Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Electronic Supporting Information

Activation of the hypervalent fluoroiodane reagent by hydrogen bonding to hexafluoroisopropanol

Harsimran Minhas, William Riley, Alison M. Stuart* and Martyna Urbonaite Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK.

Email: <u>Alison.Stuart@le.ac.uk</u>

Table S1	Optimisation of the fluorination of ethyl-3-oxo-3-phenylpropanoate in HFIP	S2
Figure 2	Molecular structure of 5-fluoro-5-methyl-4-phenyldihydrofuran-2-one 4h	S 2
Figure 3	Molecular structure of 4-fluoro-5-methyl-5-phenyldihydrofuran-2-one 5	S 3
Figure 4	Molecular structure of 4-oxo-3-phenylpentanoic acid 6	S 3
Table S2	Selected bond lengths (Å) and bond angles (°) for compounds $4h$, 5 and 6	S 4
Experimen	tal Procedures and Characterisation Data	S 4
Procedure	for the fluorination of 1,3-dicarbonyl compounds in HFIP	S 5
Procedure	for the intramolecular fluorocyclisations in HFIP	S 7
Procedure	for the intramolecular fluorocyclisations with AgBF ₄	S12
Tables S3	-S5 1 H, 19 F and 13 C NMR data for (a) fluoroiodane, (b) HFIP and	S15
	(c) fluoroiodane:HFIP (1:1)	
References	3	S17
Table S6	Crystallographic data for compounds 4h , 5 and 6	S 18
NMR Spec	ctra of Compounds	S19

Ph OEt		1 (1.5 equiv Et ₃ N.3HF, H	V) Ph F	OEt
Entry	Temp	Time	Et ₃ N.3HF	Yield ^{b,c}
	(°C)	(h)	(equiv.)	(%)
1	40	6	2.7	98 (98)
2	40	6	0.5	87 (87)
3	40	6	0	70 (58)
4	60	6	0	79 (77)
5	80	6	0	69
6	60	4	0	76 (73)

Table S1 Optimisation of the fluorination of ethyl 3-oxo-3-phenylpropanoate in HFIP.^a

^{*a*} Reaction conditions: substrate (0.72 mmol), fluoroiodane **1** (1.08 mmol), the required amount of Et₃N.3HF and HFIP (1.2 mL). ^{*b*} Determined by ¹H NMR spectroscopy. ^{*c*} Isolated yield in parenthesis.

Figure 2. Molecular structure of (4S,5R)/(4R,5S)-5-fluoro-5-methyl-4-phenyldihydrofuran-2-one **4h** showing 50% displacement ellipsoids

Figure 3. Molecular structure of (4*S*,5*R*)/(4*R*,5*S*)-4-fluoro-5-methyl-5-phenyldihydrofuran-2-one **5** showing 50% displacement ellipsoids

Figure 4. Molecular structure of 4-oxo-3-phenylpentanoic acid 6 showing 50% displacement ellipsoids

	4h	5	6
C(1)-O(1)	1.421(3)	1.468(3)	1.218(3)
C(1)-F(1)	1.404(3)	-	-
C(2)-F(1)	-	1.407(2)	-
C(4)-O(1)	1.372(4)	1.360(3)	-
C(4)-O(2)	1.198(4)	1.197(3)	1.203(3)
C(4)-O(3)	-	-	1.335(3)
O(1)-C(1)-C(2)	105.5(2)	102.77(17)	120.3(2)
O(1)-C(1)-C(11)	-	-	122.2(3)
C(1)-C(2)-C(3)	101.5(2)	103.26(18)	111.82(19)
C(2)-C(3)-C(4)	103.2(3)	103.9(2)	112.9(2)
C(3)-C(4)-O(1)	109.3(3)	109.2(2)	-
C(3)-C(4)-O(2)	-	-	124.6(2)
C(4)-O(1)-C(1)	110.4(2)	111.28(18)	-
C(3)-C(4)-O(3)	-	-	111.5(2)

Table S2 Selected bond lengths (Å) and bond angles (°) with estimated standard deviations(e.s.d.s.) in parenthesis for compounds 4h, 5 and 6

Experimental

Proton, ¹⁹F and ¹³C NMR spectra were recorded on a Bruker DRX 400 spectrometer at 400.13, 376.46 and 100.62 MHz respectively and were referenced to external SiMe₄ (¹H), external CFCl₃ (¹⁹F) and to external SiMe₄ (¹³C) using the high frequency positive convention. Atmospheric Solids Analysis Probe (ASAP) mass spectra were recorded on a Xevo QTof mass spectrometer (Waters) and Electrospray (ES) mass spectra were obtained by LC-MS using a Xevo QTof mass spectrometer (Waters) coupled to an Acquity LC system (Waters) with an Acquity UPLC BEH C18 column (2.1 x 50 mm). X-ray crystallography data were collected on a Bruker Apex SMART 2000 diffractometer using graphite-monochromated Mo-Kα radiation ($\lambda = 0.71073$ Å).

Dichloromethane was obtained dry from a distillation machine model PuresolveTM and was stored in sealed ampoules over 4Å molecular sieves under an atmosphere of dry nitrogen. Hexafluoroisopropan-2-ol was purchased from Fluorochem Ltd and stored in a Schlenk flask over 4Å molecular sieves under an atmosphere of dry nitrogen. The hypervalent fluoroiodane reagent 1,^{3a} the unsaturated carboxylic acids (**3a** to **3e**),^{3c} (*E*)-4-phenylbut-3-enoic acid **3g**,¹⁶ and (*E*)-4-phenylpent-3-enoic acid **3h**¹⁷ were prepared following the literature procedures.

Procedure for the fluorination of 1,3-dicarbonyl compounds in HFIP (Table 1, Entries 1-5)

The flask was charged with 1-fluoro-3,3-dimethyl-1,3-dihydro- λ^3 -benzo[d][1,2]iodoxole **1** (0.300 g, 1.08 mmol), hexafluoroisopropanol (1.2 mL) and the 1,3-dicarbonyl substrate (0.72 mmol). The flask was then sealed and either heated to 65 °C (drysyn bath temperature) for 4 hours (entries 1-4) or stirred at room temperature for 1 hour (entry 5). After cooling the reaction mixture to room temperature, it was concentrated on a rotary evaporator to give the crude product which was analysed by ¹H and ¹⁹F NMR spectroscopy. The crude product was purified by column chromatography (1% methanol in dichloromethane) on silica gel.

Ethyl 2-fluoro-3-oxo-3-phenylpropanoate 2a

Ethyl 2-fluoro-3-oxo-3-phenylpropanoate **2a** was obtained as a yellow oil (0.111 g, 73%). The characterisation data was in agreement with the literature.¹⁸ $\delta_{\rm H}$ (CDCl₃, 400 MHz) 1.22 (3H, t, ${}^{3}J_{\rm HH} = 7.1$ Hz, CH₃), 4.27 (2H, m_{AB}, dq, ${}^{2}J_{\rm HH} = 11.0$ Hz, ${}^{3}J_{\rm HH} = 7.2$ Hz, OCH_AH_B), 5.87 (1H, d, ${}^{2}J_{\rm HF} = 50.0$ Hz, CHF), 7.48 (2H, t, ${}^{3}J_{\rm HH} = 8.0$ Hz, ArH), 7.61 (1H, t, ${}^{3}J_{\rm HH} = 8.0$ Hz, ArH), 8.02 (2H, d, ${}^{3}J_{\rm HH} = 8.0$ Hz, ArH); $\delta_{\rm F}$ (CDCl₃, 376 MHz) - 190.8 (s); $\delta_{\rm C}$ (CDCl₃, 100 MHz) 14.5 (CH₃), 62.9 (CH₂), 90.0 (d, ${}^{1}J_{\rm CF} = 197.2$ Hz, CH), 128.8 (CH), 129.5 (CH), 133.4 (C), 134.5 (CH), 164.9 (d, ${}^{2}J_{\rm CF} = 24.1$ Hz, CO), 189.5 (d, ${}^{2}J_{\rm CF} = 20.1$ Hz, CO); m/z (ASAP) 211.0760 (MH⁺. C₁₁H₁₂FO₃ requires 211.0770, 100 %).

