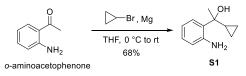
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Contents

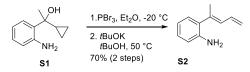
General	S2
Material	S2
Experimental Procedures	S2
¹ H and ¹³ C NMR spectra	S15


General

All non-aqueous reactions were carried out under a positive atmosphere of argon in dried glassware. Analytical thin-layer chromatography was performed with Silica gel 60 (Merck). Silica gel column chromatography was performed with Kanto silica gel 60 (particle size, 63–210 μ m) and Fuji silysia Chromatorex BW-300. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a JEOL JNM-ECA 500 at 500 MHz or a JEOL JNM-AL 400 at 400 MHz. Chemical shifts are reported relative to Me₄Si (δ 0.00) in CDCl₃ and residual (CH₃)(CH₂D)S(O) (δ 2.50) in DMSO-d₆. Multiplicity is indicated by one or more of the following: s (singlet); d (doublet); t (triplet); q (quartet); m (multiplet); br (broad). Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a JEOL JNM-ECA 500 at 126 MHz or a JEOL JNM-AL 400 at 101 MHz. Chemical shifts are reported relative to CDCl₃ (δ 77.0) and DMSO-d₆ (δ 39.5). Infrared spectra were recorded on a FT/IR-4100 Fourier-transform infrared spectrometer ATR (attenuated total reflectance). Low and high resolution mass spectra (LRMS and HRMS) were recorded on JEOL JMS-HX/HX 110A mass spectrometer and JEOL JMS-700 mass spectrometer.

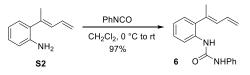
Material

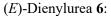
Anhydrous CH₂Cl₂, 1,2-dichloroethane, xylene, DMF, methanol and CH₃CN were purchased from KANTO Chemical Co. Aldrich and Wako chemicals. Materials were obtained from Tokyo Chemical Industry Co., Ltd. Aldrich Inc., and other commercial suppliers and used without further purification.


Experimental Procedures

Alcohol **S1**:

To a suspension of Mg (1.16 g, 46.6 mmol) in THF (40.0 mL) was added bromocyclopropane (3.60 mL, 44.4 mmol) dropwise, and the mixture was stirred at 0 °C for 1 h. *O*-aminoacetophenone (2.70 mL, 22.2 mmol) in THF (55 mL) was then added to the reaction mixture, and the mixture was stirred at room temperature for 6.5 h. The reaction mixture was then cooled to 0 °C and quenched with 2M aqueous HCl solution, followed by 10% aqueous NaOH solution to neutralize. The mixture was extracted with EtOAc three times. The combined organic layers were washed with brine and dried over Na₂SO₄. The solution was filtered and concentrated under reduced pressure. The resultant residue was purified by flash column chromatography on silica gel (10-40% EtOAc/hexane) to give alcohol **S1** (2.67 g, 68%) as a light-yellow oil; ¹H NMR (500

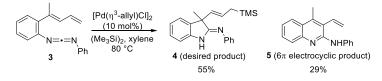

MHz, CDCl₃) δ 7.34 (dd, 1H, J = 7.7, 1.1 Hz, 1H), 7.05 (td, 1H, J = 7.6, 1.1 Hz), 6.69 (td, 1H, J = 8.2, 1.1 Hz), 6.61 (d, 1H, J = 7.2 Hz), 1.43 (s, 3H), 1.42 (m, 1H), 0.61 (m, 1H), 0.54-0.47 (m, 2H), 0.39 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 145.5, 130.3, 128.0, 126.7, 117.7, 117.5, 75.5, 24.5, 21.5, 2.9, 1.1; HRMS calcd for C₁₁H₁₅NONa [M+Na]⁺ 200.1051; Found: *m/z* 200.1050.



(*E*)-Dienylaniline S2:

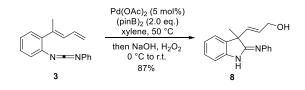
To a solution of alcohol **S1** (1.92 g, 10.83 mmol) in Et₂O (50.0 mL) was added phosphorus tribromide (1.56 mL, 21.66 mmol) in Et₂O (23.0 mL) at -20 °C to -10 °C dropwise, and the solution was stirred at -20 °C for 1.5 h. The reaction solution was then cooled to 0 °C and treated with 10% aqueous NaOH solution to pH 9. The mixture was extracted with EtOAc three times. The combined organic layers were washed with brine and dried over Na₂SO₄. The solution was filtered and concentrated under reduced pressure to give a crude bromide.

To a solution of the above crude bromide in *t*BuOH (50.0 mL) was added potassium *tert*-butoxide (2.00 g, 17.82 mmol), and the mixture was stirred at 50 °C for 2.5 h. The reaction mixture was then cooled to room temperature and diluted with Et₂O. The organic layer was washed with water and brine, and dried over Na₂SO₄. The solution was filtered and concentrated under reduced pressure. The resultant residue was purified by flash column chromatography on silica gel (10% EtOAc/hexane) to give (*E*)-dienylaniline **S2** (1.21 g, 70% in 2 steps) as a colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.07 (ddd, 1H, *J* = 7.7, 7.7, 1.6 Hz), 7.02 (dd, 1H, *J* = 7.6, 1.6 Hz), 6.78-6.70 (m, 3H), 6.16 (d, 1H, *J* = 11.7 Hz), 5.24 (d, 1H, *J* = 16.9 Hz), 5.18 (d, 1H, *J* = 10.3 Hz), 3.75 (br, 2H), 2.11 (d, 3H, *J* = 0.9 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 143.0, 136.3, 133.0, 130.6, 130.0, 128.5, 127.9, 118.3, 117.3, 115.6, 17.8; HRMS calcd for C₁₁H₁₄N [M+H]⁺ 160.1126; Found: *m/z* 160.1133.

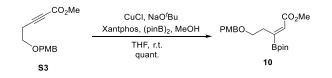


To a solution of (*E*)-dienylaniline **S2** (838.1 mg, 5.26 mmol) in CH_2Cl_2 (17.0 mL) was added phenyl isocyanate (629.0 μ L, 5.79 mmol) at 0 °C. The solution was stirred at room temperature for 2.5 h. The reaction solution was then concentrated under reduced pressure to give (*E*)- dienylurea **6** (1.42 g, 97%) as a white solid; ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, 1H, J = 8.3 Hz), 7.32-7.27 (m, 5H), 7.13-7.07 (m, 3H), 6.72 (br, 1H), 6.65 (br, 1H), 6.61 (ddd, 1H, J = 16.9, 10.9, 10.8 Hz), 6.02 (d, 1H, J = 10.9 Hz, 1H), 5.21 (d, 1H, J = 16.9 Hz), 5.20 (d, 1H, J = 10.8 Hz), 2.00 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 153.3, 137.7, 136.5, 135.5, 134.5, 132.4, 131.3, 129.4, 128.6, 128.1, 124.6, 124.1, 122.2, 121.8, 118.6, 18.2; HRMS calcd for C₁₈H₁₉N₂O [M+H]⁺ 279.1497; Found: *m/z* 279.1493.

