography (Petrol/EtOAc = 95:5) and obtained as an off-white solid (48 mg, 0.14 mmol, 46%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (2H, d, J = 7.0 Hz, Ar-H), 7.50 (1H, s, Ar-H), 7.42 (2H, t, J = 7.0 Hz, Ar-H), 7.38 – 7.33 (1H, m, Ar-H), 7.31 – 7.18 (8H, m, Ar-H), 7.06 (2H, d, J = 7.0 Hz, Ar-H), 5.52 (1H, t, J = 8.5 Hz, CHCH₂), 4.92 (2H, s, CH₂), 3.67 (2H, d, J = 8.5 Hz, CHCH₂); ¹³C **NMR** (101 MHz, CDCl₃) δ 169.0, 139.4, 138.7, 137.5, 134.3, 131.6, 129.1, 128.8, 128.7, 128.7, 128.4, 127.5, 127.4, 127.1, 126.7, 125.1, 113.4, 43.0, 33.6; mp (Petrol/EtOAc): 116 – 118 °C; IR (cm⁻¹) $\tilde{\nu} = 3085, 3062, 3029, 2918, 2850, 2359, 2324, 2166, 2038, 1979, 1683, 1648, 1603, 1585, 1524, 1494, 1453, 1435, 1412, 1384, 1345, 1298, 1279, 1239, 1172, 1128, 1098, 1075, 1029, 1001, 974, 947, 906, 856, 786, 729, 695, 649, 609; LRMS (ESI) m/z: 352.2 [C₂₅H₂₂NO, (M+H)⁺]; HRMS (ESI) m/z: calcd for [C₂₅H₂₂NO, (M+H)⁺]: 352.16959; found 352.16971.$

(E)-4-(5-oxo-4-phenyl-1-tosyl-1,5-dihydro-2H-pyrrol-2-ylidene)butanenitrile (5f)

Compound **5f** was synthesised according to general procedure C using α -keto amide **1ab** (109 mg, 0.36 mmol) and hex-5-ynenitrile (32 µL, 0.30 mmol), purified by column chromatography (Petrol/EtOAc = 7:3) and obtained as a yellow solid (31 mg, 0.08 mmol, 27%).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.95 (2H, d, *J* = 8.5 Hz, Ar-*H*), 7.84 – 7.74 (2H, m, Ar-*H*), 7.54 (1H, s, C=C*H*), 7.39 – 7.34 (3H, m, Ar-*H*), 7.34 – 7.30 (2H, m, Ar-*H*), 6.80 (1H, t, *J* = 8.5 Hz, C=C*H*CH₂), 2.85 – 2.74 (2H, m, C=CHCH₂), 2.63 (2H, t, *J* = 7.0 Hz, C*H*₂CN), 2.40 (3H, s, C*H*₃); ¹³**C NMR** (**101 MHz**, **CDCl**₃) δ 166.7, 145.6, 136.8, 135.5, 132.9, 129.94, 129.90, 129.5, 129.0, 128.8, 128.1, 127.6, 118.6, 115.7, 24.5, 21.8, 18.1; **mp** (**Petrol/EtOAc**): 120 – 122 °C; **IR** (**cm**⁻¹) $\tilde{\nu}$ = 3090, 2981, 2929, 2889, 2361, 2341, 2246, 1725, 1540, 1492, 1389, 1364, 1307, 1190, 1176, 1135, 1092, 1006, 994, 814, 785, 692, 660; **LRMS** (**ESI**) **m/z**: 379.1 [C₂₁H₁₉N₂O₃S, (M+H)⁺]; **HRMS** (**ESI**) **m/z**: calcd for [C₂₁H₁₉N₂O₃S, (M+H)⁺]: 379.11109; found 379.11096.