Ethyl 2-fluoro-3-(4-methoxyphenyl)-3-oxo-propanoate 2b

Ethyl 2-fluoro-3-(4-methoxyphenyl)-3-oxo-propanoate **2b** was obtained as a colourless oil (0.155 g, 90%). The characterisation data was in agreement with the literature.¹⁹ $\delta_{\rm H}$ (CDCl₃, 400 MHz) 1.23 (3H, t, ³*J*_{HH} = 7.1 Hz, CH₃), 3.86 (3H, s, OMe), 4.30 (2H, m_{AB}, dq,

 ${}^{2}J_{\text{HH}} = 9.8 \text{ Hz}, {}^{3}J_{\text{HH}} = 7.1 \text{ Hz}, \text{OC}H_{A}H_{B}$, 5.82 (1H, d, ${}^{2}J_{\text{HF}} = 48.9 \text{ Hz}, \text{CHF}$), 6.97 (2H, d, ${}^{3}J_{\text{HH}} = 9.0 \text{ Hz}$, ArH), 8.04 (2H, d, ${}^{3}J_{\text{HH}} = 9.0 \text{ Hz}$, ArH); δ_{F} (CDCl₃, 376 MHz) -189.6 (s); δ_{C} (CDCl₃, 100 MHz) 13.0 (CH₃), 54.6 (CH₃), 61.6 (CH₂), 89.2 (d, ${}^{1}J_{\text{CF}} = 197.6 \text{ Hz}, \text{CH}$), 113.1 (CH), 125.3 (C), 131.0 (d, ${}^{4}J_{\text{CF}} = 3.1 \text{ Hz}, \text{CH}$), 163.6 (C), 164.2 (d, ${}^{2}J_{\text{CF}} = 24.1 \text{ Hz}, \text{CO}$), 186.8 (d, ${}^{2}J_{\text{CF}} = 20.8 \text{ Hz}, \text{CO}$); m/z (ES⁺) 241.0880 (MH⁺, C₁₂H₁₄FO₄ requires 241.0876, 60%), 135.0452 (100).

Ethyl 2-fluoro-3-(4-fluorophenyl)-3-oxo-propanoate 2c

Ethyl 2-fluoro-3-(4-fluorophenyl)-3-oxo-propanoate **2c** was obtained as a colourless oil (0.153 g, 93%). The characterisation data was in agreement with the literature.²⁰ $\delta_{\rm H}$ (CDCl₃, 400 MHz) 1.27 (3H, t, ³*J*_{HH} = 7.1 Hz, CH₃), 4.31 (2H, m_{AB}, qm, ³*J*_{HH} = 7.1 Hz, OC*H*_A*H*_B), 5.89 (1H, d,

 ${}^{2}J_{\text{HF}} = 48.9 \text{ Hz}, \text{CHF}$), 7.18 (2H, dd, ${}^{3}J_{\text{HH}} = 9.0 \text{ Hz}, {}^{3}J_{\text{HF}} = 7.5 \text{ Hz}, \text{ArH}$), 8.08-8.12 (2H, m, ArH); δ_{F} (CDCl₃, 376 MHz) -101.8 (1F, s, ArF), -189.6 (1F, s, CHF); δ_{C} (CDCl₃, 100 MHz) 13.9 (CH₃), 62.8 (CH₂), 90.2 (d, ${}^{1}J_{\text{CF}} = 197.2 \text{ Hz}, \text{CH}$), 116.1 (d, ${}^{2}J_{\text{CF}} = 22.1 \text{ Hz}, \text{CH}$), 129.8 (C), 132.4 (dd, ${}^{3}J_{\text{CF}} = 10.1 \text{ Hz}, {}^{4}J_{\text{CF}} = 3.0 \text{ Hz}, \text{CH}$), 164.8 (d, ${}^{2}J_{\text{CF}} = 24.1 \text{ Hz}, \text{CO}$), 166.5 (d, ${}^{1}J_{\text{CF}} = 257.6 \text{ Hz}, \text{C}$), 188.0 (d, ${}^{2}J_{\text{CF}} = 20.1 \text{ Hz}, \text{CO}$); m/z (ES⁺) 229.0679 (MH⁺, C₁₁H₁₁F₂O₃ requires 229.0676, 100%).

Ethyl 1-indanone-2-fluoro-2-carboxylate 2d

Ethyl 1-indanone-2-fluoro-2-carboxylate **2d** was obtained as a colourless oil (0.129 g, 81%). The characterisation data was in agreement with the literature.²¹ $\delta_{\rm H}$ (CDCl₃, 400 MHz) 1.26 (3H, t, ${}^{3}J_{\rm HH} = 7.1$ Hz, CH₃), 3.44 (1H, dd, ${}^{3}J_{\rm HF} = 22.6$ Hz, ${}^{2}J_{\rm HH} = 17.6$ Hz, ring CH_AH_B), 3.80 (1H, dd, ${}^{2}J_{\rm HH} = 17.6$ Hz, ${}^{3}J_{\rm HF} = 11.7$ Hz, ring CH_AH_B), 4.28 (2H, q, ${}^{3}J_{\rm HH} = 7.1$ Hz, OCH₂), 7.47 (1H, t, ${}^{3}J_{\rm HH} = 7.9$ Hz, ArH), 7.51 (1H, d, ${}^{3}J_{\rm HH} = 7.9$ Hz, ArH), 7.71 (1H, t, ${}^{3}J_{\rm HH} = 7.9$ Hz, ArH), 7.84 (1H, d, ${}^{3}J_{\rm HH} = 7.9$ Hz, ArH); $\delta_{\rm F}$ (CDCl₃, 376 MHz) -164.4 (s); $\delta_{\rm C}$ (CDCl₃, 100 MHz) 14.0 (CH₃), 38.3 (d, ${}^{2}J_{\rm CF} = 24.0$ Hz, CH₂), 62.6 (CH₂), 94.5 (d, ${}^{1}J_{\rm CF} = 202.7$ Hz, C), 125.6 (CH), 126.6 (CH), 128.6 (CH), 133.3 (C), 136.7 (CH), 150.9 (d, ${}^{3}J_{\rm CF} = 3.1$ Hz, C), 167.3 (d, ${}^{2}J_{\rm CF} = 27.3$ Hz, CO), 195.3 (d, ${}^{2}J_{\rm CF} = 18.4$ Hz, CO); *m/z* (ES⁺): 245.0583 (MNa⁺, C₁₂H₁₁FO₃Na requires 245.0590, 100%), 223.0771 (MH⁺, C₁₂H₁₂FO₃ requires 223.0770, 47%), 195.0455 (38%).

N,N-diethyl-2-fluoro-3-oxo-3-phenylpropanamide 2e

N,N-diethyl-2-fluoro-3-oxo-3-phenylpropanamide **2e** was obtained as a yellow Ph F NEt₂ oil (0.121 g, 71%). The characterisation data was in agreement with the literature.²² $\delta_{\rm H}$ (CDCl₃, 400 MHz) 1.02 (3H, t, ³J_{HH} = 7.1 Hz, CH₃), 1.11 (3H, t, ³J_{HH} = 7.1 Hz, CH₃), 3.30 (2H, q, ³J_{HH} = 7.1 Hz, NCH₂), 3.41 (2H, m, NCH₂), 6.04 (1H, d, ²J_{HF} = 49.1 Hz, CHF), 7.40 (2H, t, ³J_{HH} = 7.7 Hz, ArH), 7.52 (1H, t, ³J_{HH} = 7.7 Hz, ArH), 8.05 (2H, d, ³J_{HH} = 7.7 Hz, ArH); $\delta_{\rm F}$ (CDCl₃, 376 MHz) -186.6 (s); $\delta_{\rm C}$ (CDCl₃, 100 MHz): 12.4 (CH₃), 14.1 (CH₃), 40.9 (CH₂), 41.6 (d, ⁴J_{CF} = 4.8 Hz, CH₂), 92.5 (d, ¹J_{CF} = 197.5 Hz, CHF), 128.6 (CH), 129.6 (d, ⁴J_{CF} = 2.2 Hz, CH), 133.7 (C), 134.2 (CH), 163.4 (d, ²J_{CF} = 20.6 Hz, CO), 191.9 (d, ²J_{CF} = 20.7 Hz, CO); m/z (ES⁺) 260.1083 (MNa⁺, C₁₃H₁₆FNO₂Na requires 260.1063, 55%), 238.1245 (MH⁺, C₁₃H₁₇FNO₂ requires 238.1243, 100%), 100.0748 (CONEt₂⁺, 45%).