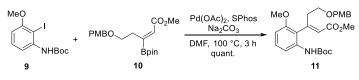
(*E*)-Dienylcarbodiimide **3**:


To a solution of (*E*)-dienylurea **6** (96.5 mg, 0.347 mmol) and PPh₃ (200.0 mg, 0.760 mmol) in CH₂Cl₂ (4.0 mL) were added Et₃N (200.0 μ L, 1.43 mmol) and CBr₄ (250.0 mg, 0.754 mmol) in CH₂Cl₂ (1.0 mL) at 0 °C. The reaction solution was stirred at 0 °C for 40 min. The resultant solution was then concentrated under reduced pressure. The obtained residue was suspended in 50% EtOAc/hexane and filtered on silica pad. The filtrate was concentrated under reduced pressure, and the residue was purified by flash column chromatography on neutral silica gel (20% EtOAc/hexane) to give (*E*)-dienylcarbodiimide **3** (62.8 mg, 70%) as a yellow oil. The product was not stable, thus it was used for the next reaction immediately; ¹H NMR (400 MHz, CDCl₃) δ 7.29 (dd, 2H, *J* = 7.6, 7.6 Hz), 7.24-7.19 (m, 3H), 7.16-7.12 (m, 4H), 6.65 (ddd, 1H, *J* = 16.9, 10.9, 10.6 Hz), 6.14 (d, 1H, *J* = 10.9 Hz), 5.23 (d, 1H, *J* = 16.9 Hz), 5.15 (d, 1H, *J* = 10.6 Hz), 2.16 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 140.2, 138.8, 136.5, 135.4, 132.8, 131.0, 129.4 129.3, 128.0, 125.5, 125.2, 125.1, 124.1, 117.8, 18.2. (Compound **3** was too unstable to measure HRMS.)

2-iminoindoline 4 and quinoline 5:

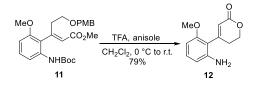

To a solution of (*E*)-dienylcarbodiimide **3** (23.2 mg, 0.0891 mmol) in anhydrous xylene (1.0 mL) was added hexamethyldisilane (40.0 μ L, 0.195 mmol) and [Pd(η^3 -allyl)Cl]₂ (3.3 mg, 8.91×10⁻³ mmol) at room temperature. The reaction atmosphere was replaced by the Ar atmosphere. The mixture was then stirred at 80 °C for 15.5 h. The mixture was cooled to room temperature,

concentrated under reduced pressure. The obtained residue was purified by flash column chromatography on silica gel (0-50% EtOAc/hexane) to give 2-iminoindoline **4** (16.3 mg, 55%) as a white solid and quinoline **5** (6.7 mg, 29%) as a white solid; 2-iminoindoline **4**: ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, 2H, *J* = 7.8 Hz), 7.39-7.34 (m, 3H), 7.10-6.96 (m, 4H), 6.34 (br, 1H), 5.82 (dd, 1H, *J* = 15.6, 8.0, 8.0 Hz), 5.24 (d, 1H, *J* = 15.6 Hz), 1.54 (d, 2H, *J* = 8.0 Hz), 1.48 (s, 3H), 0.03 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.9, 155.3, 140.5, 139.5, 129.2, 128.9, 128.0, 127.7, 123.0, 122.4, 121.6, 118.9, 117.8, 56.5, 23.0, 22.2, -1.9; HRMS calcd for C₂₁H₂₇N₂Si [M+H]⁺ 335.1944; Found: *m/z* 335.1942; quinoline **5**: ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.81 (m, 4H), 7.56 (ddd, 1H, *J* = 8.9, 8.9, 1.8 Hz), 7.37-7.29 (m, 3H), 7.04-7.00 (m, 2H), 6.81 (dd, 1H, *J* = 17.9, 11.6 Hz), 5.89 (dd, 1H, *J* = 11.6, 2.0 Hz), 5.61 (dd, 1H, *J* = 17.9, 2.0 Hz), 2.58 (d, 3H, *J* = 0.7 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 150.9, 146.1, 141.2, 140.6, 132.5, 129.0, 128.8, 127.6, 124.0, 123.9, 123.7, 123.0, 122.0, 122.17, 119.2, 15.5.

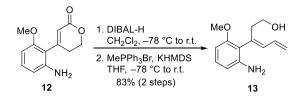

Iminoindoline 8

To a solution of carbodiimide **3** (30.0 mg, 0.115 mmol) in xylene (1.5 mL) were added (pinB)₂ (55.5 mg, 0.218 mmol) and Pd(OAc)₂ (1.3 mg, 0.00575 mmol) at room temperature. The resulting mixture was stirred at 50 °C overnight. After the reaction mixture was cooled to 0 °C, aqueous NaOH (10% w/v, 0.3 mL, 0.75 mmol) and aqueous H₂O₂ (30% w/v, 0.078 mL, 0.69 mmol) were added. The reaction mixture was stirred at room temperature for 2 h. After addition of saturated aqueous NH₄Cl, the reaction was extracted with EtOAc. The combined organic layers were washed with brine and dried over Na₂SO₄. Evaporation of the solvent and purification of the residue by column chromatography on silica gel (5%-20% ethyl acetate/hexanes) gave iminoindoline **8** as a colorless oil; ¹H NMR (500 MHz, DMSO-d₆) δ 9.21 (s, 1H), 8.02 (d, 2H, *J* = 7.8 Hz), 7.32 (dd, 2H, *J* = 8.6, 7.4 Hz), 7.22-7.15 (m, 3H), 7.00-6.95 (m, 2H), 5.87 (d, 1H, *J* = 13.7 Hz), 5.53 (ddd, 1H, *J* = 13.7, 4.8, 4.6 Hz), 4.76 (dd, 1H, *J* = 5.4, 5.2 Hz), 3.92 (ddd, 2H, *J* = 5.2, 4.8, 1.7 Hz), 1.52 (s, 3H); ¹³C NMR (126 MHz, DMSO-d₆) δ 173.1, 155.3, 140.8, 139.7, 130.4, 129.2, 128.5, 127.7, 122.1, 121.9, 121.6, 118.9, 116.8, 60.9, 55.8, 22.0; IR (film, cm⁻¹) 3439, 2975, 2918, 2251, 2125, 1668, 1469, 1383, 1236, 1090, 1054, 1025, 1005, 891, 820; MS (FAB) *m/z* 279 [M+H]⁺; HRMS calcd for C₁₈H₁₉N₂O [M+H]⁺ 279.1497; Found: *m/z* 279.1496.

