Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information for

Specific protein-labeling and ligand-binding position analysis with amidopyrene probes as LDI MS tags

Rei Watanabe,^a Yaping Hu,^a Keita Iio,^a Kozo Yoneda,^a Atsunori Hattori,^b Atsushi Arai,^b Hideo Kigoshi,^{*,b} and Masaki Kita ^{*,a-c}

 ^a Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8571, Japan. E-mail: kigoshi@chem.tsukuba.ac.jp
^b Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan. E-mail: mkita@agr:nagoya-u.ac.jp
^c PRESTO, Japan Science and Technology Agency

(19 pages)

				Start/end Sequence ^b	147/152 LRTQKE	27 / 33 KC(Carbamidomethyl)SLTGK	119/124 TMWLLR	139/146 VGINIFTR	25 / 33 ARKC(Carbamidomethyl)SLTGK	139/148 VGINIFTRLR	125/135 SSVNDIGDDWK	84 / 95 TQPTFGFTVNWK	125/138 SSVNDIGDDWKATR		83/95 RTQPTFGFTVNWK			96 / 111 FSESTTVFTGQCFIDR	51/69 GEFTGTYITAVTATSNEIK	119/135 TMWLLRSSVNDIGDDWK	96 / 114 FSESTTVFTGQCFIDRNGK	125 / 138 SSVNDIGDDWKATR + probe 1	96 / 118 FSESTTVFTGQCFIDRNGKEVLK		c 34 / 50 WTNDLGS <u>N</u> MTIGAVNSR		83/111 RTQPTFGFTVNWKFSESTTVFTGQCFIDR	51/83 GEFTGTVITAVTATSNEIKESPI HGTONTINKR		84 / 114 TQPTFGFTVNWKFSESTTVFTGQCFIDRNGK	
	Calculated (<i>m</i> /z) ^a			peptide	774.4	793.4	819.5	919.5	1020.6	1188.7	1235.6	1425.7	1563.7		1581.8	1594.8		1894.9	2003.0	2036.0	2194.0		2663.3		1835.9		3457.7	3578.8		3600.7	
			apy-	peptide	1101.6	1120.5			1347.7					1890.9			1921.9					2561.3							3905.9		
		in	G3000S	(Fig. 3d)			819.4	919.5				1425.7			1581.7			1894.8		2035.9	2195.0		2664.3		3296.6	3376.6	3458.7	3579.1			
		Avid	Z18	(Fig. S2d)	774.5		819.5	919.6			1235.7	1425.9	1563.9		1582.0	1595.0		1895.0	2003.2		2195.2		2664.6	3052.7	3296.9	3376.9	3459.0	3579.4			
		+ 3	G3000S	(Fig. 3c)	1101.5	1120.5	819.4	919.5		1188.7		1425.6	1563.7	1890.7			1921.8	1894.7	2002.9	2035.8	2194.9		2664.2	3052.3	3296.5	3376.5	3458.6	3579.3	3906.2		
	_e (z/m)	Avidin	Z18	(Fig. S2c)	1101.7	1120.6	819.5	919.6	1347.8		1235.7	1425.8	1563.8	1891.0	1581.9		1922.1	1895.0	2003.1		2195.1		2664.5	3052.6	3296.8	3376.8	3458.9	3579.3			
	Observed	Avidin + 2	G3000S	(Fig. 3b)			819.4	919.5				1425.6		1890.7			1921.8	1894.7			2194.8		2664.2					3579.0			
			Z18	(Fig. S2b)	774.5		819.5	919.6		1188.9	1235.7	1425.8	1563.9	1891.0	1581.9	1595.0	1922.1	1895.0	2003.1		2195.2		2664.6	3052.7	3296.9	3376.9	3459.0	3579.4		3601.4	
		Avidin + 1	G3000S	(Fig. 3a)			819.4	919.5				1425.7						1894.8	2002.9		2195.0	2561.2	2664.3					3579.1			
			Z18	(Fig. S2a)			819.5	919.5				1425.7			1581.8	1594.8		1894.9		2036.7	2195.0	2561.3	2664.4					3579.4			
			I	No.	~	5	с	4	5	9	7	∞	σ	,	10	÷	-	12	13	14	15	16	17		18		19	20	2 4	21	

Table S1. Tryptic peptides of the avidin labeled with probes 1–3 detected by MALDI MS.