Procedure for the intramolecular fluorocyclisations in HFIP (Table 2, Entries 1-8)

A small Schlenk flask was charged with powdered 4 Å molecular sieves (0.11 g), 1-fluoro-3,3dimethyl-1,3-dihydro- λ^3 -benzo[d][1,2]iodoxole **1** (0.38 g, 1.36 mmol), substrate (0.9 mmol) and hexafluoroisopropanol (3 mL). The flask was then sealed and the contents were stirred at 40 °C for either one hour (entries 1-5 and 8) or four hours (entries 6-7). After cooling the reaction mixture to room temperature, it was concentrated on a rotary evaporator to give the crude product which was analysed by ¹H and ¹⁹F NMR spectroscopy. The crude product was purified by column chromatography on silica gel.

5-Benzyl-5-fluorodihydrofuran-2(3H)-one 4a

4-Phenylpent-4-enoic acid **3a** (0.15 g, 0.85 mmol) was reacted with 1-fluoro-3,3dimethyl-1,3-dihydro- λ^3 -benzo[d][1,2]iodoxole **1** (0.36 g, 1.29 mmol) in the presence of 4 Å molecular sieves (0.11 g) in hexafluoroisopropanol (3 mL) at 40

^oC for 1 h following the general procedure. The crude product was purified by column chromatography (dichloromethane) to give 5-benzyl-5-fluorodihydrofuran-2(3*H*)-one **4a** as a colourless oil (0.139 g, 84%). The characterisation data was in agreement with the literature.^{3c} $\delta_{\rm H}$ (CDCl₃, 400 MHz) 2.15-2.30 (2H, m, H₃ and H₃·), 2.42 (1H, dm, on fluorine decoupling simplifies to ddd, ²*J*_{HH} = 17.8 Hz, ³*J*_{HH} = 8.7 Hz, ³*J*_{HH} = 3.1 Hz, H₄), 2.74 (1H, ddd, ²*J*_{HH} = 17.8 Hz, ³*J*_{HH} = 10.5 Hz, ³*J*_{HH} = 9.3 Hz, H₄·), 3.29 (2H, d, ³*J*_{HF} = 14.7 Hz, H₁ and H₁·), 7.28 – 7.36 (5H, m, ArH); $\delta_{\rm F}$ (CDCl₃, 376 MHz) -97.0 (s); $\delta_{\rm C}$ (CDCl₃, 100 MHz) 27.0 (CH₂), 30.9 (d, ²*J*_{CF} = 27.7 Hz, CH₂), 42.7 (d, ²*J*_{CF} = 28.0 Hz, CH₂), 119.2 (d, ¹*J*_{CF} = 230.7 Hz, C), 127.6 (CH), 128.6 (CH), 130.4 (CH), 133.0 (d, ³*J*_{CF} = 5.1 Hz, C), 174.7 (CO); *m*/*z* (ASAP) 195.0822 (MH⁺. C₁₁H₁₂FO₂ requires 195.0821, 20 %), 175.0722 ((M-F)⁺, 100%).

5-Fluoro-5-(4-fluorobenzyl)dihydrofuran-2(3H)-one 4b

4-(4-Fluorophenyl)pent-4-enoic acid **3b** (0.15 g, 0.77 mmol) was reacted with 1-fluoro-3,3-dimethyl-1,3-dihydro- λ^3 -benzo[d][1,2]iodoxole **1** (0.32 g, 1.14 mmol) in the presence of 4 Å molecular sieves (0.11 g) in

hexafluoroisopropanol (3 mL) at 40 °C for 1 h following the general procedure. The crude product was purified by column chromatography (dichloromethane) to give 5-fluoro-5-(4-fluorobenzyl)-dihydrofuran-2(3*H*)-one **4b** as a colourless oil (0.130 g, 80%). The characterisation data was in

agreement with the literature.^{3c} $\delta_{\rm H}$ (CDCl₃, 400 MHz) 2.14-2.34 (2H, m, H₃ and H_{3'}), 2.42 – 2.49 (1H, m, on fluorine decoupling simplifies to ddd, ²*J*_{HH} = 18.1 Hz, ³*J*_{HH} = 9.3 Hz, ³*J*_{HH} = 2.3 Hz, H₄), 2.75 (1H, ddd, ²*J*_{HH} = 18.1 Hz, ³*J*_{HH} = 10.7 Hz, ³*J*_{HH} = 9.4 Hz, H_{4'}), 3.26 (2H, d, ³*J*_{HF} = 14.8 Hz, H₁ and H_{1'}), 7.02 (2H, t, ³*J*_{HF} = ³*J*_{HH} = 8.7 Hz, ArH), 7.26 (2H, dd, ³*J*_{HH} = 8.7 Hz, ³*J*_{HF} = 5.5 Hz, ArH); $\delta_{\rm F}$ (CDCl₃, 376 MHz) -97.8 (1F, s, CF), -114.8 (1F, s, ArF); $\delta_{\rm C}$ (CDCl₃, 100 MHz) 26.9 (CH₂), 30.9 (d, ²*J*_{CF} = 28.8 Hz, CH₂), 41.8 (d, ²*J*_{CF} = 28.1 Hz, CH₂), 115.5 (d, ²*J*_{CF} = 22.2 Hz, CH), 118.9 (d, ¹*J*_{CF} = 231.4 Hz, C), 128.7 (C), 131.9 (d, ³*J*_{CF} = 8.0 Hz, CH), 162.3 (d, ¹*J*_{CF} = 245.9 Hz, C), 174.7 (CO); *m/z* (ASAP) 193.0664 ((M-F)⁺. C₁₁H₁₀FO₂ requires 193.0665, 100 %).

3-Benzyl-3-fluoroisobenzofuran-1(3H)-one 4c

2-(1-Phenylvinyl)benzoic acid 3c (0.15 g, 0.67 mmol) was reacted with 1-fluoro3,3-dimethyl-1,3-dihydro-λ³-benzo[d][1,2]iodoxole 1 (0.28 g, 1.00 mmol) in the presence of 4 Å molecular sieves (0.11 g) in hexafluoroisopropanol (3 mL) at 40 °C for 1 h following the general procedure. The crude product was purified by

column chromatography (dichoromethane) to give 3-benzyl-3-fluoroisobenzofuran-1(3*H*)-one **4c** as a colourless oil (0.129 g, 79%). The characterisation data was in agreement with the literature.^{3c} $\delta_{\rm H}$ (CDCl₃, 400 MHz) 3.52 (1H, dd, ²*J*_{HH} = 14.4 Hz, ³*J*_{HF} = 14.3 Hz, H₁), 3.63 (1H, dd, ²*J*_{HH} = 14.4 Hz, ³*J*_{HF} = 12.3 Hz, H₁), 7.19-7.26 (5H, m, ArH), 7.34 (1H, d, ³*J*_{HH} = 7.5 Hz, ArH), 7.59 (1H, t, ³*J*_{HH} = 7.5 Hz, ArH), 7.69 (1H, t, ³*J*_{HH} = 7.5 Hz, ArH), 7.80 (1H, d, ³*J*_{HH} = 7.5 Hz, ArH); $\delta_{\rm F}$ (CDCl₃, 376 MHz) -100.6 (s); $\delta_{\rm C}$ (CDCl₃, 100 MHz) 40.6 (d, ²*J*_{CF} = 28.2 Hz, CH₂), 113.4 (d, ¹*J*_{CF} = 232.2 Hz, C), 121.4 (CH), 124.0 (CH), 124.5 (C), 125.9 (CH), 126.7 (CH), 128.8 (CH), 129.8 (CH), 130.2 (d, ³*J*_{CF} = 4.5 Hz, C), 132.9 (CH), 142.8 (d, ²*J*_{CF} = 21.2 Hz, C), 164.8 (CO); *m*/*z* (ASAP) 223.0758 ((M-F)⁺, C₁₅H₁₁O₂ requires 223.0759, 100%), 195.0813 ((M-COF)⁺, 70%).