(*E*)-5-(4-chlorobutylidene)-3-phenyl-1-tosyl-1,5-dihydro-2*H*-pyrrol-2-one (5g)

Compound **5g** was synthesised according to general procedure C using α -keto amide **1ab** (109 mg, 0.36 mmol) and 6-chlorohex-1-yne (36 μ L, 0.30 mmol), purified by column chromatography (Petrol/Et₂O = 4:1) and obtained as a light yellow oil (30 mg, 0.07 mmol, 25%).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.94 (2H, d, *J* = 8.5 Hz, Ar-*H*), 7.86 – 7.76 (2H, m, Ar-*H*), 7.63 (1H, s, C=C*H*), 7.42 – 7.26 (5H, m, Ar-*H*), 6.80 (1H, t, *J* = 8.5 Hz, C=C*H*CH₂), 3.60 (2H, t, *J* = 6.0 Hz, CH₂Cl), 2.64 (2H, dt, *J* = 8.5, 7.0 Hz, C=CHCH₂), 2.41 (3H, s, CH₃), 2.10 – 1.97 (2H, m, CH₂CH₂Cl); ¹³C **NMR** (**101 MHz**, **CDCl**₃) δ 166.8, 145.3, 135.8, 135.6, 131.9, 129.8, 129.75, 129.73, 129.5, 128.7, 128.0, 127.3, 119.6, 44.0, 32.0, 25.2, 21.70 (d); **IR** (**cm**⁻¹) $\tilde{\nu}$ = 2981, 2889, 2361, 2341, 1723, 1492, 1473, 1387, 1366, 1306, 1250, 1188, 1175, 1135, 1092, 1006, 994, 870, 785, 750, 711, 692, 660; **LRMS** (**ESI**) **m/z**: 402.1 [C₂₁H₂₁CINO₃S, (M+H)⁺]; **HRMS** (**ESI**) **m/z**: calcd for [C₂₁H₂₁CINO₃S, (M+H)⁺]: 402.09252; found 402.09244.

(*E*)-2-(4-(4-(3-nitrophenyl)-5-oxo-1-tosyl-1,5-dihydro-2*H*-pyrrol-2vlidene)butyl)isoindoline-1,3-dione (5h)

Compound **5h** was synthesised according to general procedure C using α -keto amide **1bg** (125 mg, 0.36 mmol) and *N*-(5-hexynyl)phthalimide (68 mg, 0.30 mmol), purified by column chromatography (Petrol/Et₂OAc = 1:1) and obtained as a white solid (135 mg, 0.24 mmol, 81%).

¹**H NMR (400 MHz, CDCl**₃) δ 8.67 (1H, t, *J* = 2.0 Hz, Ar-*H*), 8.27 – 8.23 (1H, m, Ar-*H*), 8.20 – 8.16 (1H, m, Ar-*H*), 7.99 – 7.91 (2H, m, Ar-*H*), 7.86 – 7.84 (2H, m, Ar-*H*), 7.80 (1H, s, Ar-

H), 7.74 – 7.22 (2H, m, Ar-*H*), 7.56 (1H, t, J = 8.0 Hz, Ar-*H*), 7.33 (1H, d, J = 8.0 Hz, Ar-*H*), 6.95 (1H, t, J = 8.2 Hz, C=CHCH₂), 3.79 (2H, t, J = 7.0 Hz, CH₂N), 2.60 – 2.48 (2H, m, C=CHCH₂), 2.41 (3H, s, CH₃), 2.02 (2H, p, J = 7.0 Hz, C=CHCH₂CH₂); ¹³C NMR (101 MHz, CDCl₃) δ 168.6, 166.2, 148.5, 145.6, 135.6, 134.9, 134.3, 133.3, 132.1, 131.9, 131.7, 130.0, 129.9, 129.4, 128.2, 123.9, 123.5, 123.1, 122.3, 37.3, 28.7, 26.2, 21.9; IR (cm⁻¹) $\tilde{\nu} = 3660$, 2981, 2888, 2361, 2341, 1770, 1709, 1529, 1395, 1351, 1251, 1152, 1090, 1023, 955, 893, 774, 720, 699; LRMS (ESI) m/z: 580.2 [C₂₉H₂₃NaN₃O₇S, (M+H)⁺]; HRMS (ESI) m/z: calcd for [C₂₉H₂₃NaN₃O₇S, (M+H)⁺]: 580.11489; found 580.11481.

V. Gram-scale Synthesis of Pyrrolinone 3b

Commercially purchased 1-octyne was purified prior to use by distillation. α -Keto amide **1ab** was synthesised and purified as before. An oven-dried round bottom flask (100 mL) was charged with *N*-tosyl-2-oxo-2-phenylacetamide **1ab** (1.31 g, 4.32 mmol, 1.2 equiv.) and [Cu(MeCN)₄]BF₄ (113 mg, 0.36 mmol, 0.10 equiv.). The flask was then evacuated under vacuum and back-filled with nitrogen three times. Degassed dry toluene (6 mL) and degassed 1-octyne (531 µL, 3.6 mmol, 1.0 equiv.) were added subsequently under nitrogen atmosphere, and the mixture was refluxed at 130 °C for 20 h under nitrogen. It was then cooled to room temperature, filtered through silica (washed down with CH₂Cl₂), concentrated in vacuo, and purified by column chromatography (5% Et₂O/Petrol to 10% Et₂O/Petrol) to give pyrrolinone **3b** (1.18 g, 83%) as a yellow oil. The data is consistent as obtained for the small-scale reaction.

