Supporting Information
 For

Visible Light Catalyzed Synthesis of Quinolines from (Aza)-Morita-Baylis-Hillman Adducts

Atul Kumar Chaturvedi, ${ }^{\text {a,b }}$ Namrata Rastogi ${ }^{*}$, ${ }^{\text {a,b }}$

${ }^{a}$ Medicinal \& Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
${ }^{b}$ Academy of Scientific and Innovative Research, New Delhi 110001, India

namrataiit@gmail.com; namrata.rastogi@cdri.res.in

Table of Contents

General Information 2
General Procedures 2-3
Compound Characterization 3-19
References 19
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR Spectra of Products 20-54

1. General Information

All reactions were monitored by TLC, visualization was effected with UV and/or by developing in iodine. Melting points were recorded on a Precision melting point apparatus and are uncorrected. NMR spectra were recorded on a Brucker Avance spectrometer at $400 / 500 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $75 / 100 / 125 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$. Chemical shifts are reported in δ (ppm) relative to TMS as the internal standard. To describe spin multiplicity, standard abbreviations such as $\mathrm{s}, \mathrm{d}, \mathrm{t}, \mathrm{q}, \mathrm{m}$, dd referring to singlet, doublet, triplet, quartet, multiplet and doublet of doublet respectively, are used. The ESI-HRMS spectra were recorded on Agilent 6520-Q-Tof LC/MS system.

The N-tosylamide derivatives of MBH adducts $\mathbf{1 a - 1} \mathbf{j}\left(\mathrm{EWG}=\mathrm{CO}_{2} \mathrm{Et}\right)$ and $\mathbf{1 k} \mathbf{- 1 o}(\mathrm{EWG}=$ $\mathrm{SO}_{2} \mathrm{Ph}$) were synthesized following the procedure reported by Kim et al ${ }^{1}$ and $\mathbf{1 p} \mathbf{- 1 t}(E W G=$ COEt) were synthesized by following the procedure reported by Park et al. ${ }^{2}$ The aza-MBH adducts 4a-4h were synthesized via Heck reaction of corresponding β-unsubstituted MBH adducts with aryl halides following literature protocol. ${ }^{3}$ All other chemicals, solvents and catalysts were purchased from commercial sources and used as received.

The characterization data for all starting substrates (except 1a and 4a which are known compounds) and products has been provided. All the aza-MBH adducts $\mathbf{4 a} \mathbf{a} \mathbf{4 h}$ (except $\mathbf{4 b}$) were isolated as the mixture of E and Z isomers and were used as such for the VLPC reaction. In case of $\mathbf{4 b}$, the two isomers were separated and E-isomer was used for the dihydroquinoline synthesis. The peaks for the E and Z isomers isomers in ${ }^{1} \mathrm{H}$ NMR were assigned by comparing with literature data and by establishing analogy with the pure E isomer separated in case of $\mathbf{4 b}$. The yield of $\mathbf{5 a}$ and $\mathbf{5 c} \mathbf{- 5 h}$ were calculated on the basis of recovered starting material (primarily Z-isomer).

2. General Procedures

2.1 VLPC synthesis of dihydroquinolines $(2,5) \& / o r$ quinolines (3)

In an oven dried 5 mL snap vial equipped with a magnetic stirring bar, the N-tosylamide derivatives of MBH adducts $\mathbf{1}$ or aza-MBH adducts $\mathbf{4}(0.2 \mathrm{mmol}), \mathrm{NaOH}(0.016 \mathrm{~g}, 0.4 \mathrm{mmol}$, 2.0 equiv) and photocatalyst $\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2}(0.003 \mathrm{~g}, 0.004 \mathrm{mmol}, 2.0 \mathrm{~mol} \%)$ were dissolved in anhydrous $\mathrm{CHCl}_{3}(3 \mathrm{~mL})$. The open vial was irradiated using 450 nm blue LEDs with a cooling device maintaining the temperature around $25^{\circ} \mathrm{C}$. After 8-12 h of irradiation (TLC monitoring), the reaction mixture was diluted with water and extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under
reduced pressure. The residue was purified by column chromatography on silica gel using hexane/ethyl acetate as eluent to afford the pure products $\mathbf{2 , 5} 5 \mathrm{and} /$ or 3 .