3-Fluoro-3-(4-fluorobenzyl)isobenzofuran-1(3H)-one 4d

2-(1-(4-Fluorophenyl)vinyl)benzoic acid **3d** (0.15 g, 0.62 mmol) was reacted with 1-fluoro-3,3-dimethyl-1,3-dihydro- λ^3 -benzo[d][1,2]iodoxole **1** (0.26 g, 0.93 mmol) in the presence of 4 Å molecular sieves (0.11 g) in hexafluoroisopropanol (3 mL) at 40 °C for 1 h following the general procedure. The crude product was purified by column chromatography (dichloromethane) to give 3-fluoro-3-(4fluorobenzyl)isobenzofuran-1(3*H*)-one **4d** as a white solid (0.131 g, 81%). The

characterisation data was in agreement with the literature.^{3c} mp 69 – 71 °C. $\delta_{\rm H}$ (CDCl₃, 400 MHz) 3.51 (1H, dd, ²*J*_{HH} = 14.5 Hz, ³*J*_{HF} = 14.3 Hz, H₁), 3.57 (1H, dd, ²*J*_{HH} = 14.5 Hz, ³*J*_{HF} = 12.7 Hz, H₁'), 6.93 (2H, t, ³*J*_{HH} = ³*J*_{HF} = 8.6 Hz, ArH), 7.17 (2H, dd, ³*J*_{HH} = 8.6 Hz, ⁴*J*_{HF} = 5.5 Hz, ArH), 7.37

(1H, d, ${}^{3}J_{HH} = 7.5$ Hz, ArH), 7.60 (1H, t, ${}^{3}J_{HH} = 7.6$ Hz, ArH), 7.69 (1H, t, ${}^{3}J_{HH} = 7.5$ Hz, ArH), 7.81 (1H, d, ${}^{3}J_{\text{HH}} = 7.5$ Hz, ArH); δ_{F} (CDCl₃, 376 MHz) -101.0 (1F, s, CF), -114.6 (1F, s, ArF); δ_{C} (CDCl₃, 125 MHz) 41.6 (d, ${}^{2}J_{CF} = 31.3$ Hz, CH₂), 115.0 (d, ${}^{1}J_{CF} = 233.2$ Hz, CF), 115.4 (d, ${}^{2}J_{CF} = 233.2$ Hz, CF), 115.4 (d, {}^{2}J_{CF} = 233.2 21.7 Hz, CH), 123.0 (CH), 125.8 (CH), 126.3 (d, ${}^{3}J_{CF} = 1.4$ Hz, C), 127.8 (dd, ${}^{3}J_{CF} = 5.6$ Hz, ${}^{4}J_{CF} = 5.6$ Hz, 4 3.2 Hz, C), 131.7 (d, ${}^{3}J_{CF} = 2.3$ Hz, CH), 132.2 (d, ${}^{3}J_{CF} = 8.3$ Hz, CH), 134.8 (CH), 144.5 (d, ${}^{2}J_{CF} = 3.3$ Hz, CH), 134.8 (CH), 144.5 (d, ${}^{2}J_{CF} = 3.3$ Hz, CH), 134.8 (CH), 144.5 (d, ${}^{2}J_{CF} = 3.3$ Hz, CH), 134.8 (CH), 144.5 (d, ${}^{2}J_{CF} = 3.3$ Hz, CH), 134.8 (CH), 144.5 (d, ${}^{2}J_{CF} = 3.3$ Hz, CH), 134.8 (CH), 144.5 (d, ${}^{2}J_{CF} = 3.3$ Hz, CH), 134.8 (CH), 144.5 (d, ${}^{2}J_{CF} = 3.3$ Hz, CH), 134.8 (CH), 144.5 (d, ${}^{2}J_{CF} = 3.3$ Hz, CH), 134.8 (CH), 144.5 (d, ${}^{2}J_{CF} = 3.3$ Hz, CH), 134.8 (CH), 144.5 (d, ${}^{2}J_{CF} = 3.3$ Hz, CH), 134.8 (CH), 144.5 (d, ${}^{2}J_{CF} = 3.3$ Hz, CH), 134.8 (CH), 144.5 (d, ${}^{2}J_{CF} = 3.3$ Hz, CH), 144.5 (d, {}^{2}J_{CF} = 3.3 H 21.2 Hz, C), 162.3 (d, ${}^{1}J_{CF} = 246.9$ Hz, C), 166.4 (d, ${}^{3}J_{CF} = 2.1$ Hz, CO); m/z (ASAP) 241.0656 ((M-F)⁺. C₁₅H₁₀O₂F requires 241.0665, 100%), 213.0694 ((M-COF)⁺, 95%).

6-Benzyl-6-fluorotetrahydro-2H-pyran-2-one 4e

 $Ph \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix}$

dimethyl-1,3-dihydro- λ^3 -benzo[d][1,2]iodoxole **1** (0.33 g, 1.18 mmol) in the presence of 4 Å molecular sieves (0.11 g) in hexafluoroisopropanol (3 mL) at 40 °C for 1 h following the general procedure. The crude product was purified by column chromatography (dichloromethane) to give 6-benzyl-6-fluorotetrahydro-2H-pyran-2-one 4e as a colourless oil (0.109 g, 66%). The characterisation data was in agreement with the literature.^{3c} $\delta_{\rm H}$ (CDCl₃, 400 MHz) 1.63 – 1.82 (2H, m, H₃ and H₄), 1.96 – 2.11 (2H, m, H₃[,] and H₄[,]), 2.35 – 2.45 (1H, m, H₅), 2.69 (1H, dm, H₅), 3.20 (2H, d, ${}^{3}J_{\text{HF}} = 14.8$ Hz, H₁ and H₁), 7.26 – 7.34 (5H, m, ArH); $\delta_{\rm F}$ (CDCl₃, 376 MHz) -96.8 (s); $\delta_{\rm C}$ (CDCl₃, 100 MHz) 14.8 (d, ${}^{3}J_{\rm CF}$ = 3.2 Hz, CH₂), 28.8 (d, ${}^{2}J_{CF} = 26.9$ Hz, CH₂), 29.1 (CH₂), 45.2 (d, ${}^{2}J_{CF} = 26.7$ Hz, CH₂), 115.5 (d, ${}^{1}J_{CF} = 228.0$ Hz, C), 127.4 (CH), 128.5 (CH), 130.5 (CH), 133.5 (d, ${}^{3}J_{CF} = 5.5$ Hz, C), 168.8 (CO); m/z (ASAP) 189.0923 ((M-F)⁺. C₁₂H₁₃O₂ requires 189.0916, 5%), 161.0948 ((PhCH₂COCH₂CH₂CH₂)⁺, 100%).

5-Phenylhex-5-enoic acid 3e (0.15 g, 0.79 mmol) was reacted with 1-fluoro-3,3-

5-Oxo-6-phenylhexanoic acid

 $_{OH}$ 6-Benzyl-6-fluorotetrahydro-2*H*-pyran-2-one **4e** decomposed in CDCl₃ over several hours to give 5-oxo-6-phenylhexanoic acid. The Ph' characterisation data was in agreement with the literature.^{3c} mp 42 – 44 °C. $\delta_{\rm H}$ (CDCl₃, 400 MHz) 1.79 (2H, quintet, ${}^{3}J_{HH} = 7.4$ Hz, CH₂), 2.26 (2H, t, ${}^{3}J_{HH} = 7.4$ Hz, CH₂), 2.47 (2H, t, ${}^{3}J_{HH} = 7.4$ Hz, CH₂), 3.61 (2H, s, CH₂), 7.12 (2H, d, ${}^{3}J_{HH} = 7.3$ Hz, ArH), 7.19 (1H, t, ${}^{3}J_{HH} = 7.3$ Hz, ArH), 7.25 $(2H, t, {}^{3}J_{HH} = 7.3 \text{ Hz}, \text{ ArH}), 10.38 (1H, \text{ br s}, \text{COOH}); \delta_{C} (\text{CDCl}_{3}, 100 \text{ MHz}) 17.4 (CH_{2}), 31.8$ (CH₂), 39.4 (CH₂), 49.1 (CH₂), 126.1 (CH), 127.7 (CH), 128.3 (CH), 133.0 (C), 178.3 (CO), 206.6 (CO); m/z (ASAP) 189.0909 ((M-OH)⁺. C₁₂H₁₃O₂ requires 189.0916, 55%), 175.0752 (75%), 161.0941 ((M-CO₂H)⁺, 60%).

