Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Methyl 5-MeO-anthranilate, a minimalist fluorogenic probe for sensing cellular aldehydic load

Mojmír Suchý,^{a,c} Caitlin Lazurko,^{a,c} Alexia Kirby,^{b,c} Trina Dang,^a George Liu^a and Adam J. Shuhendler*^{a,c}

(ELECTRONIC SUPPLEMENTARY INFORMATION)

^aDepartment of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada

^bDepartment of Biology, University of Ottawa, Ottawa, Ontario, Canada

^cUniversity of Ottawa Heart Institute, Ottawa, Ontario, Canada

CONTENT:

Reactions of 2a and 2b with MDA, full spectral view	.3
¹ H and ¹³ C NMR spectra of hydrazones 3f-3i	.5
Fluorescence spectra of pyrazoles 4a and 4b 5	50
Spectral properties and comparative kinetics of hydrazone versus indazole formation5	51

Figure ESI1: Detailed NMR analysis of the reactions between 5-MeO-*N*-aminoanthranilic acid (**2a**) and MDA, full spectral range view

Figure ESI2: Detailed NMR analysis of the reactions between methyl 5-MeO-*N*-aminoanthranilate (**2b**) and MDA, full spectral range view

Figure ESI3: ¹H NMR spectrum of hydrazone **3f** derived from pentanal, full view

Figure ESI4: ¹H NMR spectrum of hydrazone **3f** derived from pentanal, expanded view

-6.603 -6.590 -6.577

Figure ESI5: ¹H NMR spectrum of hydrazone **3f** derived from pentanal, expanded view

Figure ESI6: ¹H NMR spectrum of hydrazone 3f derived from pentanal, expanded view

Figure ESI7: ¹³C NMR spectrum of hydrazone 3f derived from pentanal, full view

Figure ESI8: ¹³C NMR spectrum of hydrazone 3f derived from pentanal, expanded view

Figure ESI9: ¹³C NMR spectrum of hydrazone **3f** derived from pentanal, expanded view

Figure ESI10: ¹³C NMR spectrum of hydrazone 3f derived from pentanal, expanded view

Figure ESI11: ¹³C NMR spectrum of hydrazone **3f** derived from pentanal, expanded view

Figure ESI12: ¹³C NMR spectrum of hydrazone **3f** derived from pentanal, expanded view

Figure ESI13: ¹³C NMR spectrum of hydrazone **3f** derived from pentanal, expanded view

Figure ESI14: ¹³C NMR spectrum of hydrazone **3f** derived from pentanal, expanded view

Figure ESI15: ¹H NMR spectrum of hydrazone **3g** derived from hexanal, full view

on evo	01014 60 41141046	L 4 L
e e o	00400000000000000000000000000000000000	0.00 -
4 4 0.0	888 888 888 888 888 888 888 888 888 88	0 0 0
		000
		\ /

Figure ESI16: ¹H NMR spectrum of hydrazone 3g derived from hexanal, expanded view

Figure ESI17: ¹H NMR spectrum of hydrazone **3g** derived from hexanal, expanded view

Figure ESI18: ¹H NMR spectrum of hydrazone 3g derived from hexanal, expanded view

Figure ESI19: ¹³C NMR spectrum of hydrazone 3g derived from hexanal, full view

Figure ESI20: ¹³C NMR spectrum of hydrazone 3g derived from hexanal, expanded view

Figure ESI21: ¹³C NMR spectrum of hydrazone **3g** derived from hexanal, expanded view

Figure ESI22: ¹³C NMR spectrum of hydrazone 3g derived from hexanal, expanded view

Figure ESI23: ¹³C NMR spectrum of hydrazone 3g derived from hexanal, expanded view

Figure ESI24: ¹³C NMR spectrum of hydrazone **3g** derived from hexanal, expanded view

Figure ESI25: ¹³C NMR spectrum of hydrazone **3g** derived from hexanal, expanded view

Figure ESI26: ¹³C NMR spectrum of hydrazone **3g** derived from hexanal, expanded view

Figure ESI27: ¹H NMR spectrum of hydrazone **3h** derived from octanal, full view

5	6	0 0	80118 238	0 1 0 4 1	1	00	5
(1)	-	0 0	OLD GH LL OOLO	0000	0	00	5
ц)	ц)	4 4	0000000000		0	5	ц)
-	-				0	6	Q
				11/1/	1		1

Figure ESI28: ¹H NMR spectrum of hydrazone **3h** derived from octanal, expanded view

Figure ESI29: ¹H NMR spectrum of hydrazone **3h** derived from octanal, expanded view

Figure ESI30: ¹H NMR spectrum of hydrazone **3h** derived from octanal, expanded view

Figure ESI31: ¹³C NMR spectrum of hydrazone 3h derived from octanal, full view

Figure ESI32: ¹³C NMR spectrum of hydrazone **3h** derived from octanal, expanded view

Figure ESI33: ¹³C NMR spectrum of hydrazone 3h derived from octanal, expanded view

Figure ESI34: ¹³C NMR spectrum of hydrazone **3h** derived from octanal, expanded view

Figure ESI35: ¹³C NMR spectrum of hydrazone **3h** derived from octanal, expanded view

Figure ESI36: ¹³C NMR spectrum of hydrazone **3h** derived from octanal, expanded view

Figure ESI37: ¹³C NMR spectrum of hydrazone **3h** derived from octanal, expanded view

Figure ESI38: ¹H NMR spectrum of hydrazone 3i derived from nonanal, full view

10	00	0	-		0.0.01
e	-	8	ŝ	NW400100 00100400	0.00 -
5	5	4	4		000
5	-	-	5		000
1			l		\[/

Figure ESI39: ¹H NMR spectrum of hydrazone **3i** derived from nonanal, expanded view

Figure ESI40: ¹H NMR spectrum of hydrazone **3i** derived from nonanal, expanded view

Figure ESI41: ¹H NMR spectrum of hydrazone **3i** derived from nonanal, expanded view

Figure ESI42: ¹³C NMR spectrum of hydrazone **3i** derived from nonanal, full view

Figure ESI43: ¹³C NMR spectrum of hydrazone 3i derived from nonanal, expanded view

Figure ESI44: ¹³C NMR spectrum of hydrazone **3i** derived from nonanal, expanded view

Figure ESI45: ¹³C NMR spectrum of hydrazone **3i** derived from nonanal, expanded view

Figure ESI46: ¹³C NMR spectrum of hydrazone 3i derived from nonanal, expanded view

Figure ESI47: ¹³C NMR spectrum of hydrazone **3i** derived from nonanal, expanded view

Figure ESI48: Fluorescence spectra of pyrazole 4a

Figure ESI49: Fluorescence spectra of pyrazole 4b

Figure ESI50: Spectral properties and comparative kinetics of hydrazone *versus* indazole formation. (a) Emission spectra are shown for the same solution of indazole **11** with excitation at 310 nm (purple) or 375 nm (cyan). (b) The pseudo-first order reaction kinetics for indazole formation (red) or hydrazone formation between **2b** and hexanal (blue) in PBS at 37°C are shown, with the associated observed rate constant provided below each respective curve.