2.2 Synthesis of quinolines from dihydroquinolines

Method A ${ }^{4}$: A mixture of $\mathbf{2}(0.1 \mathrm{mmol})$ in aq $\mathrm{NaOH}(1 \mathrm{~mL})$ and $\mathrm{MeOH}(4 \mathrm{~mL})$ was refluxed overnight. The reaction was brought to room temperature upon completion (TLC monitoring) and solvent was removed under pressure. The reaction mixture was extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$) and combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using hexane/ethyl acetate as eluent to afford the pure product 3.

Method B ${ }^{\mathbf{5}}$: A mixture of $\mathbf{2}(0.1 \mathrm{mmol})$ and $\operatorname{DBU}(0.015 \mathrm{~g}, 0.1 \mathrm{mmol}, 1.0$ equiv) in THF (5 mL) was refluxed overnight. Upon reaction completion (TLC monitoring), the reaction mixture was brought to room temperature and extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). Combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using hexane/ethyl acetate as eluent to afford the pure product 3 .

2.3 Details of radical trapping experiment

In an oven dried 5 mL snap vial equipped with a magnetic stirring bar, the ethyl (E)-3-(2,6-dichlorophenyl)-2-(((4-methylphenyl)sulfonamido)methyl)acrylate $\mathbf{1 u}$ (0.2 mmol$), \mathrm{NaOH}$ ($0.016 \mathrm{~g}, 0.4 \mathrm{mmol}, 2.0$ equiv), photocatalyst $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}(0.003 \mathrm{~g}, 0.004 \mathrm{mmol}, 2.0 \mathrm{~mol} \%$) and allyl tributyltin ($0.12 \mathrm{~mL}, 0.4 \mathrm{mmol}, 2.0$ equiv) were dissolved in anhydrous CHCl_{3} (3 mL). The open vial was irradiated using 450 nm blue LEDs with a cooling device maintaining the temperature around $25^{\circ} \mathrm{C}$. After 12 h of irradiation (TLC monitoring), the reaction mixture was diluted with water and extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The crude product 6 was analyzed by High Resolution Mass Spectrometry.

3. Compound Characterization

Ethyl (E)-2-(((4-methylphenyl)sulfonamido)methyl)-3-phenylacrylate (1a) ${ }^{6}$

White solid; Isolated yield $61 \%(219 \mathrm{mg})$. The spectroscopic data matches well with the reported data.

Ethyl (\boldsymbol{E})-2-(((4-methylphenyl)sulfonamido)methyl)-3-(p-tolyl)acrylate (1b)
White sticky solid; isolated yield 69% (193 mg). $R_{f} 0.50$ ($25 \% \mathrm{EtOAc} / \mathrm{hexane}$); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.95(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.30,143.30,139.77,136.51,131.09,129.58,129.43,127.21,125.68$, 61.18, 40.64, 21.45, 21.35, 14.13; HRMS for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$: calcd. (M+H) ${ }^{+}$: 374.1421, found: 374.1420

Ethyl (E)-3-(2-bromo-4-methylphenyl)-2-(((4-methylphenyl)sulfonamido) methyl) acrylate (1c)

White solid; isolated yield $40 \% ~(180 \mathrm{mg}) . R_{f} 0.50(25 \% \mathrm{EtOAc} / \mathrm{hexane}) ;{ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.75(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.95,143.45,142.18,141.42,136.46,133.31,131.32,130.56,129.71$, 128.52, 127.59, 127.19, 123.99, 61.45, 40.89, 21.53, 21.00, 14.18; HRMS for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{BrNO}_{4} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 452.0526$, found: 452.0529