VI. References

- Zhuang, J.; Wang, C.; Xie, F.; Zhang, W. One-Pot Efficient Synthesis of Aryl α-Keto Esters from Aryl-Ketones. *Tetrahedron* 2009, 65 (47), 9797–9800.
- Mamillapalli, N. C.; Sekar, G. Chemoselective Reductive Deoxygenation and Reduction of α-Keto Amides by Using a Palladium Catalyst. *Adv. Synth. Catal.* 2015, *357* (14–15), 3273–3283.
- Bouma, M.; Masson, G.; Zhu, J. Zinc Chloride Promoted Formal Oxidative Coupling of Aromatic Aldehydes and Isocyanides to α-Ketoamides. J. Org. Chem. 2010, 75 (8), 2748–2751.
- (4) Hatano, M.; Nishimura, T. Hydroxoiridium/Chiral Diene Complexes as Effective Catalysts for Asymmetric Annulation of α-Oxo- and Iminocarboxamides with 1,3-Dienes. *Angew. Chem. Int. Ed.* 2015, 54 (37), 10949–10952.
- (5) Zhang, Z.; Su, J.; Zha, Z.; Wang, Z. A Novel Approach for the One-Pot Preparation of α-Ketoamides by Anodic Oxidation. *Chem. Commun.* **2013**, *49* (79), 8982–8984.
- Wang, D.; Zhang, K.; Jia, L.; Zhang, D.; Zhang, Y.; Cheng, Y.; Lin, C.; Wang, B. NBu4NI-Mediated Oxidation of Methyl Ketones to α-Ketoamides: Using Ammonium, Primary and Secondary Amine-Salt as an Amine Moiety. *Org. Biomol. Chem.* 2017, *15* (16), 3427–3434.
- Nicolle, S. M.; Moody, C. J. Potassium N-Iodo p-Toluenesulfonamide (TsNIK, Iodamine-T): A New Reagent for the Oxidation of Hydrazones to Diazo Compounds. *Chem. A Eur. J.* 2014, 20 (15), 4420–4425.
- (8) Salunke, S. B.; Babu, N. S.; Chen, C. T. Asymmetric Aerobic Oxidation of α-Hydroxy Acid Derivatives Catalyzed by Reusable, Polystyrene-Supported Chiral N-Salicylidene Oxidovanadium Tert-Leucinates. *Adv. Synth. Catal.* **2011**, *353* (8), 1234–1240.
- D'Oca, C. D. R. M.; Coelho, T.; Marinho, T. G.; Hack, C. R. L.; Da Costa Duarte, R.;
 Da Silva, P. A.; D'Oca, M. G. M. Synthesis and Antituberculosis Activity of New Fatty Acid Amides. *Bioorganic Med. Chem. Lett.* 2010, 20 (17), 5255–5257.

N-Benzyl-2-oxo-2-phenylacetamide (1a)

¹H NMR (400 MHz, CDCl₃)

N-Tosyl-2-oxo-2-phenylacetamide (1b)

N-((4-Methoxyphenyl)sulfonyl)-2-oxo-2-phenylacetamide (1c)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, *d*₆-acetone)

S49

$N\-((4\-(Trifluoromethyl)phenyl)\-2\-oxo\-2\-phenylacetamide\ (1e)$

¹H NMR (400 MHz, CDCl₃)

N-((4-Nitrophenyl)sulfonyl)-2-oxo-2-phenylacetamide (1f)

¹H NMR (400 MHz, CDCl₃)

N-(Methylsulfonyl)-2-oxo-2-phenylacetamide (1g)

¹H NMR (400 MHz, CDCl₃)

S53

N-Cyclopropyl-2-oxo-2-phenylacetamide (1i)

¹H NMR (400 MHz, CDCl₃)

N-Cyclohexyl-2-oxo-2-phenylacetamide (1j)