Vinylboronate 10:


A suspension of CuCl (12.0 mg, 0.121 mmol) and NaO'Bu (23.3 mg, 0.242 mmol) and Xantphos (70.0 mg, 0.121 mmol) in anhydrous THF (1.8 mL) was stirred at room temperature for 30 min. A solution of bis(pinacolato)diboron (563.7 mg, 2.22 mmol) in anhydrous THF (1.2 mL) was added to the reaction suspension. The reaction mixture was stirred at room temperature for an additional 10 min. A solution of ester S3 (501.7 mg, 2.02 mmol) in anhydrous THF (0.9 mL) and following anhydrous MeOH (163 μ L, 4.04 mmol) were then added to the reaction mixture via cannula. After the reaction mixture was stirred at room temperature for 10.5 h, the mixture was then filtered through Celite. After concentration of the filtrate under reduced pressure, the resultant residue was purified by flash column chromatography on silica gel (10-20% EtOAc/hexane) to give vinylboronate 10 (760.0 mg, quant.) as a colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.25 (d, 2H, J = 8.6 Hz), 6.85 (d, 2H, J = 8.6 Hz), 6.47 (s, 1H), 4.44 (s, 2H), 3.79 (s, 3H), 3.70 (s, 3H), 3.58 (dd, 2H, J = 6.9, 6.6 Hz), 3.03 (dd, 2H, J = 6.9, 6.1 Hz), 1.22 (s, 12H); ¹³C NMR (126 MHz, CDCl₃) δ 166.3, 159.0, 130.8, 130.7, 129.2, 113.6, 84.1, 72.1, 69.4, 55.2, 51.1, 30.3, 24.6; IR (ATR, cm⁻¹) 2978, 1721, 1612, 1512, 1465, 1374, 1335, 1244, 1173, 1144, 1092, 1035, 894; MS (FAB) m/z 377 [M+H]⁺; HRMS calcd for C₂₀H₃₀BO₆ [M+H]⁺ 377.2135; Found: *m/z* 377.2137.

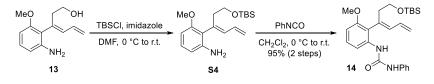
Coupling product **11**:


To a solution of vinylboronate **10** (771.3 mg, 2.05 mmol) and aryliodide **9** (550.6 mg, 1.58 mmol) in DMF (16.0 mL) were added 1M aqueous Na₂CO₃ (4.7 mL, 4.7 mmol), SPhos (129.7 mg, 0.316 mmol) and Pd(OAc)₂ (35.5 mg, 0.158 mmol) at room temperature. The reaction atmosphere was replaced with the Ar atmosphere, and the mixture was stirred at 100 °C for 3 h. After the reaction mixture was then cooled to room temperature, the mixture was extracted with Et₂O. The combined organic layers were washed with brine and dried over Na₂SO₄. After concentration under reduced pressure, purification by flash column chromatography on silica gel (10-20% EtOAc/hexane) gave a coupling product **11** (745.0 mg, quant.) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, 1H, *J* = 8.3 Hz), 7.30 (br, 1H), 7.24 (dd, 1H, *J* = 8.3, 8.3 Hz), 7.20-7.17 (m, 2H), 6.86-6.82 (m, 2H), 6.59 (dd, 1H, *J* = 8.3, 0.6 Hz), 5.87 (s, 1H), 4.44-4.35 (m, 2H), 4.00 (br, 1H), 3.79 (s, 3H), 3.74 (s, 3H), 3.73 (s, 3H), 3.58 (m, 1H), 3.35 (br, 1H), 2.59 (m, 1H), 1.42 (s, 9H); ¹³C NMR (126

MHz, CDCl₃) δ 166.4, 159.1, 156.3, 154.4, 153.3, 136.7, 129.9, 129.2, 128.9, 122.8, 120.8, 113.6, 113.5, 105.2, 80.0, 72.2, 67.3, 55.6, 55.2, 51.2, 32.4, 28.3; IR (ATR, cm⁻¹) 3321, 2975, 2360, 1721, 1639, 1589, 1513, 1469, 1435, 1365, 1240, 1160, 1088, 1042, 878; MS (FAB) *m/z* 472 [M+H]⁺; HRMS calcd for C₂₆H₃₄NO₇ [M+H]⁺ 472.2335; Found: *m/z* 472.2338.

Aniline 12:

To a solution of the coupling product **11** (998.1 mg, 2.12 mmol) in CH₂Cl₂ (15.0 mL) were added anisole (1.2 mL, 10.6 mmol) and TFA (3.0 mL) at 0 °C, and the solution was stirred at room temperature for 6.5 h. After addition of saturated aqueous NaHCO₃, the mixture was extracted with EtOAc. The combined organic layers were washed with brine and dried over Na₂SO₄. After concentration under reduced pressure, purification by flash column chromatography on silica gel (10-60% EtOAc/hexane) gave aniline **12** (366.5 mg, 79%) as a yellow solid; ¹H NMR (500 MHz, CDCl₃) δ 7.09 (dd, 1H, *J* = 8.3, 8.0 Hz), 6.38 (d, 1H, *J* = 8.0 Hz), 6.32 (d, 1H, *J* = 8.3 Hz), 6.06 (s, 1H), 4.52 (dd, 2H, *J* = 6.1, 6.1 Hz), 3.87 (br, 1H), 3.77 (s, 3H), 2.70 (dd, 2H, *J* = 6.1, 6.1 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 164.7, 157.2, 155.7, 143.7, 130.3, 120.0, 112.3, 108.8, 100.6, 66.8, 55.5, 28.5; IR (ATR, cm⁻¹) 3464, 3367, 3239, 2942, 2838, 1710, 1621, 1579, 1466, 1438, 1399, 1302, 1254, 1222, 1132, 1081, 1045, 880; MS (FAB) *m/z* 220 [M+H]⁺; HRMS calcd for C₁₂H₁₄NO₃ [M+H]⁺ 220.0974; Found: *m/z* 220.0974; Anal. Calcd for C₁₂H₁₃NO₃: C, 65.74; H, 5.98; N, 6.39. Found: C, 65.58; H, 6.00; N, 6.31.