Ethyl (E)-3-(2-bromophenyl)-2-(((4-methylphenyl)sulfonamido)methyl)acrylate (1d)
White solid; isolated yield $48 \%(209 \mathrm{mg}) . R_{f} 0.50(25 \% \mathrm{EtOAc} / \mathrm{hexane}) ;{ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=7.7$ $\mathrm{Hz}, 1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.27(\mathrm{~m}, 3 \mathrm{H}), 5.26(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.79,143.45,142.01,136.51,134.40,132.81,130.78,130.66,129.71$, 128.36, 127.68, 127.19, 124.03, 61.53, 40.75, 21.51, 14.17; HRMS for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrNO}_{4} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 438.0369$, found: 438.0362

Ethyl (E)-3-(3-chlorophenyl)-2-(((4-methylphenyl)sulfonamido)methyl)acrylate (1e)

White solid; isolated yield 61% (240 mg). $R_{f} 0.50(25 \% \mathrm{EtOAc} / \mathrm{hexane}) ;{ }^{1} \mathbf{H}$ NMR (400 MHz , CDCl_{3}) $\delta 7.58-7.60(\mathrm{~s}, \mathrm{~d}$ merged, 3 H), $7.25-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{~d}, J$ $=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}$) ; ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.88,143.54,141.32,136.48,135.72,134.74$, 130.09, 129.69, 129.41, 129.36, 128.24, 127.38, 127.23, 61.54, 40.42, 21.53, 14.18; HRMS for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClNO}_{4} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 394.0874$, found: 394.0867

Ethyl (E)-3-(3-fluorophenyl)-2-(((4-methylphenyl)sulfonamido)methyl)acrylate (1f)

White solid; isolated yield $63 \%(237 \mathrm{mg}) . R_{f} 0.50(25 \% \mathrm{EtOAc} / \mathrm{hexane}) ;{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, CDCl_{3}) $\delta 7.59-7.61(\mathrm{~s}, \mathrm{~d}$ merged, 3 H), 7.28-7.33 (m, 1H), $7.20(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-7.03(\mathrm{~m}, 2 \mathrm{H}), 5.12-5.18(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}$), $2.35(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.92$, $162.74\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=246.0 \mathrm{~Hz}\right), 143.56,141.55\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.2 \mathrm{~Hz}\right), 136.48,136.03\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=7.7\right.$ $\mathrm{Hz}), 130.42\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.3 \mathrm{~Hz}\right), 129.69,128.06,127.23,125.12\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right), 116.35(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{F}}=20.9 \mathrm{~Hz}\right), 116.21\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.0 \mathrm{~Hz}\right), 61.52,40.45,21.51,14.17$; HRMS for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FNO}_{4} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 378.1170$, found: 378.1173

Ethyl (E)-2-(((4-methylphenyl)sulfonamido)methyl)-3-(2-(trifluoromethoxy)phenyl) acrylate (1g)

White solid; isolated yield 68% (301 mg). $R_{f} 0.50\left(25 \% \mathrm{EtOAc} /\right.$ hexane); ${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.39(\mathrm{~m}, 1 \mathrm{H})$, 7.27-7.31 (m, 1H), 7.18-7.24 (m, 4H), $5.15(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.76$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.66,147.11,143.54,136.93,136.46,130.99,130.91,129.71,129.23,127.43,127.18$, 120.84, 61.56, 40.87, 21.49, 14.10; HRMS for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}$: 444.1087, found: 444.1088

Ethyl (E)-2-(((4-methylphenyl)sulfonamido)methyl)-3-(3-nitrophenyl)acrylate (1h) White solid; isolated yield 57% (230 mg). $R_{f} 0.50$ ($25 \% \mathrm{EtOAc} / \mathrm{hexane}$); ${ }^{1} \mathbf{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.15-8.18 (m, 1H), $8.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.73-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.59$ $(\mathrm{m}, 2 \mathrm{H}), 7.19-7.24(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.52$, $148.37,143.75,140.02,136.38,135.61,135.00,130.02,129.74,127.15,126.45,124.24$, 123.90, 61.79, 40.29, 21.51, 14.16; HRMS for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}$: 405.1115, found: 405.1114

Ethyl (E)-2-(((4-methylphenyl)sulfonamido)methyl)-3-(4-nitrophenyl)acrylate (1i)