^b "K" means apy-labeled lysine residue. Cysteine residues are carbamidomethylated. ^c Calculated value without *N*-glycans on the N41 residue (underlined). The common *N*-terminal sequences (W34–S40) were determined by MS/MS analysis. ^a The data represent the monoisotopic ion peaks (M+H)⁺ values. Bold value means the data for apy-labeled peptides.

	Distances (Å)					
Lys residue –	1	2				
27	39.33	42.01				
33	32.33	34.35				
69	20.59	21.99				
82	45.64	48.35				
95	17.57	19.64				
114	40.31	42.39				
118	32.12	34.29				
135	8.48	8.58				
151	44.99	47.35				

Table S2. Calculated distances between the Lys residues on avidin and the succinyl ester carbons in probes 1 and 2 in the most stable complex conformers obtained by docking simulations (see Figs. 4a and 4b).

Table S3. Boltzmann weights of the five lowest-energy conformers of **1** and **2** obtained by docking simulations (see Figs. 4a and 4b). Calculated distances between the ε -amino nitrogen atom of the K135 on avidin and the succinyl ester carbon in each conformer, and the RMSD values for the biotin ligand (15 atoms, red + blue) between the calculated probes and the original complexes on avidin are shown.

HN,^{C∼}NH O HC-CH C C C C C C C C C

CH₂

Figure 4a								
1	⊿G (kcal/ <u>mol</u>)	ratio (%)	Distance (Å)	RMSD (Å)				
conformer 1	0.000	66.03	8.48	0.463				
conformer 2	0.793	17.31	13.24	0.998				
conformer 3	1.249	8.01	11.52	3.013				
conformer 4	1.503	5.21	4.95	4.420				
conformer 5	1.750	3.43	9.49	1.896				
Figure 4b								
2	⊿G (kcal/mol)	ratio (%)	Distance (Å)	RMSD (Å)				
conformer 1	0.000	69.64	8.58	0.378				
conformer 2	0.970	13.53	10.11	0.676				
conformer 3	1.250	8.43	4.43	2.707				
conformer 4	1.610	4.59	5.67	4.515				
conformer 5	1.720	3.81	14.05	0.783				

Table S4. Boltzmann weights of the five lowest-energy conformers of **1** and **2** obtained by docking simulations (see Figs. 4c–4e). RMSD values for the biotin ligand [15 atoms (red + blue) and bicyclic 9 atoms (red)] between the calculated probes and the original complexes on avidin are shown.

Figure 4c						
4		ratio (0/)	RMSD (Å)			
1		rauo (%)	15 atoms	9 atoms		
conformer 1	0.000	72.91	0.786	0.198		
conformer 2	0.899	15.96	7.300	8.177		
conformer 3	1.421	6.61	6.215	7.354		
conformer 4	2.003	2.47	19.683	23.184		
conformer 5	2.113	2.05	7.278	7.767		
igure 4d						
2		ratio (0/)	RMSD (Å)			
2	⊿G (kcai/mol)	rauo (%)	15 atoms	9 atoms		
conformer 1	0.000	83.00	0.332	0.305		
conformer 2	1.329	8.80	1.267	1.157		
conformer 3	1.553	6.03	3.725	0.854		
conformer 4	2.512	1.19	5.951	4.483		
conformer 5	2.624	0.99	6.260	7.422		
gure 4e						
4		ratio $(0/)$	RMSD (Å)			
I		rauo (%)	15 atoms	9 atoms		
conformer 1	0.000	52.74	4.459	0.952		
conformer 2	0.478	23.53	4.959	2.486		
conformer 3	1.008	9.61	1.436	1.411		
conformer 4	1.106	8.14	11.078	11.394		
conformer 5	1.287	5.99	11.413	11.668		