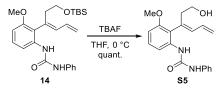


(*E*)-Dienylalcohol **13**:

To a solution of aniline **12** (810.0 mg, 3.69 mmol) in CH_2Cl_2 (70.0 mL) was added DIBAL-H (1M in toluene, 7.4 mL, 7.40 mmol) at -78 °C. The solution was stirred for 1 h. After addition of saturated aqueous Na/K tartrate, the mixture was stirred vigorously at room temperature for 1 h. The mixture was extracted with EtOAc, washed with brine and dried over Na₂SO₄. Concentration under reduced pressure gave the crude acetal.

To a suspension of MePPh₃Br (4.60 g, 12.9 mmol) in anhydrous THF (30.0 mL) was added KHMDS (0.5 M in THF, 22.2 mL, 11.1 mmol), and the suspension was stirred at 0 $^{\circ}$ C for 1 h. To

the suspension was added the above acetal in anhydrous THF (7.0 mL) via cannula. After the reaction mixture was stirred for 2 h at room temperature, it was quenched with water, extracted with EtOAc, washed with brine and dried over Na₂SO₄. After concentration under reduced pressure, purification by flash column chromatography on silica gel (10-60% EtOAc/hexane) gave (*E*)-dienylalcohol **13** (672.4 mg, 83% in 2 steps) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.05 (dd, 1H, *J*= 8.3, 8.0 Hz), 6.85 (ddd, 1H, *J*= 16.6, 10.9, 10.3 Hz), 6.41-6.36 (m, 2H), 6.17 (d, 1H, *J*= 11.2 Hz), 5.25 (dd, 1H, *J*= 16.9, 1.1 Hz), 5.22 (dd, 2H, *J* = 12.9, 1.1 Hz), 3.76 (s, 3H), 3.76 (br, 1H), 3.59-3.57 (m, 2H), 2.80-2.65 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 157.4, 144.4, 134.4, 133.9, 132.5, 128.4, 118.4, 117.8, 109.0, 101.3, 60.9, 55.6, 34.3; IR (ATR, cm⁻¹) 3370, 2955, 1714, 1584, 1466, 1437, 1253, 1130, 1092, 1047, 909; MS (FAB) *m*/*z* 220 [M+H]⁺; HRMS calcd for C₁₃H₁₈NO₂ [M+H]⁺ 220.1338; Found: *m*/*z* 220.1340.



(*E*)-Dienylurea 14:

To a solution of (*E*)-dienylalcohol **13** (649.1 mg, 2.96 mmol) in anhydrous DMF (30.0 mL) were added TBSCl (535.0 mg, 3.55 mmol) and imidazole (302.1 mg, 4.44 mmol) at 0 °C, and the solution was stirred at room temperature for 8 h. After addition of water to the reaction solution, the mixture was extracted with Et₂O. The combined organic layers were washed with brine and dried over Na₂SO₄. After concentration under reduced pressure, purification by flash column chromatography on silica gel (10-30% EtOAc/hexane) gave a mixture including desired (*E*)-dienylsilylether **S4**.

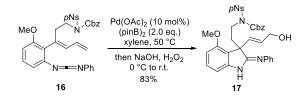
To a solution of the above (*E*)-dienylsilylether **S4** in CH₂Cl₂ (30.0 mL) was added phenyl isocyanate (406.0 μ L, 3.74 mmol) at 0 °C, and the solution was stirred at room temperature for 6 h. The reaction solution was then concentrated under reduced pressure. The resultant residue was purified by flash column chromatography on silica gel (10-30% EtOAc/hexane) to give (*E*)-dienylurea **14** (1.27 g, 95% in 2 steps) as a white solid; mp. 156.5-160.3 °C (hexane/EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, 1H, *J* = 8.3 Hz), 7.32-7.13 (m, 5H), 7.09-6.94 (m, 2H), 6.58 (d, 1H, *J* = 7.4 Hz), 6.44 (br, 1H), 6.21 (d, 1H, *J* = 10.9 Hz), 5.93 (ddd, 1H, J = 17.0, 10.0, 10.0 Hz), 5.13 (dd, 1H, *J* = 17.0, 1.7 Hz), 4.93 (dd, *J* = 10.0, 1.7 Hz, 1H), 3.70 (s, 3H), 3.61 (ddd, 1H, *J* = 10.0, 6.0, 4.5 Hz), 3.45 (ddd, 1H, *J* = 12.5, 7.5, 3.1 Hz), 2.54 (ddd, 1H, *J* = 13.8, 13.8, 4.3 Hz), 2.44 (ddd, 1H, 13.8, 9.0, 6.0 Hz), 0.83 (s, 9H), 0.012 (s, 3H), 0.008 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 156.7, 152.8, 138.1, 137.4, 134.1, 133.4, 132.6, 129.0, 128.8, 123.8, 121.0, 118.2, 118.0, 113.3, 105.6, 61.6, 55.7, 40.9, 26.0, 18.5, -5.0, -5.2; IR (ATR, cm⁻¹) 3331, 2954, 2856, 1657, 1598,

1551, 1466, 1436, 1315, 1294, 1246, 1088; Anal. Calcd for C₂₆H₃₆N₂O₃Si: C, 68.99; H, 8.02; N, 6.19. Found: C, 68.79: H, 7.99; N, 6.27.

(*E*)-Dienylalcohol S5:

To a solution of (*E*)-dienylurea **14** (200.0 mg, 0.442 mmol) in THF (4.4 mL) was added TBAF (1M in THF, 0.5mL, 0.486 mmol) at 0 °C. The solution was stirred at 0 °C for 2 h. After addition of saturated aqueous NH₄Cl, the mixture was extracted with EtOAc, washed with brine and dried over Na₂SO₄. After concentration under reduced pressure, the resultant residue was purified by flash column chromatography on silica gel (10-60% EtOAc/hexane) to give (*E*)-dienylalcohol **S5** (149.0 mg, quant.) as a white solid; ¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, 1H, *J* = 8.3 Hz), 7.41 (br, 1H), 7.29-7.19 (m, 6H), 7.04 (dd, 1H, *J* = 7.2, 7.2 Hz), 6.73 (ddd, 1H, *J* = 16.6, 10.8, 10.3 Hz), 6.59 (d, 1H, *J* = 8.3 Hz), 6.10 (d, 1H, *J* = 10.8 Hz), 5.22 (d, 1H, *J* = 17.2 Hz), 5.20 (d, 1H, *J* = 10.3 Hz), 3.75 (s, 3H), 3.62 (m, 1H), 3.45 (m, 1H), 2.73 (m, 1H), 2.59-2.55 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 156.9, 153.5, 138.1, 137.5, 135.1, 133.0, 132.2, 129.1, 128.6, 123.8, 121.6, 121.0, 119.2, 113.3, 105.4, 60.4, 55.7, 34.2; IR (ATR, cm⁻¹) 3341, 2960, 2246, 1665, 1588, 1549, 1466, 1436, 1314, 1246, 1097, 1040, 907; Anal. Calcd for C₂₀H₂₂N₂O₃: C, 70.99; H, 6.55: N, 8.28. Found: C, 70.82: H, 6.65: N, 8.21.