Light yellow solid; isolated yield 70% (283 mg). $R_{f} 0.50\left(25 \% \mathrm{EtOAc} /\right.$ hexane) ${ }^{\mathbf{1}}{ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.24(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.85$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.48,147.96,143.87,140.35,140.24,136.29,130.22,130.10,129.80,127.24,123.91$, 61.85, 40.41, 21.53, 14.16; HRMS for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 405.1115$, found: 405.1111

Ethyl (E)-2-(((4-methylphenyl)sulfonamido)methyl)-3-(thiophen-2-yl)acrylate (1j)

White solid; isolated yield $49 \%(178 \mathrm{mg}) . R_{f} 0.50(25 \% \mathrm{EtOAc} / \mathrm{hexane}) ;{ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.98(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~d}, J=$ $6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 167.16, $143.43,136.76,136.73,134.79,133.16,130.64,129.60$, 128.04, 127.30, 123.03, 61.30 , 40.69, 21.53, 14.22; HRMS for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}_{2}$: calcd. (M+H) ${ }^{+}: 366.0828$, found: 394.874

(\boldsymbol{E})-4-Methyl- N -(3-phenyl-2-(phenylsulfonyl)allyl)benzenesulfonamide ($\mathbf{1 k}$)

White solid; isolated yield 58% (248 mg). $R_{f} 0.50(25 \% \mathrm{EtOAc} / \mathrm{hexane})$; ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.32-$ $7.36(\mathrm{~m}, 5 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.13(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.44$ (s, 3H); ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 143.86, 143.30, 137.88, 135.46, 134.28, 133.81, 131.97, 130.81, 129.94, 129.83, 129.33, 129.11, 128.15, 127.65, 39.74, 21.63; HRMS for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}_{2}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 428.0985$, found: 428.0981

(\boldsymbol{E})-4-Methyl- \boldsymbol{N}-(2-(phenylsulfonyl)-3-(p-tolyl)allyl)benzenesulfonamide (11)

White solid; isolated yield $59 \%(260 \mathrm{mg}) . R_{f} 0.50(25 \% \mathrm{EtOAc} / \mathrm{hexane}){ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.28-$ $7.31(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$,
$2.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.82,143.37,141.50,138.08,135.51,133.70$, 133.09, 130.07, 129.85, 129.81, 129.29, 129.19, 128.10, 127.66, 39.83, 21.62, 21.51; HRMS for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}_{2}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 442.1141$, found: 442.1134
(E)-N-(3-(2-Bromo-4-methylphenyl)-2-(phenylsulfonyl)allyl)-4-methylbenzenesulfonamide (1m)

White solid; isolated yield 70% (363 mg). $R_{f} 0.50\left(25 \% \mathrm{EtOAc} /\right.$ hexane) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.37(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.30$ $(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 143.84,143.11,142.65,137.76,135.61,135.45,133.86,133.45,130.25,129.83$, 129.38, 129.33, 128.86, 128.21, 127.58, 124.40, 39.81, 21.62, 21.10; HRMS for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BrNO}_{4} \mathrm{~S}_{2}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 520.0246$, found: 520.0240
(E)-N-(3-(3-Fluorophenyl)-2-(phenylsulfonyl)allyl)-4-methylbenzenesulfonamide (1n)

White solid; isolated yield 52% (231 mg). $R_{f} 0.50$ ($25 \% \mathrm{EtOAc} / \mathrm{hexane}$); ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.10-7.19$ $(\mathrm{m}, 2 \mathrm{H}), 5.21(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 162.80\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=246.7 \mathrm{~Hz}\right), 143.99,141.70\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=1.5 \mathrm{~Hz}\right), 137.64,136.00$, $135.42,134.01,133.95\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=7.5 \mathrm{~Hz}\right), 130.79\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.2 \mathrm{~Hz}\right), 129.86,129.44,128.22$, $127.58,125.49\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.7 \mathrm{~Hz}\right), 117.69\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=20.9 \mathrm{~Hz}\right), 116.65\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.4 \mathrm{~Hz}\right), 39.55$, 21.60; HRMS for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{FNO}_{4} \mathrm{~S}_{2}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}$: 446.0891 , found: 446.0883
(E)-4-methyl-N-(2-(phenylsulfonyl)-3-(4-(trifluoromethoxy) phenyl) allyl)

benzenesulfonamide (10)