(a)

(b)

25	AR <mark>K</mark> CSLTG <mark>K</mark> WTNDLGS <u>N</u> MTIGAVNSRGEFTGTYITAVTATSNEI <mark>K</mark> E	70
71	SPLHGTQNTIN <mark>K</mark> RTQPTFGFTVNW <mark>K</mark> FSESTTVFTGQCFIDRNG <mark>K</mark> EV	116
117	L <mark>K</mark> TMWLLRSSVNDIGDDW <mark>K</mark> ATRVGINIFTRLRTQ <mark>K</mark> E	152

Figure S1. Structures of avidin and the complex with biotin. (a) X-ray structure of the biotin–avidin complex (PDB code: 2AVI, monomeric complex is shown). The ligand biotin and eight Lys residues are highlighted in magenta and orange, respectively. (b) Amino acid sequences of avidin. Lys residues are highlighted in bold red. *N*-glycosylated Asn residue is highlighted in blue and underlined.

Figure S2. MALDI-TOF mass spectra of the tryptic peptides of avidin (2 pmol) labeled with probes 1 (a), 2 (b), or 3 (c), and unlabeled avidin (d). Desalting was performed using a reversed-phase ODS tip column ($ZipTip^{\ensuremath{\mathbb{R}}}$ C₁₈). Red and blue circles indicate amidopyrene-labeled and unlabeled avidin peptides, respectively. Numerals indicate the positions of tryptic peptides in avidin (for details, see Table S1).

Figure S3. MALDI MS/MS analysis of the peptide labeled with probe 1 (No. 16, precursor ion: m/z 2561.4 for $[M+H]^+$, see Figs. 3a and S2a). (a) MALDI MS/MS. (b) Structure of the K¹³⁵-labeled peptide.

Figure S4. MALDI MS/MS analysis of the peptide labeled with probe **2** (No. 9, precursor ion: m/z 1890.6 for $[M+H]^+$, see Figs. 3b and S2b). (a) MALDI MS/MS. (b) Structure of the K¹³⁵-labeled peptide.

Figure S5. Molecular modeling of the complexes of avidin and amidopyrene biotin probes. (a) Initial model structures for docking simulations (Figs. 4a and 4b). The ligand biotin on the complex is shown in magenta. Probes **1** and **2** (grey) were initially located apart from the target protein avidin. The dummy ligands used for the docking simulation are shown as multiple white (hydrophobic) and red (hydrophilic) spheres, respectively, which represent 23 residues (N36, L38, S40, Y57, T59, V61–T64, W94, F96–S99, T101, F103, W121, L123–S126, R138, and N142) (b) Superimposed structures of the five lowest-energy conformers of **1** and **2** on avidin. The most stable conformers of **1** and **2** are highlighted in green and cyan, respectively.

(b)

(Fig. 4a)

Figure S6. LIG-PLOT analysis. (a) Interaction of the ligand biotin with avidin on the crystal structure (PDB ID: 2avi). (b) Interactions of the amidopyrene biotin probes with avidin on the calculated complex structures in Fig. 4. The amino acid residue numbers in circles are those of mature proteins (24 aa smaller than the original, see Fig. S1).

(Fig. 4b)

(Fig. 4c)

Figure S6. (continued)

(Fig. 4d)

(Fig. 4e)

Figure S6. (continued)

NMR spectra of new compounds.

¹H NMR spectrum of 7 (400 MHz, DMSO-*d*₆).

¹³C NMR spectrum of 7 (150 MHz, DMSO-*d*₆).

¹³C NMR spectrum of **13** (100 MHz, CD₃OD).

 160 150 140 130 120 110 100 90 80 70 60 50 40 13 C NMR spectrum of **16** (100 MHz, CD₃OD).

¹H NMR spectrum of **2** (600 MHz, DMSO- d_6).

¹³C NMR spectrum of **2** (150 MHz, DMSO- d_6).