(E)-Dienylurea 15:


To a solution of (*E*)-dienylalcohol **S5** (215.4 mg, 0.637 mmol), *p*NsNHCbz (428.5 g, 1.27 mmol) and PPh₃ (334.2 mg, 1.27 mmol) in THF (6.0 mL) was added a solution of DBAD (293.4 mg, 1.27 mmol) in THF (1.0 mL) at 0 °C. The solution was stirred at room temperature for 3 h. After addition of saturated aqueous NH₄Cl, the mixture was extracted with EtOAc. The combined organic layers were washed with brine and dried over Na₂SO₄. After concentration under reduced pressure, the resultant residue was purified by flash column chromatography on silica gel (5-30% EtOAc/hexane) to give (*E*)-dienylurea **15** (372.4 mg, 89%) as a yellow solid; ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, 2H, *J* = 8.9 Hz), 7.82 (d, 2H, *J* = 8.9 Hz), 7.76 (d, 1H, *J* = 8.3 Hz), 7.36-7.21 (m, 10H), 7.08 (d, 2H, *J* = 7.4 Hz), 7.02 (dd, 1H, *J* = 7.4, 7.2 Hz), 6.71 (ddd, 1H, *J* = 16.6, 10.6,

10.6 Hz), 6.62 (d, 1H, J = 8.3 Hz), 6.05 (d, 1H, J = 10.9 Hz), 5.22 (d, 1H, J = 16.9 Hz), 5.18 (d, 1H, J = 10.3 Hz), 5.01 (s, 2H), 3.88-3.85 (m, 2H), 3.74 (s, 3H), 3.00-2.85 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 157.0, 153.2, 151.9, 150.2, 144.3, 138.1, 136.6, 134.6, 133.5, 132.0, 131.9, 129.3, 129.2, 129.0, 128.8, 128.7, 128.6, 123.9, 123.8, 121.8, 120.7, 119.9, 113.6, 105.8, 69.7, 55.5, 46.5, 33.0; IR (ATR, cm⁻¹) 3369, 2977, 2917, 2252, 1733, 1665, 1588, 1533, 1468, 1437, 1350, 1236, 1171, 1089, 897; MS (FAB) *m/z* 657 [M+H]⁺; HRMS calcd for C₃₄H₃₃N₄O₈S [M+H]⁺ 657.2019; Found: *m/z* 657.2022.

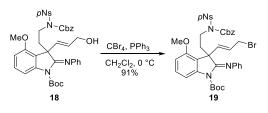
(*E*)-Dienylcarbodiimide **16**:

To a solution of (*E*)-dienylurea **15** (28.0 mg, 0.0426 mmol) and PPh₃ (22.4 mg, 0.0852 mmol) in CH₂Cl₂ (1.0 mL) were added Et₃N (24.0 µL, 0.170 mmol) and CBr₄ (28.3 mg, 0.0852 mmol) at 0 °C. The reaction solution was stirred at 0 °C for 2 h. The resultant solution was then concentrated under reduced pressure. The obtained residue was purified by flash column chromatography on neutral silica gel (10-30% EtOAc/hexane) to give (*E*)-dienylcarbodiimide **16** (25.7 mg, 94%) as a yellow solid. The product was not stable, thus it was used for the next reaction immediately; ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, 2H, *J* = 8.9 Hz), 7.92 (d, 2H, *J* = 8.9 Hz), 7.35-7.27 (m, 5H), 7.21 (dd, 1H, *J* = 8.3, 8.0 Hz), 7.17-7.09 (m, 5H), 6.86 (d, 1H, *J* = 8.0 Hz), 6.72 (d, 1H, *J* = 8.3 Hz), 6.69 (ddd, 1H, *J* = 16.6, 10.6, 10.6 Hz), 6.10 (d, 1H, *J* = 11.2 Hz), 5.21 (dd, 1H, *J* = 16.9, 1.7 Hz), 5.13 (dd, 1H, *J* = 10.0, 1.7 Hz), 5.03 (s, 2H), 3.94 (dd, 2H, *J* = 8.3, 8.3 Hz), 3.77 (s, 3H), 2.94 (dd, 2H, *J* = 8.6, 8.6 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 157.7, 151.6, 150.2, 144.7, 138.6, 136.9, 134.4, 133.9, 133.2, 131.9, 131.2, 129.5, 129.4, 128.8, 128.6, 128.6, 128.5, 127.0, 125.2, 124.1, 123.7, 119.4, 117.4, 107.9, 69.3, 55.7, 46.3, 33.0; IR (ATR, cm⁻¹) 2919, 2138, 1733, 1578, 1532, 1467, 1352, 1264, 1234, 1171, 1088, 889; MS (FAB) *m*/z 639 [M+H]⁺; HRMS calcd for C₃₄H₃₁N₄O₇S [M+H]⁺ 639.1913; Found: *m*/z 639.1911.

2-Iminoindoline 17:

To a solution of (*E*)-dienylcarbodiimide **16** (165.0 mg, 0.258 mmol) in anhydrous xylene (4.0 mL) were added bis(pinacolato)diboron (131.0 mg, 0.518 mmol) and Pd(OAc)₂ (5.8 mg, 0.0258

