Supporting Information For

Visible Light Catalyzed Synthesis of Quinolines from (Aza)-Morita-Baylis-Hillman Adducts

Atul Kumar Chaturvedi,^{a,b} Namrata Rastogi^{*},^{a,b}

^{*a*}Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India ^{*b*}Academy of Scientific and Innovative Research, New Delhi 110001, India

namrataiit@gmail.com; namrata.rastogi@cdri.res.in

Table of Contents

General Information	2
General Procedures	2-3
Compound Characterization	3-19
References	19
¹ H & ¹³ C NMR Spectra of Products	

1. General Information

All reactions were monitored by TLC, visualization was effected with UV and/or by developing in iodine. Melting points were recorded on a Precision melting point apparatus and are uncorrected. NMR spectra were recorded on a Brucker Avance spectrometer at 400/500 MHz (¹H) and 75/100/125 MHz (¹³C). Chemical shifts are reported in δ (ppm) relative to TMS as the internal standard. To describe spin multiplicity, standard abbreviations such as s, d, t, q, m, dd referring to singlet, doublet, triplet, quartet, multiplet and doublet of doublet respectively, are used. The ESI-HRMS spectra were recorded on Agilent 6520-Q-Tof LC/MS system.

The *N*-tosylamide derivatives of MBH adducts **1a-1j** (EWG = CO₂Et) and **1k-1o** (EWG = SO₂Ph) were synthesized following the procedure reported by Kim et al¹ and **1p-1t** (EWG = COEt) were synthesized by following the procedure reported by Park et al.² The aza-MBH adducts **4a-4h** were synthesized *via* Heck reaction of corresponding β -unsubstituted MBH adducts with aryl halides following literature protocol.³ All other chemicals, solvents and catalysts were purchased from commercial sources and used as received.

The characterization data for all starting substrates (except **1a** and **4a** which are known compounds) and products has been provided. All the aza-MBH adducts **4a-4h** (except **4b**) were isolated as the mixture of *E* and *Z* isomers and were used as such for the VLPC reaction. In case of **4b**, the two isomers were separated and *E*-isomer was used for the dihydroquinoline synthesis. The peaks for the *E* and *Z* isomers isomers in ¹H NMR were assigned by comparing with literature data and by establishing analogy with the pure *E*-isomer separated in case of **4b**. The yield of **5a** and **5c-5h** were calculated on the basis of recovered starting material (primarily *Z*-isomer).

2. General Procedures

2.1 VLPC synthesis of dihydroquinolines (2, 5) &/or quinolines (3)

In an oven dried 5 mL snap vial equipped with a magnetic stirring bar, the *N*-tosylamide derivatives of MBH adducts **1** or aza-MBH adducts **4** (0.2 mmol), NaOH (0.016 g, 0.4 mmol, 2.0 equiv) and photocatalyst Ru(bpy)₃Cl₂ (0.003 g, 0.004 mmol, 2.0 mol%) were dissolved in anhydrous CHCl₃ (3 mL). The open vial was irradiated using 450 nm blue LEDs with a cooling device maintaining the temperature around 25 °C. After 8-12 h of irradiation (TLC monitoring), the reaction mixture was diluted with water and extracted with dichloromethane (3 x 10 mL). The combined organic layers were dried (Na₂SO₄) and concentrated under

reduced pressure. The residue was purified by column chromatography on silica gel using hexane/ethyl acetate as eluent to afford the pure products **2**, **5** and/or **3**.

2.2 Synthesis of quinolines from dihydroquinolines

Method A⁴: A mixture of 2 (0.1 mmol) in aq NaOH (1 mL) and MeOH (4 mL) was refluxed overnight. The reaction was brought to room temperature upon completion (TLC monitoring) and solvent was removed under pressure. The reaction mixture was extracted with dichloromethane (3 x 10 mL) and combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using hexane/ethyl acetate as eluent to afford the pure product **3**.

Method B⁵: A mixture of **2** (0.1 mmol) and DBU (0.015 g, 0.1 mmol, 1.0 equiv) in THF (5 mL) was refluxed overnight. Upon reaction completion (TLC monitoring), the reaction mixture was brought to room temperature and extracted with dichloromethane (3 x 10 mL). Combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using hexane/ethyl acetate as eluent to afford the pure product **3**.

2.3 Details of radical trapping experiment

In an oven dried 5 mL snap vial equipped with a magnetic stirring bar, the ethyl (*E*)-3-(2,6-dichlorophenyl)-2-(((4-methylphenyl)sulfonamido)methyl)acrylate **1u** (0.2 mmol), NaOH (0.016 g, 0.4 mmol, 2.0 equiv), photocatalyst Ru(bpy)₃Cl₂ (0.003 g, 0.004 mmol, 2.0 mol%) and allyl tributyltin (0.12 mL, 0.4 mmol, 2.0 equiv) were dissolved in anhydrous CHCl₃ (3 mL). The open vial was irradiated using 450 nm blue LEDs with a cooling device maintaining the temperature around 25 °C. After 12 h of irradiation (TLC monitoring), the reaction mixture was diluted with water and extracted with dichloromethane (3 x 10 mL). The combined organic layers were dried (Na₂SO₄) and concentrated under reduced pressure. The crude product **6** was analyzed by High Resolution Mass Spectrometry.

3. Compound Characterization

Ethyl (E)-2-(((4-methylphenyl)sulfonamido)methyl)-3-phenylacrylate (1a)⁶

White solid; Isolated yield 61% (219 mg). The spectroscopic data matches well with the reported data.

Ethyl (*E*)-2-(((4-methylphenyl)sulfonamido)methyl)-3-(*p*-tolyl)acrylate (1b)

White sticky solid; isolated yield 69% (193 mg). R_f 0.50 (25% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 2.4 Hz, 2H), 7.67 (s, 1H), 7.31 (d, J = 8.1 Hz, 2H), 7.26 (d, J = 7.9 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 5.30 (t, J = 6.4 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.95 (d, J = 6.4 Hz, 2H), 2.41 (s, 3H), 2.37 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.30, 143.30, 139.77, 136.51, 131.09, 129.58, 129.43, 127.21, 125.68, 61.18, 40.64, 21.45, 21.35, 14.13; **HRMS** for C₂₀H₂₃NO₄S: calcd. (M+H)⁺: 374.1421, found: 374.1420

Ethyl (*E*)-3-(2-bromo-4-methylphenyl)-2-(((4-methylphenyl)sulfonamido) methyl) acrylate (1c)

White solid; isolated yield 40% (180 mg). R_f 0.50 (25% EtOAc/hexane); ¹**H** NMR (400 MHz, CDCl₃) δ 7.71 (s, 1H), 7.60 (d, J = 7.9 Hz, 2H), 7.35 (s, 1H), 7.29 (d, J = 7.9 Hz, 1H), 7.19 (d, J = 7.9 Hz, 2H), 7.09 (d, J = 7.9 Hz, 1H), 5.16 (t, J = 6.6 Hz, 1H), 4.15 (q, J = 7.1 Hz, 2H), 3.75 (d, J = 6.6 Hz, 2H), 2.35 (s, 3H), 2.29 (s, 3H), 1.23 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.95, 143.45, 142.18, 141.42, 136.46, 133.31, 131.32, 130.56, 129.71, 128.52, 127.59, 127.19, 123.99, 61.45, 40.89, 21.53, 21.00, 14.18; **HRMS** for C₂₀H₂₂BrNO₄S: calcd. (M+H)⁺: 452.0526, found: 452.0529

Ethyl (*E*)-3-(2-bromophenyl)-2-(((4-methylphenyl)sulfonamido)methyl)acrylate (1d)

White solid; isolated yield 48% (209 mg). R_f 0.50 (25% EtOAc/hexane); ¹**H** NMR (400 MHz, CDCl₃) δ 7.79 (s, 1H), 7.64-7.67 (m, 2H), 7.60 (dd, J = 8.0 Hz, 1.0 Hz, 1H), 7.45 (dd, J = 7.7 Hz, 1.4 Hz, 1H), 7.34-7.38 (m, 1H), 7.22-7.27 (m, 3H), 5.26 (d, J = 6.6 Hz, 1H), 4.23 (q, J = 7.2 Hz, 2H), 3.81 (d, J = 6.6 Hz, 2H), 2.41 (s, 3H), 1.31 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.79, 143.45, 142.01, 136.51, 134.40, 132.81, 130.78, 130.66, 129.71, 128.36, 127.68, 127.19, 124.03, 61.53, 40.75, 21.51, 14.17; HRMS for C₁₉H₂₀BrNO₄S: calcd. (M+H)⁺: 438.0369, found: 438.0362

Ethyl (*E*)-3-(3-chlorophenyl)-2-(((4-methylphenyl)sulfonamido)methyl)acrylate (1e)

White solid; isolated yield 61% (240 mg). R_f 0.50 (25% EtOAc/hexane);¹**H** NMR (400 MHz, CDCl₃) δ 7.58-7.60 (s, d merged, 3H), 7.25-7.29 (m, 4H), 7.20 (d, J = 7.9 Hz, 2H), 5.15 (d, J = 5.9 Hz, 1H), 4.15 (q, J = 7.1 Hz, 2H), 3.84 (d, J = 6.6 Hz, 2H), 2.35 (s, 3H), 1.23 (t, J = 7.1 Hz, 3H); ¹³**C** NMR (100 MHz, CDCl₃) δ 166.88, 143.54, 141.32, 136.48, 135.72, 134.74, 130.09, 129.69, 129.41, 129.36, 128.24, 127.38, 127.23, 61.54, 40.42, 21.53, 14.18; **HRMS** for C₁₉H₂₀ClNO₄S: calcd. (M+H)⁺: 394.0874, found: 394.0867