N-(Cyclopropylmethyl)-2-oxo-2-phenylacetamide (1k)

N-(Cyclohexylmethyl)-2-oxo-2-phenylacetamide (11)

N-Allyl-2-oxo-2-phenylacetamide (1n)

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

N-Phenyl-2-oxo-2-phenylacetamide (10)

¹H NMR (400 MHz, CDCl₃)

N-Benzyl-2-oxo-2-(*p*-tolyl)acetamide (1p)

¹H NMR (400 MHz, CDCl₃)

N-Benzyl-2-oxo-2-(3-methoxyphenyl)acetamide (1q)

N-Benzyl-2-oxo-2-(4-(trifluoromethyl)phenyl)acetamide (1r)

100 90 f1 (ppm)

120 110

-1

150 140 130

N-Benzyl-2-oxo-2-(3-nitrophenyl)acetamide (1s)

¹H NMR (400 MHz, CDCl₃)

N-Benzyl-2-oxo-2-(3-bromophenyl)acetamide (1t)

N-Benzyl-2-oxo-2-(3-cyanophenyl)acetamide (1u)

N-Benzyl-4-methyl-2-oxopentanamide (1v)

N-Benzyl-2-cyclopentyl-2-oxoacetamide (1w)

¹³C NMR (101 MHz, *d*₆-DMSO)

S71

(*E*)-5-Hexylidene-1-((4-methoxyphenyl)sulfonyl)-3-phenyl-1,5-dihydro-2*H*-pyrrol-2-one (3c)

(E) - 5 - Hexylidene - 3 - phenyl - 1 - ((4 - (trifluoromethyl)phenyl) sulfonyl) - 1, 5 - dihydro - 2H - pyrrol - 1, 5 - dihydro - 1, 5

 $(E) \hbox{-} 1-Cyclohexyl-5-hexylidene-3-phenyl-1,} 5-dihydro-2H-pyrrol-2-one~(3j)$

(*E*)-1-(Cyclopropylmethyl)-5-hexylidene-3-phenyl-1,5-dihydro-2*H*-pyrrol-2-one (3k)

(*E*)-1-(Cyclohexylmethyl)-5-hexylidene-3-phenyl-1,5-dihydro-2*H*-pyrrol-2-one (3l)

(E)-1-Allyl-5-hexylidene-3-phenyl-1,5-dihydro-2H-pyrrol-2-one (3n)

(*E*)-1-Benzyl-5-hexylidene-3-(3-methoxyphenyl)-1,5-dihydro-2*H*-pyrrol-2-one (4b)

(*E*)-1-Benzyl-5-hexylidene-3-(4-(trifluoromethyl)phenyl)-1,5-dihydro-2*H*-pyrrol-2-one (4c)

¹H NMR (400 MHz, CDCl₃)

(E)-1-Benzyl-5-hexylidene-3-(3-nitrophenyl)-1,5-dihydro-2H-pyrrol-2-one (4d)

(E)-3-(1-Benzyl-5-hexylidene-2-oxo-2,5-dihydro-1*H*-pyrrol-3-yl)benzonitrile (4f)

(E)-1-Benzyl-5-hexylidene-3-isobutyl-1,5-dihydro-2*H*-pyrrol-2-one (4g)

(E)-1-Benzyl-3-cyclopentyl-5-hexylidene-1,5-dihydro-2H-pyrrol-2-one (4h)

1-Benzyl-5-cyclopentylidene-3-phenyl-1,5-dihydro-2*H*-pyrrol-2-one (5c)

(*E*)-1-Benzyl-5-(3-methylbutylidene)-3-phenyl-1,5-dihydro-2*H*-pyrrol-2-one (5d)

(E)-4-(5-oxo-4-phenyl-1-tosyl-1,5-dihydro-2H-pyrrol-2-ylidene)butanenitrile (5f)

(*E*)-5-(4-chlorobutylidene)-3-phenyl-1-tosyl-1,5-dihydro-2*H*-pyrrol-2-one (5g)

80

70 60

50 40

30

110

130 120

00 190

180 170

160

150 140

0 -1

10

20

(E) - 2 - (4 - (4 - (3 - nitrophenyl) - 5 - oxo - 1 - tosyl - 1, 5 - dihydro - 2H - pyrrol - 2 - ylidene) butyl) isoindoline - butyl - 2 - ylidene) butyl

¹H NMR (400 MHz, CDCl₃)