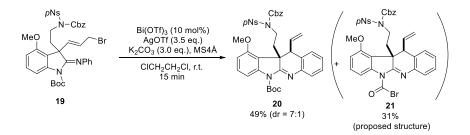
mmol) at room temperature, and the reaction atmosphere was replaced by the Ar atmosphere. The mixture was then stirred at 50 °C for 13 h. After the mixture was cooled to 0 °C, 1M aqueous NaOH (1.6 mL, 1.55 mmol) and 30% H₂O₂ (175.0 µL, 1.55 mmol) were added to the reaction mixture. The mixture was stirred at room temperature for additional 1 h. After addition of saturated aqueous NH₄Cl, the mixture was extracted with EtOAc. The combined organic layers were washed with brine and dried over Na₂SO₄. After concentration under reduced pressure, the resultant residue was purified by flash column chromatography on silica gel (5-60% EtOAc/hexane) to give 2-iminoindoline 17 (141.0 mg, 83%) as a yellow oil; (mixture of isomer of amidine) ¹H NMR (500 MHz, DMSO) δ 9.42 (s, 0.15H, minor), 9.36 (s, 1H, major), 8.27 (d, 0.30H, J = 8.9 Hz, minor), 8.23 (d, 2H, J = 8.9 Hz, major), 8.07 (d, 0.30H, J = 8.9 Hz, minor), 8.01 (d, 2H, J = 8.9 Hz, major), 8.00 (d, 2H, J = 7.7 Hz, major), 7.34 (dd, 2.30H, J = 8.0, 7.8 Hz, major + minor), 7.28-7.23 (m, 1.30H, major + minor), 7.20 (dd, 3H, J = 7.8, 7.7 Hz, major), 7.15 (d, 0.30H, J = 6.8 Hz, minor), 7.11 (dd, 0.15H, J = 8.3, 8.0 Hz, minor), 7.03-6.97 (m, 3.30H, major + minor), 6.90 (d, 0.30H, J = 7.7 Hz, minor), 6.87 (d, 1H, J = 7.8 Hz, major), 6.66 (d, 1H, J = 8.3 Hz, major), 6.56 (d, 0.15H, J = 8.3 Hz), 6.48 (d, 0.15H, J = 7.7 Hz, minor), 6.00 (d, 1H, J = 15.5 Hz, major), 5.89 (d, 0.15H, J = 15.5 Hz, minor), 5.63 (ddd, 0.15H, J = 15.4, 4.9, 4.8 Hz, minor), 5.43 (ddd, 1H, J = 15.5, 4.9, 4.6 Hz, major), 5.08-5.03 (m, 1.30H, major + minor), 4.96 (d, 1H, J = 12.4 Hz, major), 4.75 (dd, 1H, J = 5.5, 5.1 Hz, major), 4.70 (dd, 0.15H, J = 5.5, 5.4 Hz, minor), 3.91 (dd, 2.30H, J = 4.6, 3.7 Hz, major + minor), 3.81-3.73 (m, 0.15H, minor), 3.73 (s, 3.45H, major + minor), 3.59-3.54 (m, 0.15H, minor), 3.36-3.30 (m, 1H, major), 3.24-3.17 (m, 1H, major), 2.77 (ddd, 1H, J = 12.3, 12.3, 4.9 Hz, major), 2.59 (ddd, 1.15H, J = 12.1, 12.0, 4.0 Hz, major + minor), 2.40-2.35 (m, 0.15H, minor); ¹³C NMR (126 MHz, DMSO) δ 170.9, 156.9, 155.2, 151.0, 150.1, 144.1, 140.7, 134.6, 130.3, 129.6, 129.3, 128.5, 128.3, 128.0, 126.9, 124.3, 122.1, 121.2, 119.3, 110.5, 105.8, 68.5, 60.9, 59.4, 55.4, 43.3, 32.9; IR (ATR, cm⁻¹) 2965, 2361, 1733, 1674, 1606, 1532, 1489, 1444, 1350, 1266, 1237, 1171, 1139, 1090, 1007, 970, 855; MS (FAB) m/z 657 [M+H]⁺; HRMS calcd for C₃₄H₃₃N₄O₈S [M+H]⁺ 657.2019; Found: m/z 657.2027.


N-Boc-2-iminoindoline **18**:

To a solution of 2-iminoindoline 17 (102.2 mg, 0.156 mmol) in CH_2Cl_2 (2.0 mL) were added Et_3N (82.0 μ L, 0.588 mmol) and TESCl (65.8 μ L, 0.392 mmol) at 0 °C. The solution was stirred at room temperature for 4 h. After addition of water, the mixture was extracted with EtOAc. The

combined organic layers were washed with brine and dried over Na_2SO_4 . After concentration under reduced pressure, the resultant residue was purified by short column chromatography on neutral silica gel (10-30% EtOAc/hexane) to give a mixture including a desired silylether.

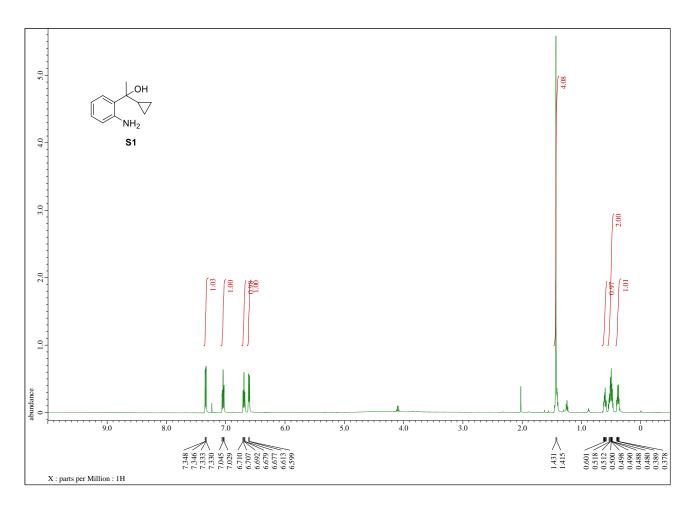
To a solution of the above mixture in CH_2Cl_2 (2.0 mL) were added DIPEA (137.0 µL, 0.784 mmol), Boc₂O (128.3 mg, 0.588 mmol) and DMAP (23.9 mg, 0.196 mmol) at 0 °C. The solution was stirred at room temperature for 3 h. After concentration under reduced pressure, the resultant residue was purified by short column chromatography on silica gel (5-30% EtOAc/hexane) to give a mixture including the desired *N*-Boc-2-iminoindoline.