Ethyl (E)-3-(3-fluorophenyl)-2-(((4-methylphenyl)sulfonamido)methyl)acrylate (1f)

White solid; isolated yield 63% (237 mg). R_f 0.50 (25% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.61 (s, d merged, 3H), 7.28-7.33 (m, 1H), 7.20 (d, J = 6.8 Hz, 2H), 7.13 (d, J = 7.7 Hz, 1H), 6.99-7.03 (m, 2H), 5.12-5.18 (m, 1H), 4.15 (q, J = 7.1 Hz, 2H), 3.85 (d, J = 6.6 Hz, 2H), 2.35 (s, 3H), 1.23 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.92, 162.74 (d, $J_{C-F} = 246.0$ Hz), 143.56, 141.55 (d, $J_{C-F} = 2.2$ Hz), 136.48, 136.03 (d, $J_{C-F} = 7.7$ Hz), 130.42 (d, $J_{C-F} = 8.3$ Hz), 129.69, 128.06, 127.23, 125.12 (d, $J_{C-F} = 3.0$ Hz), 116.35 (d, $J_{C-F} = 20.9$ Hz), 116.21 (d, $J_{C-F} = 22.0$ Hz), 61.52, 40.45, 21.51, 14.17; HRMS for C₁₉H₂₀FNO₄S: calcd. (M+H)⁺: 378.1170, found: 378.1173

Ethyl (*E*)-2-(((4-methylphenyl)sulfonamido)methyl)-3-(2-(trifluoromethoxy)phenyl) acrylate (1g)

White solid; isolated yield 68% (301 mg). R_f 0.50 (25% EtOAc/hexane); ¹**H** NMR (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.60 (d, J = 8.3 Hz, 2H), 7.49 (d, J = 7.5 Hz, 1H), 7.35-7.39 (m, 1H), 7.27-7.31 (m, 1H), 7.18-7.24 (m, 4H), 5.15 (d, J = 6.0 Hz, 1H), 4.16 (q, J = 7.1 Hz, 2H), 3.76 (d, J = 6.6 Hz, 2H), 2.35 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.66, 147.11, 143.54, 136.93, 136.46, 130.99, 130.91, 129.71, 129.23, 127.43, 127.18, 120.84, 61.56, 40.87, 21.49, 14.10; **HRMS** for C₂₀H₂₀F₃NO₅S: calcd. (M+H)⁺: 444.1087, found: 444.1088

Ethyl (*E*)-2-(((4-methylphenyl)sulfonamido)methyl)-3-(3-nitrophenyl)acrylate (1h)

White solid; isolated yield 57% (230 mg). R_f 0.50 (25% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 8.15-8.18 (m, 1H), 8.08 (br s, 1H), 7.73-7.78 (m, 2H), 7.67 (s, 1H), 7.54-7.59 (m, 2H), 7.19-7.24 (m, 2H), 5.24 (t, J = 6.5 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.82 (d, J = 6.6 Hz, 2H), 2.35 (s, 3H), 1.25 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.52, 148.37, 143.75, 140.02, 136.38, 135.61, 135.00, 130.02, 129.74, 127.15, 126.45, 124.24, 123.90, 61.79, 40.29, 21.51, 14.16; HRMS for C₁₉H₂₀N₂O₆S: calcd. (M+H)⁺: 405.1115, found: 405.1114

Ethyl (E)-2-(((4-methylphenyl)sulfonamido)methyl)-3-(4-nitrophenyl)acrylate (1i)

Light yellow solid; isolated yield 70% (283 mg). R_f 0.50 (25% EtOAc/hexane);¹**H** NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 8.7 Hz, 2H), 7.76 (s, 1H), 7.68 (d, J = 8.2 Hz, 2H), 7.57 (d, J = 8.6 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 5.24 (t, J = 6.6 Hz, 1H), 4.26 (q, J = 7.1 Hz, 2H), 3.85 (d, J = 6.6 Hz, 2H), 2.44 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.48, 147.96, 143.87, 140.35, 140.24, 136.29, 130.22, 130.10, 129.80, 127.24, 123.91, 61.85, 40.41, 21.53, 14.16; **HRMS** for C₁₉H₂₀N₂O₆S: calcd. (M+H)⁺: 405.1115, found: 405.1111

Ethyl (E)-2-(((4-methylphenyl)sulfonamido)methyl)-3-(thiophen-2-yl)acrylate (1j)

White solid; isolated yield 49% (178 mg). R_f 0.50 (25% EtOAc/hexane); ¹**H** NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.3 Hz, 2H),7.52 (s, 1H), 7.21 (d, J = 8.0 Hz, 2H), 7.04 (d, J = 4.0 Hz, 1H), 6.98 (d, J = 3.9 Hz, 1H), 5.03 (d, J = 6.2 Hz, 1H), 4.10 (q, J = 7.1 Hz, 2H), 3.98 (d, J = 6.3 Hz, 2H), 2.35 (s, 3H), 1.19 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.16, 143.43, 136.76, 136.73, 134.79, 133.16, 130.64, 129.60, 128.04, 127.30, 123.03, 61.30, 40.69, 21.53, 14.22; **HRMS** for C₁₇H₁₉NO₄S₂: calcd. (M+H)⁺: 366.0828, found: 394.874

(E)-4-Methyl-N-(3-phenyl-2-(phenylsulfonyl)allyl)benzenesulfonamide (1k)

White solid; isolated yield 58% (248 mg). R_f 0.50 (25% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.65 (d, J = 8.2 Hz, 2H), 7.48-7.54 (m, 3H), 7.43-7.44 (m, 2H), 7.32-7.36 (m, 5H), 7.28 (d, J = 8.0 Hz, 2H), 5.13 (d, J = 5.6 Hz, 1H), 3.65 (d, J = 5.8 Hz, 2H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.86, 143.30, 137.88, 135.46, 134.28, 133.81, 131.97, 130.81, 129.94, 129.83, 129.33, 129.11, 128.15, 127.65, 39.74, 21.63; **HRMS** for C₂₂H₂₁NO₄S₂: calcd. (M+H)⁺: 428.0985, found: 428.0981

(E)-4-Methyl-N-(2-(phenylsulfonyl)-3-(p-tolyl)allyl)benzenesulfonamide (11)

White solid; isolated yield 59% (260 mg). R_f 0.50 (25% EtOAc/hexane) ¹**H** NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.66 (d, J = 8.2 Hz, 2H), 7.46-7.51 (m, 3H), 7.33-7.36 (m, 4H), 7.28-7.31 (m, 2H), 7.14 (d, J = 7.8 Hz, 2H), 5.09 (s, 1H), 3.65 (d, J = 5.7 Hz, 2H), 2.44 (s, 3H),

2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.82, 143.37, 141.50, 138.08, 135.51, 133.70, 133.09, 130.07, 129.85, 129.81, 129.29, 129.19, 128.10, 127.66, 39.83, 21.62, 21.51; HRMS for C₂₃H₂₃NO₄S₂: calcd. (M+H)⁺: 442.1141, found: 442.1134

(*E*)-*N*-(3-(2-Bromo-4-methylphenyl)-2-(phenylsulfonyl)allyl)-4-methylbenzenesulfonamide (1m)

White solid; isolated yield 70% (363 mg). R_f 0.50 (25% EtOAc/hexane) ¹**H** NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.63 (d, J = 8.2 Hz, 2H), 7.50-7.54 (m, 3H), 7.41 (d, J = 7.9 Hz, 1H), 7.37 (s, 1H), 7.34 (d, J = 7.7 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 7.7 Hz, 1H), 5.30 (t, J = 5.8 Hz, 1H), 3.49 (d, J = 5.9 Hz, 2H), 2.43 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.84, 143.11, 142.65, 137.76, 135.61, 135.45, 133.86, 133.45, 130.25, 129.83, 129.38, 129.33, 128.86, 128.21, 127.58, 124.40, 39.81, 21.62, 21.10; **HRMS** for C₂₃H₂₂BrNO₄S₂: calcd. (M+H)⁺: 520.0246, found: 520.0240

(*E*)-*N*-(3-(3-Fluorophenyl)-2-(phenylsulfonyl)allyl)-4-methylbenzenesulfonamide (1n) White solid; isolated yield 52% (231 mg). R_f 0.50 (25% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.70-7.72 (m, 2H), 7.56-7.63 (m, 3H), 7.30-7.45 (m, 6H), 7.10-7.19 (m, 2H), 5.21 (t, *J* = 5.8 Hz, 1H), 3.70 (d, *J* = 5.8 Hz, 2H), 2.50 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 162.80 (d, *J*_{C-F} = 246.7 Hz), 143.99, 141.70 (d, *J*_{C-F} = 1.5 Hz), 137.64, 136.00, 135.42, 134.01, 133.95 (d, *J*_{C-F} = 7.5 Hz), 130.79 (d, *J*_{C-F} = 8.2 Hz), 129.86, 129.44, 128.22, 127.58, 125.49 (d, *J*_{C-F} = 2.7 Hz), 117.69 (d, *J*_{C-F} = 20.9 Hz), 116.65 (d, *J*_{C-F} = 22.4 Hz), 39.55, 21.60; **HRMS** for C₂₂H₂₀FNO₄S₂: calcd. (M+H)⁺: 446.0891, found: 446.0883