5-(Fluoromethyl)dihydrofuran-2(3H)-one 4f

F (0,11 g) 4-Pentenoic acid **3f** (0.15 g, 1.5 mmol) was reacted with 1-fluoro-3,3-dimethyl-1,3dihydro- λ^3 -benzo[d][1,2]iodoxole **1** (0.63 g, 2.25 mmol) in the presence of 4 Å molecular sieves (0.11 g) in hexafluoroisopropanol (3 mL) at 40 °C for 4 h following the general procedure. The crude product was purified by column chromatography (dichloromethane) to give 5-(fluoromethyl)dihydrofuran-2(3*H*)-one **4f** as a yellow oil (0.145 g, 82%). The product was visualised on the TLC plate using KMnO₄ stain. The characterisation data was in agreement with the literature.²³ δ_H (CDCl₃, 400 MHz) 2.10-2.25 (1H, m, CH_AH_B), 2.35-2.42 (1H, m, CH_AH_B), 2.50-2.69 (2H, m, CH₂), 4.38 (1H, ddd, ²J_{HF} = 47.9 Hz, ²J_{HH} = 10.4 Hz, ³J_{HH} = 2.4 Hz, CH_CH_DF), 4.57 (1H, ddd, ²J_{HF} = 47.9 Hz, ²J_{HH} = 10.4 Hz, ³J_{HH} = 3.6 Hz, CH_CH_DF), 4.60-4.68 (1H, m, OCH); δ_F (CDCl₃, 376 MHz) -232.5 (s); δ_C (CDCl₃, 100 MHz) 22.7 (d, ³J_{CF} = 5.0 Hz, CH₂), 28.1 (CH₂), 82.6 (d, ²J_{CF} = 20.2 Hz, CH), 84.5 (d, ¹J_{CF} = 174.3 Hz, CH₂F), 176.5 (CO); m/z (ASAP) 118.0121 (M⁺, C₅H₇FO₂ requires 118.0120).

5-Fluoro-4-phenyldihydrofuran-2(3H)-one 4g

(*E*)-4-Phenylbut-3-enoic acid **3g** (0.15 g, 0.92 mmol) was reacted with 1-fluoro-3,3-dimethyl-1,3dihydro- λ^3 -benzo[d][1,2]iodoxole **1** (0.38 g, 1.36 mmol) in the presence of 4 Å molecular sieves (0.11 g) in hexafluoroisopropanol (3 mL) at 40 °C for 4 h following the general procedure. The crude product was purified by column chromatography (dichloromethane) to give 5-fluoro-4phenyldihydrofuran-2(3*H*)-one **4g** (0.059 g, 36%) as a 1.6:1 mixture of *anti-:syn*-diastereomers.

 $F_{\text{Ph}} = \frac{(4R,5R)}{(4S,5S)-5} + \frac{(4R,5R)}{(4S,4R)} + \frac{(4$

Figure 6.10 ((4*S*,5*R*)/(4*R*,5*S*)-5-Fluoro-4-phenyldihydrofuran-2(3*H*)-one **4g** was obtained as a yellow oil. $\delta_{\rm H}$ (CDCl₃, 400 MHz) 2.87 (1H, dd, ${}^{2}J_{\rm HH} = 17.4$ Hz, ${}^{3}J_{\rm HH} = 8.6$ Hz, COC*H*_AH_B), 3.06 (1H, dd, ${}^{2}J_{\rm HH} = 17.4$ Hz, ${}^{3}J_{\rm HH} = 12.2$ Hz, COCH_AH_B), 3.79 (1H, m, CHPh), 6.10 (1H, dd, ${}^{2}J_{\rm HF} = 61.3$ Hz, ${}^{3}J_{\rm HH} = 3.9$ Hz, CHF), 7.10-7.49 (5H, m, ArH); ${}^{1}{\rm H}{}^{19}{\rm F}{}$

(CDCl₃, 400 MHz) 2.89 (1H, dd, ${}^{2}J_{HH} = 17.4$ Hz, ${}^{3}J_{HH} = 8.6$ Hz, COC*H*_AH_B), 3.06 (1H, dd, ${}^{2}J_{HH} = 17.4$ Hz, ${}^{3}J_{HH} = 12.2$ Hz, COCH_AH_B), 3.79 (1H, ddd, ${}^{3}J_{HH} = 12.3$ Hz, ${}^{3}J_{HH} = 8.7$ Hz, ${}^{3}J_{HH} = 3.9$ Hz, CHPh), 6.18 (1H, d, ${}^{3}J_{HH} = 4.0$ Hz, CHF), 7.10-7.49 (5H, m, ArH); δ_{F} (CDCl₃, 376 MHz) -134.2 (s); δ_{C} (CDCl₃, 125 MHz) 30.5 (CH₂), 46.3 (d, ${}^{2}J_{CF} = 23.3$ Hz, CH), 109.1 (d, ${}^{1}J_{CF} = 233.8$ Hz, CH), 126.6 (CH), 128.4 (CH), 129.5 (CH), 131.8 (C), 173.9 (CO); m/z (ASAP) 161.0610 ((M-F)⁺, C₁₀H₉O₂ requires 161.0603).

5-Fluoro-5-methyl-4-phenyldihydrofuran-2(3H)-one 4h

(*E*)-4-Phenylpent-3-enoic acid **3h** (0.15 g, 0.85 mmol) was reacted with 1-fluoro-3,3-dimethyl-1,3dihydro- λ^3 -benzo[d][1,2]iodoxole **1** (0.36 g, 1.29 mmol) in the presence of 4 Å molecular sieves (0.11 g) in hexafluoroisopropanol (3 mL) at 40 °C for 1 h following the general procedure. The crude product was purified by column chromatography (dichloromethane) to give 5-fluoro-5methyl-4-phenyldihydrofuran-2(3*H*)-one **4h** (0.142 g, 86%) as a 2.2:1 mixture of *anti-:syn*diastereomers.

 $\begin{array}{l} (4R,5R)/(4S,5S)-5\text{-Fluoro-5-methyl-4-phenyldihydrofuran-2(3H)-one} \quad \textbf{4h} \quad \text{was} \\ \text{obtained as a yellow oil. } \delta_{\mathrm{H}} (\mathrm{CDCl}_{3}, 400 \text{ MHz}) 1.37 (3\mathrm{H}, \mathrm{d}, {}^{3}J_{\mathrm{HF}} = 18.9 \text{ Hz}, \mathrm{CH}_{3}), \\ 2.72 (1\mathrm{H}, \mathrm{dd}, {}^{2}J_{\mathrm{HH}} = 18.1 \text{ Hz}, {}^{3}J_{\mathrm{HH}} = 1.6 \text{ Hz}, \mathrm{COCH}_{\mathrm{A}}\mathrm{H}_{\mathrm{B}}), 3.31 (1\mathrm{H}, \mathrm{dd}, {}^{2}J_{\mathrm{HH}} = 18.0 \text{ Hz}, \\ 3J_{\mathrm{HH}} = 8.8 \text{ Hz}, \mathrm{COCH}_{\mathrm{A}}H_{\mathrm{B}}), 3.72 (1\mathrm{H}, \mathrm{ddd}, {}^{3}J_{\mathrm{HF}} = 10.3 \text{ Hz}, {}^{3}J_{\mathrm{HH}} = 8.7 \text{ Hz}, {}^{3}J_{\mathrm{HH}} = 1.6 \text{ Hz}, \\ \mathrm{CHPh}), 7.14 (2\mathrm{H}, \mathrm{dd}, {}^{3}J_{\mathrm{HH}} = 7.6 \text{ Hz}, {}^{4}J_{\mathrm{HH}} = 1.7 \text{ Hz}, \mathrm{ArH}), 7.33-7.35 (3\mathrm{H}, \mathrm{m}, \mathrm{ArH}); {}^{1}\mathrm{H}\{{}^{19}\mathrm{F}\} \text{ NMR} \\ (\mathrm{CDCl}_{3}, 400 \text{ MHz}) 1.29 (3\mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}), 2.64 (1\mathrm{H}, \mathrm{dd}, {}^{2}J_{\mathrm{HH}} = 18.0 \text{ Hz}, {}^{3}J_{\mathrm{HH}} = 1.6 \text{ Hz}, \mathrm{COCH}_{\mathrm{A}}\mathrm{H}_{\mathrm{B}}), \\ 3.24 (1\mathrm{H}, \mathrm{dd}, {}^{2}J_{\mathrm{HH}} = 18.0 \text{ Hz}, {}^{3}J_{\mathrm{HH}} = 8.8 \text{ Hz}, \mathrm{COCH}_{\mathrm{A}}\mathrm{H}_{\mathrm{B}}), 3.66 (1\mathrm{H}, \mathrm{dd}, {}^{3}J_{\mathrm{HH}} = 8.7 \text{ Hz}, {}^{3}J_{\mathrm{HH}} = 1.5 \text{ Hz}, \mathrm{CHPh}), \\ 7.14 (2\mathrm{H}, \mathrm{dd}, {}^{3}J_{\mathrm{HH}} = 7.6 \text{ Hz}, {}^{4}J_{\mathrm{HH}} = 1.7 \text{ Hz}, \mathrm{ArH}), \\ 7.33-7.35 (3\mathrm{H}, \mathrm{m}, \mathrm{ArH}); \\ \delta_{\mathrm{F}} (\mathrm{CDCl}_{3}, 376 \text{ MHz}) - 86.3 (\mathrm{s}); \\ \delta_{\mathrm{C}} (\mathrm{CDCl}_{3}, 125 \text{ MHz}) 20.9 (\mathrm{d}, {}^{2}J_{\mathrm{CF}} = 35.5 \text{ Hz}, \mathrm{CH}_{3}), \\ 35.0 (\mathrm{CH}_{2}), 50.1 (\mathrm{d}, {}^{2}J_{\mathrm{CF}} = 28.7 \text{ Hz}, \mathrm{CH}), \\ 120.9 (\mathrm{d}, {}^{1}J_{\mathrm{CF}} = 228.6 \text{ Hz}, \mathrm{C}), \\ 127.3 (\mathrm{CH}), 128.4 (\mathrm{CH}), 129.4 (\mathrm{CH}), 137.8 (\mathrm{d}, {}^{3}J_{\mathrm{CF}} = 8.0 \text{ Hz}, \mathrm{C}), \\ 175.1 (\mathrm{CO}); \\ \mathrm{m/z} (\mathrm{ASAP}) 195.0814 (\mathrm{MH}^{+}, \mathrm{C}_{11}\mathrm{H}_{12}\mathrm{FO}_{2} \text{ requires 195.0821}). \\ \end{array}$