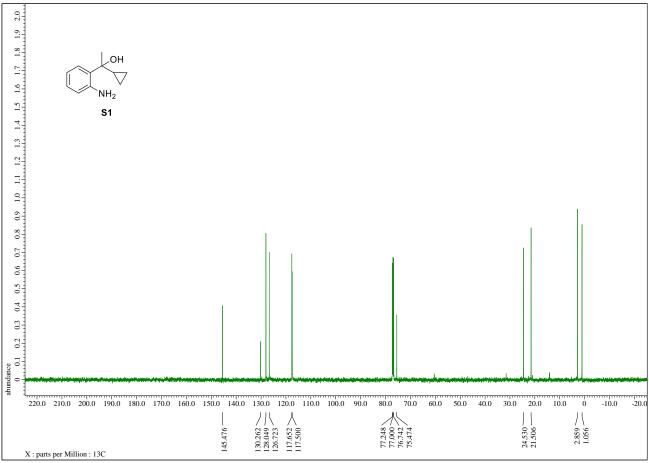

To a solution of the above N-Boc iminoindoline in THF (1.3 mL) was added TBAF (1M in THF, 139.0 µL, 0.139 mmol) at 0 °C. The solution was stirred at 0 °C for 15 min. After addition of saturated aqueous NH₄Cl, the mixture was extracted with EtOAc. The combined organic layers were washed with brine and dried over Na₂SO₄. After concentration under reduced pressure, the resultant residue was purified by flash column chromatography on silica gel (10-40% EtOAc/hexane) to give N-Boc-2-iminoindoline 18 (88.8 mg, 75% in 3 steps) as a white solid; ¹H NMR (500 MHz, CDCl₃) δ 8.10 (d, 2H, *J* = 8.9 Hz), 7.93 (d, 2H, *J* = 8.9 Hz), 7.33-7.28 (m, 5H), 7.26-7.22 (m, 3H), 7.10-7.02 (m, 5H), 6.71 (dd, IH, J = 3.8, 3.7 Hz), 5.98 (d, IH, J = 15.8 Hz), 5.76 (ddd, lH, J = 15.4, 5.5, 5.1 Hz), 4.95 (d, 1H, J = 11.7 Hz), 4.90 (d, 1H, J = 11.7 Hz), 4.12 (d, 2H, J = 5.2 Hz), 3.84 (s, 3H), 3.81-3.75 (m, 1H), 3.72-3.64 (m, 1H), 2.89 (ddd, 1H, J = 12.1, 11.7, 5.4 Hz), 2.55 (ddd, 1H, J=12.3, 12.3, 4.3 Hz), 1.20 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 155.9, 155.1, 151.6, 150.1, 149.2, 148.7, 144.9, 142.0, 134.2, 131.3, 129.8, 129.6, 129.1, 128.7, 128.7, 128.5, 123.7, 123.6, 120.3, 116.1, 107.2, 106.8, 84.0, 69.1, 63.2, 55.5, 53.9, 44.2, 34.8, 27.5; IR (ATR, cm⁻¹) 3454, 2979, 1731, 1693, 1596, 1532, 1489, 1456, 1369, 1348, 1241, 1172, 1149, $1088, 885; MS (FAB) m/z 757 [M+H]^+; HRMS calcd for C_{39}H_{41}N_4O_{10}S [M+H]^+ 757.2543; Found:$ m/z 757.2541.

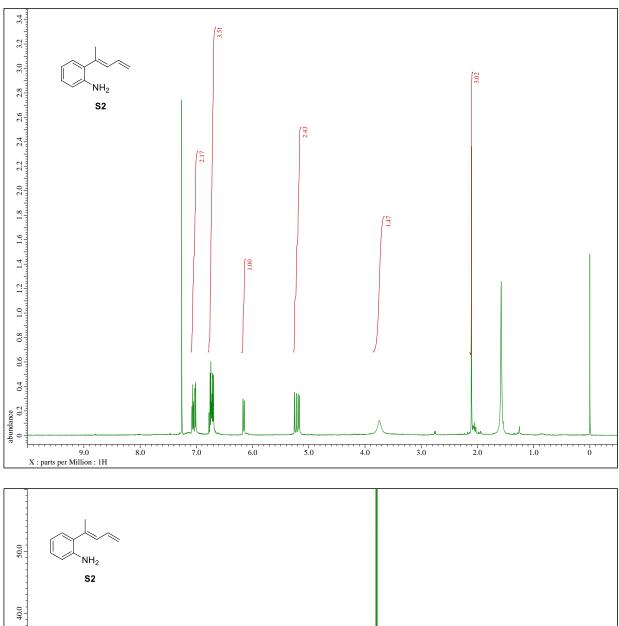
Allylbromide **19**:

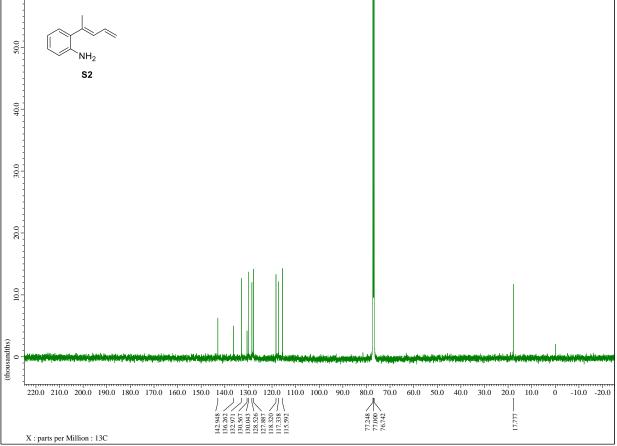
To a solution of *N*-Boc-2-iminoindoline **18** (104.8 mg, 0.138 mmol) and PPh₃ (90.8 mg, 0.345 mmol) in CH₂Cl₂ (2.0 mL) was added CBr₄ (91.5 mg, 0.276 mmol) at 0 °C. The reaction solution was stirred at 0 °C for 30 min. After addition of water, the mixture was extracted with EtOAc. The combined organic layers were dried over Na₂SO₄. After concentration under reduced pressure, the resultant residue was purified by flash column chromatography on silica gel (10-30%)