(E)-4-methyl-N-(2-(phenylsulfonyl)-3-(4-(trifluoromethoxy)phenyl)allyl)benzenesulfonamide (10)

White solid; isolated yield 56% (286 mg). R_f 0.50 (25% EtOAc/hexane); ¹**H** NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.66 (d, J = 8.2 Hz, 2H), 7.47-7.55 (m, 5H), 7.36 (t, J = 8.1 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.2 Hz, 2H), 5.12 (t, J = 5.8 Hz, 1H), 3.61 (d, J = 5.9 Hz, 2H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.41, 138.73, 136.79, 134.85, 134.53, 134.16, 130.79, 130.27, 129.71, 129.44, 128.21, 127.24, 125.11, 119.18, 119.07, 43.62, 21.58; **HRMS** for C₂₃H₂₀F₃NO₅S₂: calcd. (M+H)⁺: 512.0808, found: 512.0810

(E)-N-(2-Benzylidene-3-oxopentyl)-4-methylbenzenesulfonamide (1p)²

White solid; isolated yield 57% (195 mg). The spectroscopic data matches well with the reported data.

$(E) - 4 - Methyl - N - (2 - (4 - methyl benzylidene) - 3 - oxopentyl) benzenesulfonamide (1q)^7$

White solid; isolated yield 36% (128 mg). The spectroscopic data matches well with the reported data.

(E)-N-(2-(3-bromobenzylidene)-3-oxopentyl)-4-methylbenzenesulfonamide (1r)

Colourless solid; isolated yield 46% (193 mg). R_f 0.50 (25% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.2 Hz, 2H), 7.47 (d, J = 6.4 Hz, 2H), 7.43 (s, 1H), 7.37 (d, J = 7.6 Hz, 1H), 7.19-7.27 (m merged with solvent peak, 3H), 5.16 (t, J = 6.5 Hz, 1H), 3.78 (d, J = 6.7 Hz, 2H), 2.63 (q, J = 7.2 Hz, 2H), 2.35 (s, 3H), 1.03 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.85, 143.50, 140.75, 136.61, 136.49, 135.97, 132.51, 132.24, 130.44, 129.70, 127.95, 127.24, 122.86, 40.08, 30.44, 21.53, 8.24; HRMS for C₂₀H₃₃NO₃S: calcd. (M+H)⁺: 422.0420, found: 422.0423

(E)-N-(2-(2-fluorobenzylidene)-3-oxopentyl)-4-methylbenzenesulfonamide (1s)

Colourless solid; isolated yield 52% (188 mg). R_f 0.50 (25% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.2 Hz, 2H), 7.55 (s, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.31-7.37 (m, 1H), 7.15-7.20 (m, 3H), 7.02-7.07 (m, 1H), 5.20 (t, J = 6.3 Hz, 1H), 3.79 (d, J = 6.7 Hz, 2H), 2.62 (q, J = 7.2 Hz, 2H), 2.34 (s, 3H), 1.02 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.89, 160.32 (d, $J_{C-F} = 248.6$ Hz), 143.45, 136.86, 136.59, 135.23 (d, $J_{C-F} = 4.0$ Hz), 131.73 (d, $J_{C-F} = 8.4$ Hz), 130.89 (d, $J_{C-F} = 1.7$ Hz), 129.68, 127.21, 124.64 (d, $J_{C-F} = 3.6$ Hz), 121.95 (d, $J_{C-F} = 13.3$ Hz), 115.63 (d, $J_{C-F} = 21.4$ Hz), 40.51, 30.49, 21.50, 8.21; HRMS for C₁₉H₂₀FNO₃S: calcd. (M+H)⁺: 362.1221, found: 362.1226

(*E*)-4-methyl-*N*-(3-oxo-2-(4-(trifluoromethoxy)benzylidene)pentyl)benzenesulfonamide (1t)

Colourless solid; isolated yield 48% (205 mg). R_f 0.50 (25% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.63 (m, 2H), 7.50 (s, 1H), 7.43-7.46 (m, 2H), 7.20-7.23 (m, 4H), 5.12 (t, *J* = 6.6 Hz, 1H), 3.76 (d, *J* = 6.7 Hz, 2H), 2.66 (q, *J* = 7.2 Hz, 2H), 2.35 (s, 3H), 1.04 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.87, 149.96, 143.60, 141.03, 136.35, 136.02, 132.44, 131.28, 129.73, 127.27, 121.03, 40.21, 30.38, 21.50, 8.25; HRMS for C₂₀H₂₀F₃NO₄S: calcd. (M+H)⁺: 428.1138, found: 428.1139

Ethyl (*E*)-3-(2,6-dichlorophenyl)-2-(((4-methylphenyl)sulfonamido)methyl)acrylate (1u) White solid; isolated yield 68% (290 mg). R_f 0.50 (25% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.51 (m, 2H), 7.42 (s, 1H), 7.23-7.25 (m, 2H), 7.11-7.17 (m, 3H), 5.03 (t, *J* = 6.4 Hz, 1H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.57 (d, *J* = 6.5 Hz, 2H), 2.31 (s, 3H), 1.23 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 165.87, 143.17, 136.72, 136.62, 134.05, 132.03, 131.88, 130.10, 129.52, 128.11, 127.07, 61.63, 41.01, 21.48, 14.10; HRMS for C₁₉H₁₉Cl₂NO₄S: calcd. (M+H)⁺: 428.0485, found: 428.0486

Ethyl 1-tosyl-1,2-dihydroquinoline-3-carboxylate (2a)⁸

White solid; isolated yield 84% (60 mg). R_f 0.50 (20% EtOAc/hexane); Mp 116 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 8.1 Hz, 1H), 7.32-7.36 (m, 1H), 7.16-7.20 (m, 3H), 7.04 (dd, J = 7.6 Hz, 1.2 Hz, 1H), 6.97 (d, J = 8.2 Hz, 2H), 6.88 (s, 1H), 4.60 (d, J = 0.8 Hz, 2H), 4.15 (q, J = 7.1 Hz, 2H), 2.26 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.26, 143.78, 136.20, 135.87, 133.38, 130.44, 129.14, 128.52, 128.07, 127.24, 126.99, 126.95, 125.38, 60.84, 44.33, 21.50, 14.33; HRMS for C₁₉H₁₉NO₄S: calcd. (M+H)⁺: 358.1108, found: 358.1110

Ethyl 7-methyl-1-tosyl-1,2-dihydroquinoline-3-carboxylate (2b)

White solid; isolated yield 84% (62 mg). R_f 0.50 (20% EtOAc/hexane); Mp 127-128 °C;¹H NMR (400 MHz, CDCl₃) δ 7.49 (s, 1H), 7.17-7.19 (m, 2H), 6.91-6.99 (m, 4H), 6.84 (s, 1H), 4.55 (br s, 2H), 4.12 (q, J = 7.1 Hz, 2H), 2.35 (s, 3H), 2.24 (s, 3H), 1.22 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.38, 143.70, 141.17, 136.14, 135.91, 133.49, 129.09, 128.34, 127.83, 127.79, 127.01, 125.47, 124.13, 60.71, 44.38, 21.79, 21.50, 14.35; **HRMS** for C₂₀H₂₁NO₄S: calcd. (M+H)⁺: 372.1264, found: 372.1256

Ethyl 5-bromo-7-methyl-1-tosyl-1,2-dihydroquinoline-3-carboxylate (2c)

White solid; isolated yield 78% (70 mg). R_f 0.50 (20% EtOAc/hexane); Mp 152-153 °C;¹H NMR (400 MHz, CDCl₃) δ 7.47 (s, 1H), 7.26 (s, 1H), 7.20 (d, J = 8.3 Hz, 2H), 7.14 (s, 1H), 7.01 (d, J = 8.1 Hz, 2H), 4.52 (s, 2H), 4.14 (q, J = 7.1 Hz, 2H), 2.34 (s, 3H), 2.28 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.00, 144.10, 141.85, 137.64, 135.81, 131.95, 131.75, 129.27, 127.21, 126.93, 125.75, 125.28, 122.98, 60.93, 43.99, 21.54, 21.47, 14.33; **HRMS** for C₂₀H₂₀BrNO₄S: calcd. (M+H)⁺: 450.0369, found: 450.0373

Ethyl 5-bromo-1-tosyl-1,2-dihydroquinoline-3-carboxylate (2d)

White solid; isolated yield 81% (70 mg). R_f 0.50 (20% EtOAc/hexane); Mp 96-97 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.1 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.24-7.28 (m, 4H), 7.09 (d, J = 8.2 Hz, 2H), 4.63 (d, J = 0.9 Hz, 2H), 4.23 (q, J = 7.1 Hz, 2H), 2.36 (s, 3H), 1.32 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.89, 144.19, 137.90, 135.76, 131.85, 130.05, 130.76, 129.33, 127.93, 126.96, 126.54, 123.27, 61.06, 43.93, 21.56, 14.32; HRMS for C₁₉H₁₈BrNO₄S: calcd. (M+H)⁺: 436.0213, found: 436.0209