(4S,5R)/(4R,5S)-5-Fluoro-5-methyl-4-phenyldihydrofuran-2(3H)-one**4h** $was obtained as a white solid. mp 53 – 55 °C. <math>\delta_{\rm H}$ (CDCl₃, 400 MHz) 1.69 (3H, d, ³J_{HF} = 17.8 Hz, CH₃), 2.87 (1H, dd, ²J_{HH} = 17.5 Hz, ³J_{HH} = 8.5 Hz, COCH_AH_B), 3.13 (1H, dd, ²J_{HH} = 17.4 Hz, ³J_{HH} = 12.4 Hz, COCH_AH_B), 3.55 (1H, ddd, ³J_{HF} = 20.7 Hz, ³J_{HH} = 12.4 Hz, ³J_{HH} = 8.3 Hz, CHPh), 7.32 – 7.42 (5H, m, ArH); ¹H{¹⁹F} (CDCl₃, 400 MHz) 1.69 (3H, s, CH₃), 2.87 (1H, dd, ²J_{HH} = 17.5 Hz, ³J_{HH} = 8.3 Hz, COCH_AH_B), 3.14 (1H, dd, ²J_{HH} = 17.5 Hz, ³J_{HH} = 12.4 Hz, COCH_AH_B), 3.56 (1H, dd, ³J_{HH} = 12.4 Hz, ³J_{HH} = 8.4 Hz, CHPh), 7.32 – 7.42 (5H, m, ArH); $\delta_{\rm F}$ (CDCl₃, 376 MHz) -107.8 (s); $\delta_{\rm C}$ (CDCl₃, 125 MHz) 21.3 (d, ²J_{CF} = 28.8 Hz, CH₃), 33.5 (CH₂),

50.7 (d, ${}^{2}J_{CF} = 23.8$ Hz, CH), 117.9 (d, ${}^{1}J_{CF} = 231.3$ Hz, C), 128.5 (CH), 128.8 (CH), 128.9 (CH), 133.0 (C), 173.5 (CO); m/z (ASAP) 195.0814 (MH⁺, C₁₁H₁₂FO₂ requires 195.0821).

Procedure for the intramolecular fluorocyclisations with AgBF₄ (Table 2, Entries 6-8)

A small Schlenk flask was charged with powdered 4 Å molecular sieves (0.11 g) and AgBF₄ (0.17 g, 0.87 mmol) in a glove box. 1-Fluoro-3,3-dimethyl-1,3-dihydro- λ^3 -benzo[d][1,2]iodoxole **1** (0.38 g, 1.36 mmol), substrate (0.9 mmol) and dry dichloromethane (0.7 mL) were added to the flask. The flask was then sealed and the contents were stirred at 40 °C for either one hour (entries 6 and 8) or four hours (entry 7). After cooling the reaction mixture to room temperature, it was concentrated on a rotary evaporator to give the crude product which was analysed by ¹H and ¹⁹F NMR spectroscopy. The crude product was purified by column chromatography on silica gel.

5-(Fluoromethyl)dihydrofuran-2(3H)-one 4f

4-Pentenoic acid (0.15 g, 1.5 mmol) was reacted with 1-fluoro-3,3-dimethyl-1,3-dihydro- λ^3 benzo[d][1,2]iodoxole **1** (0.63 g, 2.25 mmol) and AgBF₄ (0.29 g, 1.5 mmol) in the presence of 4 Å molecular sieves (0.11 g) in dry dichloromethane (0.7 mL) at 40 °C for 1 h following the general procedure. The crude product was purified by column chromatography (dichloromethane) to give 5-(fluoromethyl)dihydrofuran-2(3*H*)-one **4f** as a yellow oil (0.071 g, 40%).

5-Fluoro-4-phenyldihydrofuran-2(3H)-one 4g

(*E*)-4-Phenylbut-3-enoic acid **3g** (0.15 g, 0.92 mmol) was reacted with 1-fluoro-3,3-dimethyl-1,3dihydro- λ^3 -benzo[d][1,2]iodoxole **1** (0.38 g, 1.36 mmol) and AgBF₄ (0.17 g, 0.87 mmol) in the presence of 4 Å molecular sieves (0.11 g) in dry dichloromethane (0.7 mL) at 40 °C for 4 h following the general procedure. The crude product was purified by column chromatography (dichloromethane) to give 5-fluoro-4-phenyldihydrofuran-2(3*H*)-one **4g** (0.072 g, 43%) as a 1.8:1 mixture of *anti-:syn*-diastereomers.

Ph 4 5-Phenylfuran-2(5*H*)-one was obtained (0.011 g, 7%) as a mixture with the iodoalcohol. The characterisation data was in agreement with the literature.²⁴ $\delta_{\rm H}$ (CDCl₃, 400 MHz) 6.01 (1H, dd, ³*J*_{HH} = 1.9 Hz, ⁴*J*_{HH} = 1.6 Hz, CH), 6.24 (1H, dd, ³*J*_{HH} = 5.6 Hz, ⁴*J*_{HH} = 2.1 Hz, OCH), 7.27-7.30 (2H, m, ArH), 7.41-7.44 (3H, m, ArH), 7.54 (1H, dd, ³*J*_{HH} = 5.6 Hz, ³*J*_{HH} = 1.6 Hz, CH); $\delta_{\rm C}$ (CDCl₃, 100 MHz) 84.4 (CH), 121.0 (CH), 126.5 (CH), 128.9 (CH), 129.5 (CH), 134.2 (C), 155.8 (CH), 173.2 (C=O); m/z (ASAP) 160.0609 (M⁺, C₁₀H₈O₂ requires 160.0602).

5-Fluoro-5-methyl-4-phenyldihydrofuran-2(3H)-one 4h

(*E*)-4-Phenylpent-3-enoic acid **3h** (0.15 g, 0.85 mmol) was reacted with 1-fluoro-3,3-dimethyl-1,3dihydro- λ^3 -benzo[d][1,2]iodoxole **1** (0.36 g, 1.29 mmol) and AgBF₄ (0.17 g, 0.87 mmol) in the presence of 4 Å molecular sieves (0.11 g) in dry dichloromethane (0.7 mL) at 40 °C for 1 h following the general procedure. The crude mixture was purified by column chromatography (dichloromethane) to give 5-fluoro-5-methyl-4-phenyldihydrofuran-2(3*H*)-one **4h** (0.114 g, 69 %) as a 1:2 mixture of *anti-:syn*-diastereomers.