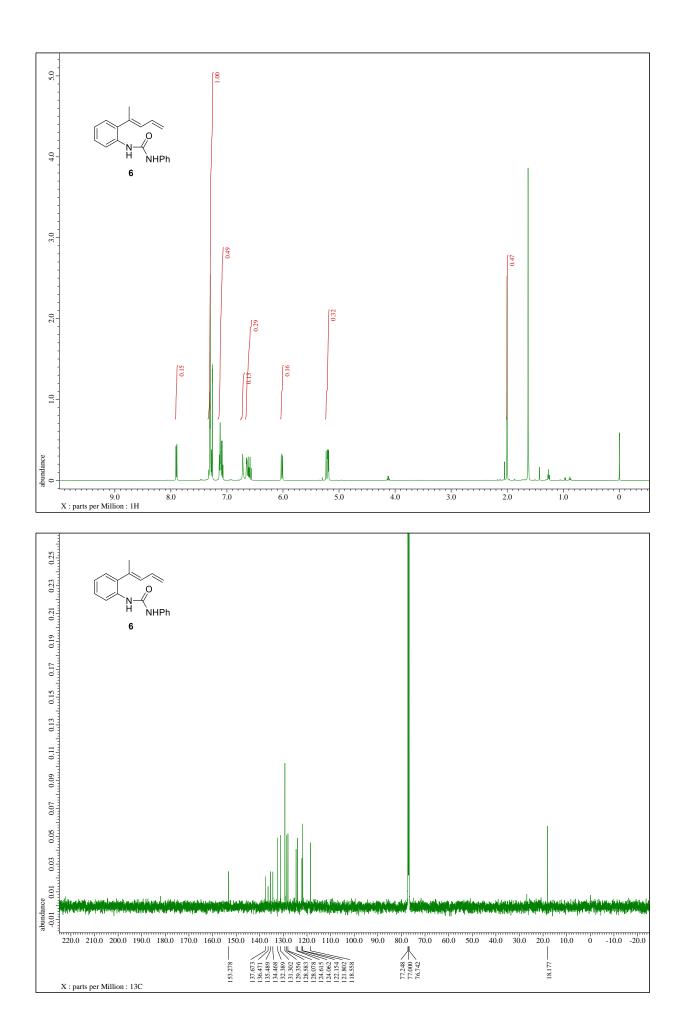
EtOAc/hexane) to give allylbromide **19** (102.9 mg, 91%) as a white solid; ¹H NMR (500 MHz, CDCl₃) δ 8.10 (d, 2H, J = 9.2 Hz), 7.92 (d, 2H, J = 8.9 Hz), 7.34-7.28 (m, 5H), 7.27-7.22 (m, 2H), 7.10-7.03 (m, 5H), 6.72 (dd, 1H, J = 7.1, 2.0 Hz), 6.00 (d, 1H, J = 15.2 Hz), 5.79 (ddd, 1H, J = 15.2, 7.7, 7.5 Hz), 4.94 (d, 1H, J = 11.8 Hz), 4.90 (d, 1H, J = 11.8 Hz), 3.97-3.89 (m, 2H), 3.85 (s, 3H), 3.88 (m, 1H), 3.69 (m, 1H), 2.86 (ddd, 1H, J = 12.0, 11.8, 5.7 Hz), 2.53 (ddd, 1H, J = 12.3, 10.6, 4.3 Hz), 1.19 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 155.9, 154.5, 151.5, 150.1, 149.3, 148.5, 144.8, 142.2, 134.7, 134.2, 130.1, 129.6, 129.1, 128.8, 128.7, 128.5, 126.3, 123.8, 123.7, 120.4, 115.5, 107.3, 106.9, 84.0, 69.2, 55.5, 53.8, 44.1, 34.5, 32.4, 27.4; IR (ATR, cm⁻¹) 2975, 2936, 2255, 1730, 1691, 1596, 1532, 1489, 1455, 1347, 1253, 1147, 1087, 1013, 966, 908, 854; MS (FAB) m/z 819 [M+H]⁺; HRMS calcd for C₃₉H₄₀N₄O₉S [M+H]⁺ 819.1699; Found: m/z 819.1704.


Tetracyclic compound 20 and 21:


A suspension of allylbromide **19** (20.1 mg, 0.0245 mmol), Bi(OTf)₃ (1.6 mg, 2.45×10^{-3} mmol), AgOTf (22.0 mg, 0.0858 mmol), MS4Å (21.0 mg) and K₂CO₃ (10.2 mg, 0.0735 mmol) in CH₂Cl₂ (2.5 mL) was stirred at room temperature for 15 min. After addition of water, the mixture was filtered through Celite pad. The filtrate was extracted with EtOAc and dried over Na₂SO₄. After concentration under reduced pressure, the resultant residue was purified by flash column chromatography on silica gel (5-30% EtOAc/hexane) to give a tetracyclic compound **20** (8.9 mg, 49%, dr = 7:1) as a colorless oil and **21** (5.7 mg, 31%) as yellow oil;


Tetracyclic compound **20** (major diastereomer): ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, 2H, J = 7.7 Hz), 7.75 (d, 2H, J = 7.7 Hz), 7.52 (d, 1H, J = 8.0 Hz), 7.39 (d, 1H, J = 7.8 Hz), 7.34-7.28 (m, 5H), 7.19-7.16 (m, 2H), 7.09 (d, 2H, J = 7.8 Hz), 6.66 (d, 1H, J = 8.3 Hz), 6.16 (ddd, 1H, J = 16.6, 10.6, 9.8 Hz), 5.35 (d, 1H, J = 9.8 Hz), 5.08 (d, 1H, J = 16.6 Hz), 4.94 (s, 2H), 3.80 (d, 1H, J = 10.3 Hz), 3.68 (s, 3H), 3.61-3.55 (m, 1H), 3.33-3.26 (m, 1H), 2.41-2.35 (m, 1H), 2.14-2.07 (m, 1H), 1.69 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 164.8, 156.9, 151.3, 150.2, 149.3, 144.5, 144.3, 143.1, 135.1, 134.8, 134.1, 130.3, 129.7, 128.8, 128.6, 128.5, 128.1, 126.7, 125.7, 125.3, 123.7, 123.7, 117.6, 115.4, 108.0, 107.6, 84.1, 69.2, 54.6, 51.0, 47.4, 44.2, 28.3, 26.3; IR (ATR, cm⁻¹) 2979, 2915, 1733, 1650, 1580, 1533, 1465, 1350, 1282, 1248, 1145, 1070, 890, 859, 747, 627; MS (ESI) m/z 739 [M+H]⁺; HRMS calcd for C₃₉H₃₉N₄O₉S [M+H]⁺ 739.2438; Found: m/z


739.2427.


Tetracyclic compound **21:** ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, 2H, J = 8.9 Hz), 7.80 (d, 2H, J = 8.9 Hz), 7.31-7.23 (m, 5H), 7.20 (d, 1H, J = 7.8 Hz), 7.13 (d, 1H, J = 8.0 Hz), 7.10-7.04 (m, 3H), 6.88 (d, 1H, J = 8.0 Hz), 6.63 (d, 1H, J = 8.3 Hz), 6.22 (ddd, 1H, J = 16.9, 10.0, 9.8 Hz), 5.43 (d, 1H, J = 11.4 Hz), 5.15 (d, 1H, J = 16.9 Hz), 4.95 (dd, 2H, J = 12.1, 11.7 Hz), 3.75 (d, 1H, J = 9.8 Hz), 3.72 (s, 3H), 3.59-3.54 (m, 1H), 3.21 (ddd, 1H, J = 12.6, 12.3, 4.6 Hz), 2.63 (ddd, 1H, J = 12.6, 12.3, 4.5 Hz), 2.25 (ddd, 1H, J = 12.6, 12.3, 4.6 Hz); MS (FAB) *m/z* 745, 747 [M+H]⁺. (Compound **21** was too unstable to measure ¹³C NMR and IR.