Ethyl 6-chloro-1-tosyl-1,2-dihydroquinoline-3-carboxylate (2e)

White solid; isolated yield 66% (52 mg). R_f 0.50 (20% EtOAc/hexane); Mp 129 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.6 Hz, 1H), 7.29 (dd, J = 8.7 Hz, 2.0 Hz, 1H), 7.20 (d, J = 8.6 Hz, 2H), 7.03 (d, J = 2.1 Hz, 1H), 7.00 (d, J = 8.0 Hz, 2H), 6.80 (s, 1H), 4.59 (s, 2H), 4.15 (q, J = 7.1 Hz, 2H), 2.27 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ

163.90, 144.08, 135.63, 134.63, 132.50, 132.06, 130.19, 129.37, 129.31, 128.56, 127.97, 126.97, 126.73, 61.05, 44.32, 21.53, 14.30; **HRMS** for $C_{19}H_{18}CINO_4S$: calcd. (M+H)⁺: 392.0718, found: 392.0720

Ethyl 6-fluoro-1-tosyl-1,2-dihydroquinoline-3-carboxylate (2f)

White solid; isolated yield 68% (52 mg). R_f 0.50 (20% EtOAc/hexane); Mp 130-132 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (dd, J = 8.8 Hz, 5.0 Hz, 1H), 7.25 (d, J = 8.2 Hz, 2H), 7.10-7.13 (m, 1H), 7.06 (d, J = 8.0 Hz, 2H), 6.86 (s, 1H), 6.82 (dd, J = 8.2 Hz, 2.8 Hz, 1H), 4.66 (s, 2H), 4.23 (q, J = 7.1 Hz, 2H), 2.34 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.94, 160.98 (d, $J_{C-F} = 245.8$ Hz), 144.01, 135.52, 132.23 (d, $J_{C-F} = 2.0$ Hz), 132.02 (d, $J_{C-F} = 2.8$ Hz), 129.66 (d, $J_{C-F} = 8.7$ Hz), 129.23, 129.22 (d, $J_{C-F} = 8.3$ Hz), 127.00, 126.78, 117.11 (d, $J_{C-F} = 22.6$ Hz), 114.53 (d, $J_{C-F} = 23.1$ Hz), 61.03, 44.40, 21.51, 14.30; HRMS for C₁₉H₁₈FNO₄S: calcd. (M+H)⁺: 376.1013, found: 376.1005

Ethyl 1-tosyl-5-(trifluoromethoxy)-1,2-dihydroquinoline-3-carboxylate (2g)

White sticky solid; isolated yield 68% (60 mg). R_f 0.50 (20% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.2 Hz, 1H), 7.36 (t, J = 8.3 Hz, 1H), 7.16-7.19 (m, 2H), 7.09-7.12 (m, 1H), 7.07 (s, 1H), 6.99 (d, J = 8.0 Hz, 2H), 4.60 (d, J = 1.3 Hz, 2H), 4.17 (q, J = 7.1 Hz, 2H), 2.27 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.81, 145.58, 144.28, 137.57, 135.52, 130.46, 129.29, 126.87, 126.84, 126.38, 125.77, 121.79, 121.67, 118.87, 61.10, 43.99, 21.49, 14.28; HRMS for C₂₀H₁₈F₃NO₅S: calcd. (M+H)⁺: 442.0931, found: 442.0924

Ethyl 6-nitro-1-tosyl-1,2-dihydroquinoline-3-carboxylate (2h)

White solid; isolated yield 64% (52 mg). R_f 0.50 (20% EtOAc/hexane); Mp 147-148 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (dd, J = 9.0 Hz, 2.6 Hz, 1H), 7.94 (d, J = 2.6 Hz, 1H), 7.86 (d, J = 9.0 Hz, 1H), 7.28 (d, J = 8.3 Hz, 2H), 7.05 (d, J = 8.4 Hz, 2H), 7.00 (s, 1H), 4.67 (d, J = 1.0 Hz, 2H), 4.19 (q, J = 7.2 Hz, 2H), 2.29 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.51, 145.57, 144.69, 141.74, 135.62, 131.51, 129.65, 128.24, 127.77, 126.94, 126.86, 124.98, 123.49, 61.36, 44.35, 21.56, 14.27; HRMS for C₁₉H₁₈N₂O₆S: calcd. (M+H)⁺: 403.958, found: 403.956

3-(Phenylsulfonyl)-1-tosyl-1,2-dihydroquinoline (2k)

White solid; isolated yield 72% (61 mg). R_f 0.50 (20% EtOAc/hexane); Mp 151-153 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 7.5 Hz, 2H), 7.72 (d, J = 8.0 Hz, 1H), 7.62 (t, J = 7.3 Hz, 1H), 7.52-7.55 (m, 2H), 7.36 (t, J = 7.4 Hz, 1H), 7.17 (d, J = 7.4 Hz, 1H), 7.07 (d, J = 7.3 Hz, 1H), 6.98 (peaks merged to appear as d, J = 8.4 Hz, 3H), 6.91 (d, J = 8.1 Hz, 2H), 4.55 (s, 2H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.99, 138.96, 135.20, 134.68, 134.46, 133.99, 132.09, 131.38, 129.62, 129.24, 129.18, 128.17, 127.25, 127.18, 126.95, 126.90, 43.83, 21.56; **HRMS** for C₂₂H₁₉NO₄S₂: calcd. (M+H)⁺: 426.0828, found: 426.0820

7-Methyl-3-(phenylsulfonyl)-1-tosyl-1,2-dihydroquinoline (2l)

White solid; isolated yield 74% (66 mg). R_f 0.50 (20% EtOAc/hexane); Mp 162-164 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.80-7.82 (m, 2H), 7.59-7.63 (m, 1H), 7.50-7.54 (m, 3H), 6.90-7.00 (peaks merged to appear as m, 7H), 4.51 (d, J = 0.8 Hz, 2H), 2.35 (s, 3H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.90, 142.34, 139.15, 135.14, 134.75, 133.87, 133.07, 132.27, 129.58, 129.20, 128.99, 128.10, 128.01, 127.46, 127.25, 124.29, 43.88, 21.85, 21.56; HRMS for C₂₃H₂₁NO₄S₂: calcd. (M+H)⁺: 440.0985, found: 440.0980

5-Bromo-7-methyl-3-(phenylsulfonyl)-1-tosyl-1,2-dihydroquinoline (2m)

White solid; isolated yield 74% (66 mg). R_f 0.50 (20% EtOAc/hexane); Mp 190-191 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 7.6 Hz, 2H), 7.62 (t, J = 7.3 Hz, 1H), 7.51-7.55 (m, 3H), 7.25 (d, J = 5.6 Hz, 2H), 7.05 (d, J = 8.2 Hz, 2H), 6.98 (d, J = 8.2 Hz, 2H), 4.48 (s, 2H), 2.32 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.37, 142.90, 138.95, 136.70, 135.01, 134.58, 134.00, 131.90, 130.88, 129.63, 129.38, 128.22, 127.28, 126.71, 124.20, 123.57, 43.53, 21.61, 21.53; HRMS for C₂₃H₂₀BrNO₄S₂: calcd. (M+H)⁺: 518.0090, found: 518.0088

6-Fluoro-3-(phenylsulfonyl)-1-tosyl-1,2-dihydroquinoline (2n)

White solid; isolated yield 59% (52 mg). R_f 0.50 (20% EtOAc/hexane); Mp 158-160 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 7.4 Hz, 2H), 7.68-7.71 (m, 1H), 7.64 (t, J = 7.4 Hz, 1H), 7.54 (t, J = 7.8 Hz, 2H), 7.03-7.08 (m, 1H), 7.00 (d, J = 8.3 Hz, 2H), 6.95 (d, J = 8.2 Hz, 2H), 6.87 (s, 1H), 6.78 (dd, J = 7.9 Hz, 2.8 Hz, 1H), 4.53 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 160.90 (d, $J_{C-F} = 247.0$ Hz), 144.24, 138.64, 136.18, 134.36, 134.19, 131.06 (d, $J_{C-F} = 3.7$ Hz), 130.87 (d, $J_{C-F} = 1.9$ Hz), 129.70, 129.35, 129.00 (d, $J_{C-F} = 8.4$ Hz), 128.55 (d, $J_{C-F} = 8.6$ Hz), 128.25, 127.32, 118.03 (d, $J_{C-F} = 22.6$ Hz), 115.28 (d, $J_{C-F} = 23.5$ Hz), 43.92, 21.58; HRMS for C₂₂H₁₈FNO₄S₂: calcd. (M+H)⁺: 444.0734, found: 444.0732

3-(Phenylsulfonyl)-1-tosyl-7-(trifluoromethoxy)-1,2-dihydroquinoline (20)

White sticky solid; isolated yield 38% (38 mg). R_f 0.50 (20% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 7.5 Hz, 2H), 7.65 (br s, 2H), 7.54-7.58 (m, 2H), 7.11 (d, J = 8.5 Hz, 1H), 7.01-7.06 (m, 4H), 6.96 (d, J = 8.1 Hz, 2H), 4.58 (s, 2H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.75, 144.08, 141.49, 137.56, 135.31, 135.26, 134.00, 131.70, 130.42, 129.89, 129.43, 128.20, 127.66, 121.14, 119.03, 39.63, 21.59; HRMS for C₂₃H₁₈F₃NO₅S₂: calcd. (M+H)⁺: 510.0651, found: 510.0652