4-Fluoro-5-methyl-5-phenyldihydrofuran-2-one 5

Selectfluor (0.46 g, 1.29 mmol), (*E*)-4-phenylpent-3-enoic acid **3h** (0.15 g, 0.85 mmol) and dry acetonitrile (10 mL) were charged to a small Schlenk flask. The reaction mixture was stirred at room temperature for 20 hours. After removing the solvent under reduced pressure, the residue was dissolved in diethyl ether (15 mL) and a solution of 10% NaHCO₃ (15 mL) was added. The aqueous layer was extracted with diethyl ether (3 x 15 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated under reduced pressure yielding the crude product. It was purified by column chromatography using dichloromethane as eluent to give (4R,5S)/(4S,5R)-4-fluoro-5-methyl-5-phenyldihydrofuran-2-one (0.069 g, 42%) and (4S,5S)/(4R,5R)-4-fluoro-5-methyl-5-phenyldihydrofuran-2-one (0.045 g, 27%). The characterisation data was in agreement with the literature.²⁵

 $\begin{array}{c} \begin{array}{c} \text{Ph}\\ \text{Me} \\ \end{array} \\ \begin{array}{c} \text{Me} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Me} \end{array} \\ \end{array} \\ \begin{array}{c} \text{Me} \\ \end{array} \\ \begin{array}{c} \text{Me} \end{array} \\ \end{array} \\ \begin{array}{c} \text{Me} \\ \end{array} \\ \begin{array}{c} \text{Me} \end{array} \\ \begin{array}{c} \text{Me} \end{array} \\ \end{array} \\ \begin{array}{c} \text{Me} \end{array} \\ \end{array} \\ \begin{array}{c} \text{Me} \end{array} \\ \begin{array}{c} \text{Me} \end{array} \\ \end{array} \\ \begin{array}{c} \text{Me}$

Ph Me (4S,5S)/(4R,5R)-4-Fluoro-5-methyl-5-phenyldihydrofuran-2-one **5** was obtained as a colourless oil (0.045 g, 27%). $\delta_{\rm H}$ (CDCl₃, 400 MHz) 1.62 (3H, s, CH₃), 2.82 (1H, dd, ${}^{3}J_{\rm HF} = 22.5$ Hz, ${}^{2}J_{\rm HH} = 18.6$ Hz, $CH_{\rm A}H_{\rm B}$), 3.11 (1H, ddd, ${}^{3}J_{\rm HF} = 22.3$ Hz, ${}^{2}J_{\rm HH} =$ 18.6 Hz, ${}^{3}J_{\rm HH} = 5.0$ Hz, $CH_{\rm A}H_{\rm B}$), 5.22 (1H, dd, ${}^{2}J_{\rm HF} = 52.8$ Hz, ${}^{3}J_{\rm HH} = 5.0$ Hz, CHF), 7.30-7.34 (5H, m, ArH); $\delta_{\rm F}$ (CDCl₃, 376 MHz) -176.0 (s); $\delta_{\rm C}$ (CDCl₃, 125 MHz) 26.4 (d, ${}^{3}J_{\rm CF} = 3.8$ Hz, CH₃), 36.3 (d, ${}^{2}J_{\rm CF} = 26.3$ Hz, CH₂), 89.6 (d, ${}^{2}J_{\rm CF} = 21.1$ Hz, C), 92.9 (d, ${}^{1}J_{\rm CF} = 187.5$ Hz, CH), 124.3 (CH), 125.1 (CH), 128.4 (CH), 137.4 (d, ${}^{3}J_{CF} = 4.4$ Hz, C), 172.7 (CO); m/z (ASAP) 175.0751 ((M-F)⁺, C₁₁H₁₁O₂ requires 175.0759).

 $\begin{array}{l} \begin{array}{l} \mbox{Me} \\ \mbox{Ph} & \mbox{$\stackrel{\circ}{\frown}$} \end{array} \begin{array}{l} \mbox{5-Methyl-5-phenylfuran-2-(5H)-one} \ (0.008 \ g, 5\%) \ was isolated together with anti-5 \\ \mbox{as a white solid. The characterisation data was in agreement with the literature.} \mbox{26} \\ \mbox{mp } 31 - 35 \ ^{\circ}{\rm C} \ ({\rm lit.,}^{27} \ 34 - 36 \ ^{\circ}{\rm C}). \ \delta_{\rm H} \ ({\rm CDCl}_3, \ 400 \ {\rm MHz}) \ 1.86 \ (3{\rm H}, \ {\rm s}, \ {\rm CH}_3), \ 5.98 \ (1{\rm H}, \ {\rm d}, \ {}^{3}J_{\rm HH} = 5.6 \\ \mbox{Hz, CH}, \ 7.30 - 7.43 \ (5{\rm H}, \ {\rm m}, \ {\rm ArH}), \ 7.59 \ (1{\rm H}, \ {\rm d}, \ {}^{3}J_{\rm HH} = 5.6 \ {\rm Hz, CH}); \ \delta_{\rm C} \ ({\rm CDCl}_3, \ 125 \ {\rm MHz}) \ 29.7 \\ \ ({\rm CH}_3), \ 88.7 \ ({\rm C}), \ 119.4 \ ({\rm CH}), \ 124.8 \ ({\rm CH}), \ 128.4 \ ({\rm CH}), \ 128.8 \ ({\rm CH}), \ 139.1 \ ({\rm C}), \ 160.4 \ ({\rm CH}), \ 172.7 \\ \ ({\rm CO}). \ {\rm m/z} \ ({\rm ASAP}) \ 175.0715 \ ({\rm MH}^+, \ {\rm C}_{11}{\rm H}_{11}{\rm O}_2 \ {\rm requires} \ 175.0722). \end{array}$

4-Oxo-3-phenylpentanoic acid 6

A small Schlenk flask was charged with AgBF₄ (0.17 g, 0.87 mmol) in a glove .OH box. 1-Fluoro-3,3-dimethyl-1,3-dihydro- λ^3 -benzo[d][1,2]iodoxole 1 (0.36 g, 1.29 ∬ 0 mmol), (E)-4-phenylpent-3-enoic acid **3h** (0.15 g, 0.85 mmol) and dry dichloromethane (0.7 mL) were added to the flask. The flask was then sealed and the contents were stirred at 40 °C for one hour. After cooling the reaction mixture to room temperature, it was concentrated on a rotary evaporator to give the crude product which was analysed by ¹H and ¹⁹F NMR spectroscopy. The crude product was purified by column chromatography (dichloromethane) to give 4-oxo-3-phenylpentanoic acid 6 as a yellow solid (0.10 g, 61%). The characterisation data was in agreement with the literature.²⁷ mp 98 – 100 °C (lit.,²⁷ 98 -99 °C). $\delta_{\rm H}$ (CDCl₃, 400 MHz) 2.10 (3H, s, CH₃), 2.59 (1H, dd, ²J_{HH} = 17.4 Hz, ³J_{HH} = 4.9 Hz, $CH_{A}H_{B}$), 3.28 (1H, dd, ${}^{2}J_{HH} = 17.4$ Hz, ${}^{3}J_{HH} = 9.8$ Hz, $CH_{A}H_{B}$), 4.16 (1H, dd, ${}^{3}J_{HH} = 8.1$ Hz, ${}^{3}J_{HH} = 17.4$ Hz, ${}^{3}J_{H$ 4.8 Hz, CHPh), 7.22 (2H, dd, ${}^{3}J_{HH} = 6.9$ Hz, ${}^{4}J_{HH} = 1.6$ Hz, ArH), 7.26-7.36 (3H, m, ArH); δ_{C} (CDCl₃, 125 MHz): 28.8 (CH₃), 36.6 (CH₂), 54.6 (CH), 127.9 (CH), 128.2 (CH), 129.3 (CH), 127.1 (C), 177.4 (CO), 206.6 (CO); m/z (ASAP) 175.0759 ((M-OH)⁺, C₁₁H₁₁O₂ requires 175.0759).