White solid; isolated yield 56% (286 mg). $R_{f} 0.50(25 \% \mathrm{EtOAc} / \mathrm{hexane})$; ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.55(\mathrm{~m}, 5 \mathrm{H}), 7.36(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.12(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=5.9$ $\mathrm{Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.41,138.73,136.79,134.85$, $134.53,134.16,130.79,130.27,129.71,129.44,128.21,127.24,125.11,119.18,119.07$, 43.62, 21.58; HRMS for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}_{2}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}$: 512.0808 , found: 512.0810
(\boldsymbol{E})- N -(2-Benzylidene-3-oxopentyl)-4-methylbenzenesulfonamide (1p) ${ }^{\mathbf{2}}$
White solid; isolated yield 57% (195 mg). The spectroscopic data matches well with the reported data.
(\boldsymbol{E})-4-Methyl- N-(2-(4-methylbenzylidene)-3-oxopentyl)benzenesulfonamide (1q) ${ }^{7}$
White solid; isolated yield 36% (128 mg). The spectroscopic data matches well with the reported data.
(E)- N-(2-(3-bromobenzylidene)-3-oxopentyl)-4-methylbenzenesulfonamide (1r)
Colourless solid; isolated yield 46% (193 mg). $R_{f} 0.50$ ($25 \% \mathrm{EtOAc} / \mathrm{hexane}$); ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.19-7.27 (m merged with solvent peak, 3 H), $5.16(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J$ $=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.85,143.50,140.75,136.61,136.49,135.97,132.51,132.24,130.44$, 129.70, 127.95, 127.24, 122.86, 40.08, 30.44, 21.53, 8.24; HRMS for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 422.0420$, found: 422.0423
(\boldsymbol{E})- N -(2-(2-fluorobenzylidene)-3-oxopentyl)-4-methylbenzenesulfonamide (1s)
Colourless solid; isolated yield 52% (188 mg). $R_{f} 0.50(25 \% \mathrm{EtOAc} / \mathrm{hexane}) ;{ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.37(\mathrm{~m}$, $1 \mathrm{H}), 7.15-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.02-7.07(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.62(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.89,160.32\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=248.6 \mathrm{~Hz}\right), 143.45,136.86,136.59$, $135.23\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4.0 \mathrm{~Hz}\right)$, $131.73\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.4 \mathrm{~Hz}\right), 130.89\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=1.7 \mathrm{~Hz}\right), 129.68,127.21,124.64\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right)$, $121.95\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=13.3 \mathrm{~Hz}\right), 115.63\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.4 \mathrm{~Hz}\right), 40.51,30.49,21.50,8.21$; HRMS for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FNO}_{3} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 362.1221$, found: 362.1226
(E)-4-methyl- N -(3-oxo-2-(4-(trifluoromethoxy)benzylidene)pentyl)benzenesulfonamide (1t)
Colourless solid; isolated yield 48% (205 mg). $R_{f} 0.50$ ($25 \% \mathrm{EtOAc} / \mathrm{hexane}$); ${ }^{1}$ H NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.23(\mathrm{~m}, 4 \mathrm{H}), 5.12$ $(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.87,149.96,143.60,141.03,136.35,136.02$, 132.44, 131.28, 129.73, 127.27, 121.03, 40.21, 30.38, 21.50, 8.25; HRMS for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 428.1138$, found: 428.1139

Ethyl (\boldsymbol{E})-3-(2,6-dichlorophenyl)-2-(((4-methylphenyl)sulfonamido)methyl)acrylate (1u)
White solid; isolated yield 68% (290 mg). $R_{f} 0.50(25 \% \mathrm{EtOAc} / \mathrm{hexane})$; ${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.48-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.17(\mathrm{~m}, 3 \mathrm{H}), 5.03(\mathrm{t}, J=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}$) ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.87,143.17,136.72,136.62,134.05,132.03$, 131.88, 130.10, 129.52, 128.11, 127.07, 61.63, 41.01, 21.48, 14.10; HRMS for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{NO}_{4} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 428.0485$, found: 428.0486