1-(1-Tosyl-1,2-dihydroquinolin-3-yl)propan-1-one (2p)

White solid; isolated yield 70% (48 mg). R_f 0.50 (20% EtOAc/hexane); Mp 135-136 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.0 Hz, 1H), 7.41-7.45 (m, 1H), 7.22-7.29 (m, 3H), 7.16 (d, J = 7.5 Hz, 1H), 7.04 (d, J = 8.1 Hz, 2H), 6.83 (s, 1H), 4.64 (s, 2H), 2.39 (q, J = 7.1 Hz, 2H), 2.33 (s, 3H), 1.03 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.30, 143.66, 136.63, 136.01, 132.74, 132.55, 130.79, 129.09, 128.71, 128.07, 127.40, 127.02, 126.97, 43.48, 30.09, 21.45, 8.40; HRMS for C₁₉H₁₉NO₃S: calcd. (M+H)⁺: 342.1158, found: 342.1147

1-(7-Methyl-1-tosyl-1,2-dihydroquinolin-3-yl)propan-1-one (2q)

White solid; isolated yield 72% (51 mg). R_f 0.50 (20% EtOAc/hexane); Mp 152-154 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (s, 1H), 7.16 (d, J = 8.2 Hz, 2H), 6.95-7.03 (m, 4H), 6.73 (s, 1H), 4.54 (s, 2H), 2.37 (s, 3H), 2.29 (q, J = 7.6 Hz, 2H), 2.25 (s, 3H), 0.94 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.25, 143.55, 141.63, 136.60, 136.10, 132.70, 131.71, 129.04, 128.51, 127.97, 127.87, 127.05, 125.43, 43.54, 29.98, 21.83, 21.45, 8.45; HRMS for C₂₀H₂₁NO₃S: calcd. (M+H)⁺: 356.1315, found: 356.1312

1-(6-Bromo-1-tosyl-1,2-dihydroquinolin-3-yl)propan-1-one (2r)

White solid; isolated yield 69% (58 mg). R_f 0.50 (20% EtOAc/hexane); Mp 137-139 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.6 Hz, 1H), 7.46 (dd, J = 8.6 Hz, 2.3 Hz, 1H), 7.22 (d, J = 2.2 Hz, 1H), 7.18 (d, J = 8.2 Hz, 2H), 7.00 (d, J = 8.0 Hz, 2H), 6.66 (s, 1H), 4.56 (d, J = 0.9 Hz, 2H), 2.30 (q, J = 7.4 Hz, 2H), 2.27 (s, 3H), 0.96 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.00, 143.93, 135.83, 135.61, 133.82, 133.43, 131.05, 131.00, 129.75, 129.27, 128.95, 127.01, 120.20, 43.43, 30.21, 21.48, 8.30; HRMS for C₁₉H₁₈BrNO₃S: calcd. (M+H)⁺: 420.0264, found: 420.0268

1-(5-Fluoro-1-tosyl-1,2-dihydroquinolin-3-yl)propan-1-one (2s)

White solid; isolated yield 68% (49 mg). R_f 0.50 (20% EtOAc/hexane); Mp 141-143 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 8.2 Hz, 1H), 7.30-7.35 (m, 1H), 7.20 (d, J = 5.9 Hz, 1H), 6.99-7.01 (d and s merged, 3H), 6.90-6.94 (m, 1H), 4.58 (s, 2H), 2.35 (q, J = 7.3 Hz, 2H), 2.27 (s, 3H), 0.97 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.06, 158.97 (d, $J_{C-F} = 251.7$ Hz), 143.98, 137.71 (d, $J_{C-F} = 4.3$ Hz), 135.98, 132.87 (d, $J_{C-F} = 1.9$ Hz), 131.25 (d, $J_{C-F} = 9.5$ Hz), 129.26, 129.96, 124.96 (d, $J_{C-F} = 5.2$ Hz), 122.88 (d, $J_{C-F} = 3.2$ Hz), 116.78 (d, $J_{C-F} = 16.3$ Hz), 113.16 (d, $J_{C-F} = 20.7$ Hz), 43.22, 30.15, 21.48, 8.31; **HRMS** for C₁₉H₁₈FNO₃S: calcd. (M+H)⁺: 360.1064, found: 360.1067

1-(1-Tosyl-7-(trifluoromethoxy)-1,2-dihydroquinolin-3-yl)propan-1-one (2t)

White solid; isolated yield 63% (54 mg). R_f 0.50 (20% EtOAc/hexane); Mp 138-139 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (s, 1H), 7.20-7.23 (m, 2H), 7.11 (d, J = 8.4 Hz, 1H), 7.03-7.06 (m, 1H), 7.00 (d, J = 8.1 Hz, 2H), 6.76 (s, 1H), 4.59 (d, J = 0.8 Hz, 2H), 2.35 (q, J = 7.3 Hz, 2H), 2.27 (s, 3H), 0.97 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.04, 150.17, 144.03, 138.14, 135.84, 133.00, 131.15, 129.64, 129.28, 127.02, 126.36, 121.65, 119.65, 118.86, 43.31, 30.19, 21.47, 8.33; HRMS for C₂₀H₁₈F₃NO₄S: calcd. (M+H)⁺: 426.0981, found: 426.0983

Ethyl 6-chloroquinoline-3-carboxylate (3e)⁹

White solid; isolated yield 94% (22 mg). R_f 0.50 (20% EtOAc/hexane); Mp 106-108 °C; ¹H NMR (500 MHz, CDCl₃) δ 9.35 (d, J = 2.1 Hz, 1H), 8.67 (d, J = 1.8 Hz, 1H), 8.02 (d, J = 9.0 Hz, 1H), 7.83 (d, J = 2.3 Hz, 1H), 7.67 (dd, J = 9.0 Hz, 2.4 Hz, 1H), 4.41 (q, J = 7.2 Hz, 2H), 1.40 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.97, 150.25, 148.17, 137.57, 133.26, 132.59, 131.10, 127.52, 127.50, 124.14, 61.70, 14.31; HRMS for C₁₂H₁₀ClNO2: calcd. (M+H)⁺: 236.0473, found: 236.0480

Ethyl 6-fluoroquinoline-3-carboxylate (3f)⁹

White solid; isolated yield 87% (19 mg). R_f 0.50 (20% EtOAc/hexane); Mp 109-111 °C; ¹**H** NMR (500 MHz, CDCl₃) δ 9.33 (d, J = 1.9 Hz, 1H), 8.71 (d, J = 1.8 Hz, 1H), 8.09 (dd, J =9.2 Hz, 5.3 Hz, 1H), 7.50-7.54 (m, 1H), 7.47 (dd, J = 8.5 Hz, 2.8 Hz, 1H), 4.41 (q, J = 7.2 Hz, 2H), 1.39 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.09, 160.78 (d, $J_{C-F} = 248.5$ Hz), 149.39 (d, $J_{C-F} = 2.6$ Hz), 146.94, 137.86 (d, $J_{C-F} = 5.5$ Hz), 132.04 (d, $J_{C-F} = 9.1$ Hz), 127.59 (d, $J_{C-F} = 10.2$ Hz), 124.02, 121.98 (d, $J_{C-F} = 25.6$ Hz), 111.87 (d, $J_{C-F} = 21.7$ Hz), 61.66, 14.30; **HRMS** for C₁₂H₁₀FNO₂: calcd. (M+H)⁺: 220.0768, found: 220.0772

Ethyl 7-nitroquinoline-3-carboxylate (3i)

Yellow solid; isolated yield 76% (37 mg). R_f 0.50 (20% EtOAc/hexane); Mp 159-160 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.51 (s, 1H), 8.97 (s, 1H), 8.85 (s, 1H), 8.32 (d, J = 7.7 Hz, 1H), 8.04 (d, J = 8.9 Hz, 1H), 4.44 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.48, 152.18, 149.41, 148.86, 138.21, 130.73, 129.99, 125.87, 125.65, 120.91, 62.11, 14.30; HRMS for C₁₂H₁₀N₂O₄: calcd. (M+H)⁺: 247.0713, found: 247.0706

Ethyl thieno[3,2-b]pyridine-6-carboxylate (3j)

White solid; isolated yield 38% (16 mg). R_f 0.50 (20% EtOAc/hexane); Mp 88-90 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.23 (d, J = 1.8 Hz, 1H), 8.78 (d, J = 1.8 Hz, 1H), 7.89 (d, J = 5.5 Hz, 1H), 7.57 (d, J = 5.6 Hz, 1H), 4.39 (q, J = 7.2 Hz, 2H), 1.38 (t, J = 7.2 Hz, 3H); ¹³C

NMR (100 MHz, CDCl₃) δ 165.46, 158.50, 148.35, 134.77, 132.29, 125.17, 121.33, 61.52, 14.34; **HRMS** for C₁₀H₉NO₂S: calcd. (M+H)⁺: 208.0427, found: 208.0423