Table S3 Comparison of ¹H NMR data for (a) fluoroiodane 1, (b) HFIP and (c) a 1:1 mixture of1:HFIP

	(a) $O \xrightarrow{9}$ $7 \xrightarrow{6}$ $1 \xrightarrow{2}$ $8 \xrightarrow{5}$ 4	(b) OH F ₃ C 2' CF ₃	(c) $O = 1 = F - H - O$ 7 = 1 = 1 - H - O 8 = 5 = 4 1 = 1 - H - O 1 = 1 - H - O	
Assignment	(a) Fluoroiodane	(b) HFIP	(c) Adduct	Δδ
2	7.78 dd (8.2, 0.9 Hz)	-	7.72 d (8.1 Hz)	-0.06
3	7.55 td (7.7, 1.5 Hz)	-	7.57 td (7.7, 1.2 Hz)	0.02
4	7.46 td (7.4, 1.1 Hz)	-	7.49 td (7.5, 1.0 Hz)	0.03
5	7.17 dd (7.6, 1.2 Hz)	-	7.18 dd (7.6, 1.2 Hz)	0.01
8	1.52 s	-	1.55 s	0.03
1'	-	4.41 hept (6.0 Hz)	4.37 oct (6.0 Hz)	-0.04
OH	-	2.80 br s	4.92 d (7.5 Hz)	2.12

Table S4 Comparison of ¹⁹F NMR data for (a) fluoroiodane 1, (b) HFIP and (c) a 1:1 mixture of1:HFIP

(a) O F 8 5 4 7 6 1 2 3 4 3		(b) OH $F_{3C} \xrightarrow{C} CF_{3}$ (c) O $H \xrightarrow{9} F_{-}H_{-}O$ (c) O $H \xrightarrow{9} F_{-$		
Assignment	(a) Fluoroiodane	(b) HFIP	(c) Adduct	Δδ
9	-142.9 s	-	-142.7 br s	0.2
2'	-	-75.7 d (6.5 Hz)	-75.6 d (6.5 Hz)	0.1

(a 8	$ \begin{array}{c} 0 \\ 0 \\ 7 \\ 8 \\ 5 \\ 4 \end{array} \right) \begin{array}{c} 9 \\ - F $	(b) OH (c) $F_3C - CF_3 = E_2' = 2'$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 9 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	
Assignment	(a) Fluoroiodane	(b) HFIP	(c) Adduct	Δδ
1	115.9	-	115.7	-0.2
2	128.6	-	128.4	-0.2
3	130.2	-	130.5	0.3
4	130.5	-	130.8	0.3
5	125.9	-	126.1	0.2
6	148.5	-	148.3	-0.2
7	85.2	-	86.1	0.9
8	29.0	-	28.8	-0.2
1'	-	69.6 hept (33.7 Hz)	69.4 hept (33.5 Hz)	-0.2
2'	-	121.3 q (283.5 Hz)	121.7 q (283.7)	0.2

Table S5 Comparison of ¹³C NMR data for (a) fluoroiodane 1, (b) HFIP and (c) a 1:1 mixture of 1:HFIP

The most significant change found in the ¹H NMR spectra is the downfield shift of the OH signal in HFIP from 2.80 to 4.92 ppm in the 1:1 adduct and the OH changed from a broad singlet in HFIP to a doublet in the 1:1 adduct (${}^{3}J_{HH} = 7.8$ Hz). Furthermore, in the ${}^{13}C$ NMR spectra there was a downfield shift for the carbon bonded to the oxygen in (a) fluoroiodane from 85.2 to 86.1 ppm in (c) the 1:1 adduct presumably resulting from a change in the O-I-F hypervalent bonding orbital.

Structure solution and refinement

Table S6 summarises the crystallographic data for (4S,5R)/(4R,5S)-5-fluoro-5-methyl-4phenyldihydrofuran-2-one **4h**, (4S,5R)/(4R,5S)-4-fluoro-5-methyl-5-phenyldihydrofuran-2-one **5** and 4-oxo-3-phenylpentanoic acid **6**. The data were collected on a Bruker APEX 2000 CCD diffractometer using graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). The data were corrected for Lorentz and polarization effects, and empirical absorption corrections were applied. The structures were solved by direct methods and refined by full-matrix least squares cycles on F^2 for all data, using SHELXTL version $6.10.^{28}$ All hydrogen atoms were included in calculated positions (C-H = 0.95-1.00 Å) riding on the bonded atom with isotropic displacement parameters set to 1.5 Ueq(C) for methyl H atoms and 1.2 Ueq(C) for all other H atoms. All non hydrogen atoms were refined with anisotropic displacement parameters. Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with The Cambridge Crystallographic Data Centre and allocated the deposition numbers CCDC: 1859674-1859676. Copies of the data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

References

- 16 S. E. Denmark and M. G. Edwards, J. Org. Chem., 2006, 71, 7293.
- 17 J. M. Garnier, S. Robin and G. Rousseau, Eur. J. Org. Chem., 2007, 3281.
- 18 T. Kitamura, S. Kuriki, M. H. Morshed, Y. Hori, Org. Lett., 2011, 13, 2392.
- 19 M. Baumann, I. R. Baxendale, L. J. Martin, S. V. Ley, *Tetrahedron*, 2009, **65**, 6611.
- 20 X. Han, J. Kwiakowski, F. Xue, K.-W. Huang, Y. Lu, Angew. Chem. Int. Ed., 2009, 48, 7604.
- 21 D. S. Brown, B. A. Marples, P. Smith, L. Walton, *Tetrahedron*, 1995, **51**, 3587.
- 22 S. Suzuki, T. Kamo, K. Fukushi, T. Hiramatsu, E. Tokunaga, T. Dohi, T Kita, N. Shibata, *Chem. Sci.*, 2014, **5**, 2754.
- 23 M. Sawaguchi, S. Hara, T. Fukuhara, Y. Norihiko, J. Fluorine Chem., 2000, 104, 277.
- 24 S. Phae-nok, C. Kuhakarn, M. Pohmakotr, V. Reutrakul, D. Soorukram, *Org. Biomol. Chem.*, 2015, **13**, 11087.
- 25 S. Phae-nok, D. Soorukram, C. Kuhakarn, V. Reutrakul, M. Pohmakotr, *Eur. J. Org. Chem.* 2015, 2879.
- A. J. Marco, M. Carda, S. Rodriguez, E. Castillo, M. Kneeteman, *Tetrahedron*, 2003, 59, 4085.
- 27 D. J. Fairfax, D. J. Austin, S. L. Xu, A. Padwa, J. Chem. Soc., Perkin Trans. 1, 1992, 2837.
- 28 G. M. Sheldrick, SHELXTL Version 6.10, Bruker AXS, Inc., Maddison, Wisconsin, USA, 2000.

	- /h	5	6
	411	3	0
Formula	$C_{11}H_{11}FO_2$	$C_{11}H_{11}FO_2$	$C_{11}H_{12}O_3$
Formula weight	194.20	194.20	192.21
Crystal system	Monoclinic	Orthorhombic	Orthorhombic
Space group	P2(1)/c	P2(1)2(1)2(1)	Pna2(1)
Unit cell dimensions			
a (Å)	5.560(5)	5.605(2)	10.1019(17)
$b(\mathbf{A})$	7.747(7)	7.129(3)	9.4796(16)
c (Å)	22.119(19)	24.013(9)	9.9375(17)
α (°)	90	90	90
eta (°)	91.199(16)	90	90
$\gamma(^{\circ})$	90	90	90
$U(Å^3)$	952.4(14)	959.4(6)	951.6(3)
Temperature (K)	150(2)	150(2)	150(2)
Ζ	4	4	4
$D_c ({ m Mg}{ m m}^{-3})$	1.354	1.344	1.342
μ (Mo-K α) (mm ⁻¹)	0.105	0.104	0.097
F (000)	408	408	408
Dimensions (mm ³)	0.31 x 0.15 x 0.13	0.46 x 0.27 x 0.08	0.46 x 0.22 x 0.19
Data collection range (°)	1.84 - 26.00	1.70 - 25.98	2.95 - 26.00
Index ranges	$-6 \le h \le 6$	$-6 \le h \le 6$	$-12 \le h \le 12$
	$-9 \le k \le 9$	$-8 \le k \le 8$	$-11 \le k \le 11$
	$-27 \le l \le 26$	$-29 \le l \le 29$	$-12 \le 1 \le 12$
Reflections	6281	7366	6947
Unique reflections (<i>R</i> _{int})	1872 (0.1163)	1877 (0.0587)	994 (0.0715)
$\theta_{\rm max}$ (% complete)	26.00 (99.9)	25.98 (100.0)	26.00 (99.9)
Absorption correction	Empirical	Empirical	Empirical
Max/min transmission	0.970 / 0.060	0.983 / 0.564	0.981 / 0.440
Data/restraints/parameters	1872 / 0 / 128	1877 / 0 / 128	994 / 1 / 128
Goodness of fit on F^2	0.934	1.086	1.035
Final <i>R</i> indices $[I > 2\sigma(I)]$			
R_1	0.0756	0.0478	0.0378
wR_2	0.1612	0.1044	0.0851
R indices (all data)			
R_1	0.1177	0.0563	0.0415
wR_2	0.1789	0.1075	0.0865
Largest diff. peak, hole (eÅ ⁻³)	0.334, -0.324	0.179, -0.142	0.204, -0.175

Table S6Crystallographic data for 5-fluoro-5-methyl-4-phenyldihydrofuran-2-one 4h, 4-fluoro-5-
methyl-5-phenyldihydrofuran-2-one 5 and 4-oxo-3-phenylpentanoic acid 6

¹H NMR Spectrum

S34

¹H NMR Spectrum

S41

S44