3-(Phenylsulfonyl)quinoline (3k)¹⁰

White solid; isolated yield 81% (22 mg). R_f 0.50 (20% EtOAc/hexane); Mp 151-153 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.21 (d, J = 2.3 Hz, 1H), 8.75 (d, J = 2.0 Hz, 1H), 8.10 (d, J = 8.4 Hz, 1H), 7.96-7.98 (m, 2H), 7.90 (d, J = 8.3 Hz, 1H), 7.79-7.83 (m, 1H), 7.60-7.64 (m, 1H), 7.45-7.56 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.40, 147.14, 141.04, 136.91, 134.76, 133.74, 132.78, 129.67, 129.60, 129.19, 128.38, 127.83, 126.39; **HRMS** for C₁₅H₁₁NO₂S: calcd. (M+H)⁺: 270.0583, found: 270.0588

7-Methyl-3-(phenylsulfonyl)quinoline (3l)

White solid; isolated yield 84% (24 mg). R_f 0.50 (20% EtOAc/hexane); Mp 161-163 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.16 (d, J = 2.3 Hz, 1H), 8.68 (d, J = 2.1 Hz, 1H), 7.94-7.96 (m, 2H), 7.86 (s, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.43-7.54 (m, 4H), 2.53 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.65, 147.19, 143.92, 141.24, 136.56, 133.87, 133.62, 130.67, 129.55, 128.77, 128.64, 127.75, 124.45, 22.17; HRMS for C₁₆H₁₃NO₂S: calcd. (M+H)⁺: 284.0740, found: 284.0745

3-(Phenylsulfonyl)-7-(trifluoromethoxy)-1,2-dihydroquinoline (30)

White solid; isolated yield 22% (15 mg). R_f 0.50 (20% EtOAc/hexane); Mp 139-140 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.24 (d, J = 2.2 Hz, 1H), 8.78 (d, J = 1.9 Hz, 1H), 7.94-7.99 (m, 4H), 7.47-7.58 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 152.01, 149.98, 148.42, 140.73, 136.56, 135.28, 133.95, 131.13, 129.70, 127.86, 124.54, 122.29, 119.02; HRMS for C₁₆H₁₂F₃NO₃S: calcd. (M+H)⁺: 354.0406, found: 354.0409

1-(Quinolin-3-yl)propan-1-one (3p)

White solid; isolated yield 89% (16 mg). R_f 0.50 (20% EtOAc/hexane); Mp 138-139 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.38 (d, J = 2.2 Hz, 1H), 8.66 (d, J = 1.9 Hz, 1H), 8.10 (d, J = 8.2 Hz, 1H), 7.89 (dd, J = 8.1 Hz, 1.1 Hz, 1H), 7.75-7.79 (m, 1H), 7.55-7.59 (m, 1H), 3.09 (q, J = 7.2 Hz, 2H), 1.24 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.48, 149.77, 149.13, 136.87, 131.89, 129.45, 129.34, 129.13, 127.53, 126.96, 32.26, 8.03; HRMS for C₁₂H₁₁NO: calcd. (M+H)⁺: 186.0913, found: 186.0911

1-(7-Methylquinolin-3-yl)propan-1-one (3q)

White solid; isolated yield 90% (17 mg). R_f 0.50 (20% EtOAc/hexane); Mp 126-127 °C; ¹H NMR (500 MHz, CDCl₃) δ 9.33 (s, 1H), 8.61 (s, 1H), 7.86 (s, 1H), 7.77 (d, J = 8.3 Hz, 1H), 7.39 (d, J = 8.2 Hz, 1H), 3.06 (q, J = 7.1 Hz, 2H), 2.53 (s, 3H), 1.23 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.49, 149.98, 149.19, 142.84, 136.58, 129.83, 128.97, 128.51,

128.44, 124.98, 32.17, 22.14, 8.06; **HRMS** for $C_{13}H_{13}NO$: calcd. (M+H)⁺: 200.1070, found: 200.1071

Ethyl-2-(((4-methylphenyl)sulfonamido)(phenyl)methyl)-3-phenylacrylate (4a)³

White solid; isolated yield 62% (270 mg). The spectroscopic data matches well with the reported data.

Ethyl (*E*)-2-(((4-methylphenyl)sulfonamido)(p-tolyl)methyl)-3-phenylacrylate (4b)

White solid; isolated yield 63% (283 mg). R_f 0.50 (20% EtOAc/hexane); ¹H NMR (500 MHz, CDCl₃): δ 7.60 (s, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.30-7.32 (m, 3H), 7.19 (d, J = 9.3 Hz, 2H), 7.12 (d, J = 6.3 Hz, 1H), 7.03-7.07 (m, 4H), 6.27 (d, J = 10.4 Hz, 1H), 5.74 (d, J = 10.4 Hz, 1H), 4.04-4.09 (m, 2H), 2.34 (s, 3H), 2.27 (s, 3H), 1.16 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.52, 142.83, 142.36, 137.87, 137.28, 136.23, 133.83, 129.49, 129.37, 129.30, 129.26, 129.00, 128.78, 127.10, 126.25, 61.14, 53.87, 21.50, 21.01, 14.09; HRMS for C₂₆H₂₇NO₄S: calcd. (M+H)⁺: 472.1553, found: 472.1548

Ethyl-2-((2,6-dichlorophenyl)((4-methylphenyl)sulfonamido)methyl)-3-phenylacrylate (4c)

White solid; isolated yield 67% (337 mg). R_f 0.50 (20% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) (*E-Z* mixture): δ 7.62-7.64 (m appearing as br d, 4H), 7.13-7.30 (m, 12H), 7.03-7.11 (m, 6H), 6.39-6.43 (m, 4H), 6.28-6.31 (m, 1H, *E*), 6.07-6.11 (m, 1H, *Z*), 5.90-5.93 (m, 1H, *E*), 5.83 (d, *J* = 2.1 Hz, 1H, *E*), 4.04-4.14 (m, 4H), 2.33 (s, 3H, *E*), 2.31 (s, 3H, *Z*), 1.21 (t, *J* = 7.2 Hz, 3H, *E*), 1.11 (t, *J* = 7.1 Hz, 3H, *Z*); ¹³C NMR (100 MHz, CDCl₃) δ 167.32, 165.23, 143.24, 137.71, 137.04, 134.73, 133.36, 132.54, 132.46, 131.14, 129.57, 129.24, 129.19, 128.36, 128.23, 127.22, 126.88, 126.85, 61.31, 61.16, 56.11, 54.19, 21.42, 21.39, 13.95, 13.72; **HRMS** for C₂₅H₂₃Cl₂NO₄S: calcd. (M+H)⁺: 504.0798, found: 504.0795

Ethyl-2-(((4-methylphenyl)sulfonamido)(thiophen-3-yl)methyl)-3-phenylacrylate (4d) White solid; isolated yield 50% (220 mg). R_f 0.50 (20% EtOAc/hexane); ¹**H NMR** (400 MHz, CDCl₃) (*E-Z* mixture): δ 7.66 (d, *J* = 8.2 Hz, 2H, *Z*), 7.54 (s, 1H, *E*), 7.30-7.35 (m, 6H), 7.11-7.20 (m, 7H), 7.02-7.08 (m, 6H), 6.95-6.96 (m, 1H, *E*), 6.86-6.90 (m, 2H), 6.53 (s, 1H, *Z*), 6.32 (d, *J* = 10.3 Hz, 1H, *E*), 5.94 (d, *J* = 9.6 Hz, 1H, *Z*), 5.71 (d, *J* = 10.4 Hz, 1H, *E*), 5.22 (d, *J* = 9.6 Hz, 1H, *Z*), 4.02-4.10 (m, 2H, *E*), 3.79-3.89 (m, 2H, *Z*), 2.32 (2s, 3H, *E*), 2.14 (s, 3H, *Z*), 1.15 (t, *J* = 7.1 Hz, 3H, *E*), 0.80 (t, *J* = 7.1 Hz, 3H, *Z*); ¹³**C NMR** (100 MHz, CDCl₃) δ 166.47, 143.38, 142.95, 141.90, 141.02, 140.01, 137.89, 137.77, 134.63, 133.72, 130.14, 129.56, 129.30, 128.98, 128.83, 128.55, 128.43, 127.88, 127.27, 127.08, 126.62, 126.40, 126.34, 126.24, 122.12, 121.71, 61.20, 60.94, 58.88, 51.33, 21.51, 21.30, 14.09, 13.39; **HRMS** for C₂₃H₂₃NO₄S₂: calcd. (M+H)⁺: 464.0961, found: 464.0953

Ethyl-3-(2,4-dimethylphenyl)-2-(((4-methylphenyl)sulfonamido)(phenyl)methyl)acrylate (4e)

White solid; isolated yield 58% (268 mg). R_f 0.50 (20% EtOAc/hexane); ¹**H** NMR (400 MHz, CDCl₃) (*E*-*Z* mixture): δ 7.75 (s, 1H, *E*), 7.68 (d, *J* = 8.2 Hz, 2H, *E*), 7.35 (d, *J* = 8.2 Hz, 2H, *E*), 7.26 (d, *J* = 7.3 Hz, 2H, *Z*), 7.16-7.23 (m, 8H), 7.11 (d, *J* = 8.0 Hz, 2H, *Z*), 7.00 (d, *J* = 8.1 Hz, 2H, *Z*), 6.98 (s, 1H, *Z*), 6.84-6.91 (m, 3H), 6.74 (d, *J* = 9.2 Hz, 2H, *E*), 6.41 (d, *J* = 7.7 Hz, 1H, *Z*), 6.26 (d, *J* = 10.3 Hz, 1H, *E*), 5.94 (d, *J* = 9.2 Hz, 1H, *Z*), 5.67 (d, *J* = 10.3 Hz, 1H, *E*), 5.94 (d, *J* = 9.2 Hz, 1H, *Z*), 5.67 (d, *J* = 10.3 Hz, 1H, *E*), 5.28 (d, *J* = 9.2 Hz, 1H, *Z*), 4.04-4.12 (m, 2H, *E*), 3.72 (q, *J* = 7.1 Hz, 2H, *Z*), 2.29 (s, 3H, *E*), 2.27 (s, 3H, *E*), 2.22, 2.21 (2 s merged, 6H, *Z*), 2.10 (s, 3H, *E*), 2.07 (s, 3H, *Z*), 1.13 (t, *J* = 7.1 Hz, 3H, *E*), 0.68 (t, *J* = 7.1 Hz, 3H, *Z*); ¹³C NMR (100 MHz, CDCl₃) δ 167.46, 166.73, 143.32, 142.81, 141.42, 139.77, 139.54, 138.83, 138.74, 138.16, 138.07, 137.95, 137.30, 135.54, 131.82, 131.21, 131.04, 130.35, 130.06, 129.61, 129.49, 129.31, 128.52, 128.45, 128.00, 127.85, 127.69, 127.35, 127.19, 126.97, 126.89, 126.47, 126.34, 125.77, 61.40, 61.14, 60.64, 53.96, 21.47, 21.37, 21.29, 21.14, 19.83, 19.79, 14.07, 13.33; **HRMS** for C₂₇H₂₉NO₄S: calcd. (M+H)⁺: 464.1890, found: 464.1896

Ethyl-3-(2,4-dimethylphenyl)-2-(((4-methylphenyl)sulfonamido)(p-tolyl)methyl) acrylate (4f)

White solid; isolated yield 46% (219 mg). R_f 0.50 (20% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) (*E*-*Z* mixture): δ 7.73 (s, 1H, *E*), 7.67 (d, *J* = 8.1 Hz, 2H, *Z*), 7.34 (d, *J* = 8.1 Hz, 2H, *E*), 7.08-7.13 (m, 6H), 6.97-7.02 (m, 7H), 6.73-6.89 (m, 5H), 6.41 (d, *J* = 7.7 Hz, 1H, *Z*), 6.24 (d, *J* = 10.1 Hz, 1H, *E*), 5.87 (d, *J* = 9.4 Hz, 1H, *Z*), 5.62 (d, *J* = 10.3 Hz, 1H, *E*), 5.23 (d, *J* = 9.2 Hz, 1H, *Z*), 4.03-4.11 (m, 2H, *E*), 3.72 (q, *J* = 7.1 Hz, 2H, *Z*), 2.29 (s, 3H, *E*), 2.26 (s, 3H, *E*), 2.22 (s, 9H, *Z*), 2.21 (s, 3H, *E*), 2.09 (s, 3H, *Z*), 2.06 (s, 3H, *E*), 1.14 (t, *J* = 7.1 Hz, 3H, *E*), 0.69 (t, *J* = 7.1 Hz, 3H, *Z*); ¹³C NMR (100 MHz, CDCl₃) δ 167.48, 166.78, 143.26, 142.74, 141.23, 139.48, 138.61, 138.10, 138.07, 137.99, 137.41, 137.29, 137.03, 136.76, 135.77, 135.53, 131.92, 131.18, 130.32, 130.09, 129.58, 129.53, 129.27, 129.21, 129.16, 128.01, 127.87, 127.21, 126.98, 126.86, 126.38, 126.26, 125.74, 61.18, 61.09, 60.59, 53.78, 21.47, 21.37, 21.28, 21.13, 21.01, 20.99, 19.83, 19.79, 14.10, 13.35; **HRMS** for C₂₈H₃₁NO4S: calcd. (M+H)⁺: 500.1866, found: 500.1873

Ethyl-3-(2,4-dimethylphenyl)-2-(((4-methylphenyl)sulfonamido)(thiophen-3-yl) methyl) acrylate (4g)

White solid; isolated yield 39% (183 mg). R_f 0.50 (20% EtOAc/hexane); ¹**H NMR** (400 MHz, CDCl₃) (*E*-*Z* mixture): δ 7.67-7.69 (m, 3H), 7.35 (d, *J* = 8.2 Hz, 2H, *E*), 6.87-7.17 (m, 14H), 6.74 (d, *J* = 7.9 Hz, 1H, *Z*), 6.72 (s, 1H, *Z*), 6.36 (d, *J* = 7.8 Hz, 1H, *Z*), 6.29 (d, *J* = 10.2 Hz,

1H, *E*), 6.02 (d, J = 9.5 Hz, 1H, *Z*), 5.61 (d, J = 10.2 Hz, 1H, *E*), 5.27 (d, J = 9.6 Hz, 1H, *Z*), 4.04-4.16 (m, 2H, *E*), 3.72-3.80 (m, 2H, *Z*), 2.28, 2.30 (2s, 6H, *E*), 2.21, 2.22 (2s, 6H, *Z*), 2.09 (s, 3H, *Z*), 2.06 (s, 3H, *E*), 1.16 (t, J = 7.1 Hz, 3H, *E*), 0.72 (t, J = 7.1 Hz, 3H, *Z*); ¹³C NMR (100 MHz, CDCl₃) δ 167.50, 166.72, 143.35, 142.85, 141.46, 140.98, 140.58, 139.53, 138.54, 138.24, 138.08, 137.89, 137.17, 135.52, 131.69, 131.19, 130.71, 130.37, 129.98, 129.65, 129.62, 129.32, 127.99, 127.19, 126.94, 126.88, 126.65, 126.43, 126.31, 126.00, 125.77, 121.95, 121.62, 61.16, 60.68, 58.57, 51.17, 21.48, 21.38, 21.29, 21.14, 19.82, 19.77, 14.10, 13.36; **HRMS** for C₂₅H₂₇NO₄S₂: calcd. (M+Na)⁺: 492.1274, found: 492.1276

Ethyl-3-(4-isopropylphenyl)-2-(((4-methylphenyl)sulfonamido)(p-tolyl)methyl)acrylate (4h)

White solid; isolated yield 52% (255 mg). R_f 0.50 (20% EtOAc/hexane); ¹**H** NMR (400 MHz, CDCl₃) (*E*-*Z* mixture): δ 7.63 (d, *J* = 8.2 Hz, 2H, *Z*), 7.53 (s, 1H, *E*), 7.33 (d, *J* = 8.2 Hz, 2H, *E*), 7.20 (d, *J* = 7.9 Hz, 2H, *E*), 7.10-7.14 (m, 4H), 6.97-7.04 (m, 12H), 6.83 (d, *J* = 8.1 Hz, 2H, *Z*), 6.47 (s, 1H, *Z*), 6.29 (d, *J* = 10.4 Hz, 1H, *E*), 5.88 (d, *J* = 9.4 Hz, 1H, *Z*), 5.76 (d, *J* = 10.4 Hz, 1H, *E*), 5.17 (d, *J* = 9.4 Hz, 1H, *Z*), 3.97-4.05 (m, 2H, *E*), 3.78-3.86 (m, 2H, *Z*), 2.76-2.86 (m, 2H), 2.31 (s, 3H, *E*), 2.24 (s, 3H, *E*), 2.20 (s, 3H, *Z*), 2.10 (s, 3H, *Z*), 1.19 (s, 3H, *E*), 1.17 (s, 3H, *E*), 1.15 (s, 3H, *Z*), 1.13 (s, 3H, *Z*), 1.11 (t, *J* = 7.2 Hz, 3H, *E*), 0.79 (t, *J* = 7.2 Hz, 3H, *Z*); ¹³C NMR (100 MHz, CDCl₃) δ 167.97, 166.67, 150.71, 149.57, 143.23, 142.81, 142.58, 137.98, 137.93, 137.87, 137.42, 137.23, 136.34, 135.43, 132.16, 131.30, 129.68, 129.53, 129.32, 129.30, 129.23, 129.17, 128.71, 128.31, 127.27, 127.14, 126.91, 126.48, 126.34, 125.93, 61.61, 61.06, 60.81, 54.00, 34.00, 33.94, 31.69, 23.88, 23.84, 23.81, 23.79, 21.53, 21.27, 21.03, 14.11, 13.44; **HRMS** for C₂₉H₃₃NO₄S: calcd. (M+Na)⁺: 514.2023, found: 514.2027

Ethyl 2-phenyl-1-tosyl-1,2-dihydroquinoline-3-carboxylate (5a)

White solid; isolated yield 62% (30 mg). R_f 0.50 (20% EtOAc/hexane); Mp 99-100 °C ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.0 Hz, 1H), 7.07-7.29 (m, 11H), 6.99 (d, J = 8.2 Hz, 2H), 6.44 (s, 1H), 4.13 (q, J = 7.1 Hz, 2H), 2.27 (s, 3H), 1.20 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.59, 143.78, 137.38, 135.75, 134.12, 133.41, 130.71, 129.15, 128.38, 128.29, 128.12, 128.02, 127.84, 127.45, 127.22, 126.98, 126.81, 60.97, 55.90, 21.53, 14.28; HRMS for C₂₅H₂₃NO₄S: calcd. (M+H)⁺: 434.1421, found: 434.1418

Ethyl 2-(p-tolyl)-1-tosyl-1,2-dihydroquinoline-3-carboxylate (5b)

White solid; isolated yield 69% (62 mg). R_f 0.50 (20% EtOAc/hexane); Mp 128-129 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.1 Hz, 1H), 7.26-7.28 (m, 1H), 7.21-7.24 (m, 2H), 7.14 (s, 1H), 7.08-7.13 (m, 2H), 7.06 (br d, J = 7.9 Hz, 2H), 6.99 (d, J = 8.0 Hz, 2H), 6.93 (d,

J = 8.0 Hz, 2H), 6.40 (s, 1H), 4.12 (q, J = 7.1 Hz, 2H), 2.27 (s, 3H), 2.17 (s, 3H), 1.20 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.59, 143.71, 137.79, 135.81, 134.31, 134.12, 133.26, 130.65, 129.13, 129.10, 128.23, 128.15, 127.99, 127.51, 126.76, 60.93, 55.74, 21.52, 21.04, 14.28; **HRMS** for C₂₆H₂₅NO₄S: calcd. (M+H)⁺: 448.1577, found: 448.1576

Ethyl 2-(2,6-dichlorophenyl)-1-tosyl-1,2-dihydroquinoline-3-carboxylate (5c)

White solid; isolated yield 56% (44 mg). R_f 0.50 (20% EtOAc/hexane); Mp 147-148 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.1 Hz, 1H), 7.30-7.34 (m, 3H), 7.18-7.22 (m, 2H), 7.12-7.16 (m, 2H), 7.00-7.06 (m, 4H), 4.00-4.08 (m, 2H), 2.28 (s, 3H), 1.11 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.51, 143.94, 136.76, 136.40, 135.59, 135.31, 135.04, 130.93, 129.65 129.30, 128.16, 127.57, 127.43, 126.64, 126.28, 124.87, 60.92, 54.53, 21.56, 14.06; HRMS for C₂₅H₂₁Cl₂NO₄S: calcd. (M+H)⁺: 502.0641, found: 502.0643

Ethyl 2-(thiophen-3-yl)-1-tosyl-1,2-dihydroquinoline-3-carboxylate (5d)

White solid; isolated yield 40% (21 mg). R_f 0.50 (20% EtOAc/hexane); Mp 130-132 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.1 Hz, 1H), 7.28-7.32 (m, 1H), 7.22 (d, J = 8.3 Hz, 2H), 7.13-7.16 (m, 1H), 7.06-7.09 (m, 3H), 6.99 (d, J = 8.1 Hz, 2H), 6.94 (dd, J = 5.0 Hz, 1.1 Hz, 1H), 6.86 (t, J = 1.4 Hz, 1H), 6.46 (s, 1H), 4.12-4.18 (m, 2H), 2.27 (s, 3H), 1.22 (t, J =7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.45, 143.82, 138.71, 135.77, 134.31, 132.84, 130.78, 129.17, 128.41, 128.20, 127.90, 126.95, 126.83, 126.80, 125.91, 122.91, 60.99, 52.68, 21.52, 14.31; **HRMS** for C₂₃H₂₁NO₄S₂: calcd. (M+H)⁺: 440.0985, found: 440.0976

Ethyl 5,7-dimethyl-2-phenyl-1-tosyl-1,2-dihydroquinoline-3-carboxylate (5e)

White solid; isolated yield 61% (28 mg). R_f 0.50 (20% EtOAc/hexane); Mp 129-130 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.31 (s, 1H), 7.29 (br s, 1H), 7.21-7.25 (m, 2H), 7.10-7.17 (m, 4H), 6.99 (d, J = 8.0 Hz, 2H), 6.77 (s, 1H), 6.40 (s, 1H), 4.13 (q, J = 7.1 Hz, 2H), 2.28 (s, 3H), 2.23 (s, 3H), 2.20 (s, 3H), 1.20 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.90, 143.61, 140.73, 137.59, 135.98, 135.80, 134.23, 130.72, 129.51, 129.01, 128.28, 127.83, 127.20, 127.01, 126.50, 126.17, 123.59, 60.84, 55.25, 21.68, 21.54, 18.91, 14.33; HRMS for C₂₇H₂₇NO₄S: calcd. (M+H)⁺: 462.1734, found: 462.1736

Ethyl 5,7-dimethyl-2-(p-tolyl)-1-tosyl-1,2-dihydroquinoline-3-carboxylate (5f)

White solid; isolated yield 56% (32 mg). R_f 0.50 (20% EtOAc/hexane); Mp 90-91 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (s, 1H), 7.27 (s, 1H), 7.22 (d, J = 8.3 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H), 6.99 (d, J = 8.0 Hz, 2H), 6.93 (d, J = 8.0 Hz, 2H), 6.77 (s, 1H), 6.36 (s, 1H), 4.12 (q, J = 7.1 Hz, 2H), 2.27 (s, 3H), 2.23 (s, 3H), 2.20 (s, 3H), 2.17 (s, 3H), 1.20 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.91, 143.56, 140.64, 137.56, 136.02, 135.74, 134.51, 134.22, 130.59, 129.47, 129.02, 128.99, 127.14, 127.00, 126.53, 126.30, 123.63, 60.80, 55.09, 21.68, 21.53, 21.05, 18.91, 14.33; **HRMS** for C₂₈H₂₉NO₄S: calcd. (M+H)⁺: 476.1890, found: 476.1890

Ethyl 7-isopropyl-2-(p-tolyl)-1-tosyl-1,2-dihydroquinoline-3-carboxylate (5g)

White solid; isolated yield 47% (28 mg). R_f 0.50 (20% EtOAc/hexane); Mp 98-99 °C;¹H NMR (400 MHz, CDCl₃) δ 7.48 (s, 1H), 7.19-7.21 (m, 2H), 7.13 (br s, 1H), 7.07 (br d, J = 8.1 Hz, 2H), 6.93-6.98 (m, 6H), 6.39 (s, 1H), 4.11 (q, J = 7.1 Hz, 2H), 2.78-2.88 (m, 1H), 2.26 (s, 3H), 2.17 (s, 3H), 1.16-1.19 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 164.81, 152.22, 143.59, 137.63, 135.82, 134.76, 134.08, 133.36, 129.08, 129.05, 128.21, 127.20, 127.00, 126.64, 126.23, 125.10, 124.79, 60.80, 55.82, 34.17, 23.75, 23.47, 21.51, 21.06, 14.29; HRMS for C₂₉H₃₁NO₄S: calcd. (M+H)⁺: 490.2047, found: 490.2045

Ethyl 5,7-dimethyl-2-(thiophen-3-yl)-1-tosyl-1,2-dihydroquinoline-3-carboxylate (5h) White solid; isolated yield 57% (31 mg). R_f 0.50 (20% EtOAc/hexane); Mp 135-136 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.33 (br s, 1H), 7.21-7.23 (m, 3H), 7.07 (dd, J = 5.0 Hz, 3.0 Hz, 1H), 6.99 (d, J = 8.0 Hz, 2H), 6.93 (dd, J = 5.0 Hz, 1.2 Hz, 1H), 6.84 (m, 1H), 6.79 (br s, 1H), 6.42 (s, 1H), 4.11-4.19 (m, 2H), 2.26, 2.27 (2s, 6H), 2.19 (s, 3H), 1.22 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.73, 143.66, 140.80, 138.95, 135.98, 135.92, 134.44, 130.11, 129.52, 129.03, 126.99, 126.90, 126.57, 126.28, 125.68, 123.32, 122.73, 60.86, 52.21, 21.71, 21.53, 18.91, 14.36; HRMS for C₂₅H₂₅NO₄S₂: calcd. (M+H)⁺: 468.1298, found: 468.1288

4. References

- (1) K. H. Kim, S. H. Kim, H. J. Lee and J. N. Kim, Adv. Synth. Catal., 2013, 355, 1977.
- (2) D. Y. Park, M. J. Lee, T. H. Kim and J. N. Kim, Tetrahedron Lett., 2005, 46, 8799.
- (3) J. M. Kim, S. H. Kim and J. N. Kim, Bull. Korean Chem. Soc., 2008, 29, 1583.
- (4) E. Tang, D. Mao, W. Li, Z. Gao and P. Yao, *Heterocycles*, 2012, 85, 667.
- (5) J. N. Kim, H. J. Lee, K. Y. Lee and H. S. Kim, Tetrahedron Lett., 2001, 42, 3737.
- (6) H. S. Kim, H. S. Lee and J. N. Kim, Bull. Korean Chem. Soc., 2009, 30, 941.
- (7) M. J. Lee, S. C. Kim and J. N. Kim, Bull. Korean Chem. Soc., 2006, 27, 439.
- (8) Q. Niu, H. Mao, G. Yuan, J. Gao, H. Liu, Y. Tu, X. Wang and X. Lv, *Adv. Synth. Catal.*, 2013, **355**, 1185.
- (9) H. Venkatesan, F. M. Hocutt, T. K. Jones and M. H. Rpbinowitz, J. Org. Chem., **2010**, 75, 3488.
- (10) M. J. Cabrera-Afonso, Z.-P. Lu, C. B. Kelly, S. B. Lang, R. Dykstra, O. Gutierrez and G. A. Molander, *Chem. Sci.*, 2018, 9, 3186.

5. ¹H & ¹³C NMR Spectra of Products

NRAT V 188

Figure 42: ¹³C NMR spectrum of 3i

Figure 56: ¹³C NMR spectrum of 5a