Ethyl 1-tosyl-1,2-dihydroquinoline-3-carboxylate (2a) ${ }^{8}$

White solid; isolated yield $84 \%(60 \mathrm{mg}) . R_{f} 0.50(20 \% \mathrm{EtOAc} / \mathrm{hexane})$; Mp $116{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.04$ (dd, $J=7.6 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 2 \mathrm{H})$, $4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 164.26,143.78,136.20,135.87,133.38,130.44,129.14,128.52,128.07,127.24,126.99$, 126.95, 125.38, 60.84, 44.33, 21.50, 14.33; HRMS for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}$: 358.1108 , found: 358.1110

Ethyl 7-methyl-1-tosyl-1,2-dihydroquinoline-3-carboxylate (2b)

White solid; isolated yield 84% (62 mg). $R_{f} 0.50$ ($20 \% \mathrm{EtOAc} / \mathrm{hexane}$); Mp $127-128{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.17-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.99(\mathrm{~m}, 4 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H})$, 4.55 (br s, 2H), 4.12 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.38,143.70,141.17,136.14,135.91,133.49,129.09$, 128.34, 127.83, 127.79, 127.01, 125.47, 124.13, 60.71, 44.38, 21.79, 21.50, 14.35; HRMS for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 372.1264$, found: 372.1256

Ethyl 5-bromo-7-methyl-1-tosyl-1,2-dihydroquinoline-3-carboxylate (2c)

White solid; isolated yield 78% (70 mg). $R_{f} 0.50$ ($20 \% \mathrm{EtOAc} / \mathrm{hexane}$); Mp $152-153{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H})$, $7.01(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.24$ ($\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$) ; ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.00,144.10,141.85,137.64,135.81$, $131.95,131.75,129.27,127.21,126.93,125.75,125.28,122.98,60.93,43.99,21.54,21.47$, 14.33; HRMS for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{BrNO}_{4} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 450.0369$, found: 450.0373

Ethyl 5-bromo-1-tosyl-1,2-dihydroquinoline-3-carboxylate (2d)

White solid; isolated yield 81% (70 mg). $R_{f} 0.50$ ($20 \% \mathrm{EtOAc} /$ hexane); Mp $96-97{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.28(\mathrm{~m}$, $4 \mathrm{H}), 7.09(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, $1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.89$, 144.19, 137.90, 135.76, $131.85,130.05,130.76,129.33,127.93,126.96,126.54,123.27,61.06,43.93,21.56,14.32$; HRMS for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{BrNO}_{4} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 436.0213$, found: 436.0209

Ethyl 6-chloro-1-tosyl-1,2-dihydroquinoline-3-carboxylate (2e)

White solid; isolated yield 66% (52 mg). $R_{f} 0.50(20 \% \mathrm{EtOAc} / \mathrm{hexane})$; Mp $129{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=8.7 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.15$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$163.90,144.08,135.63,134.63,132.50,132.06,130.19,129.37,129.31,128.56,127.97$, $126.97,126.73,61.05,44.32,21.53,14.30$; HRMS for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClNO}_{4} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}$: 392.0718, found: 392.0720

Ethyl 6-fluoro-1-tosyl-1,2-dihydroquinoline-3-carboxylate (2f)

White solid; isolated yield 68% (52 mg). $R_{f} 0.50$ ($20 \% \mathrm{EtOAc} /$ hexane); Mp $130-132{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73$ (dd, $J=8.8 \mathrm{~Hz}, 5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.25 (d, $\left.J=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.10-$ $7.13(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=8.2 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~s}$, $2 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 163.94,160.98\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=245.8 \mathrm{~Hz}\right), 144.01,135.52,132.23\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.0 \mathrm{~Hz}\right)$, $132.02\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right), 129.66\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.7 \mathrm{~Hz}\right), 129.23,129.22\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.3 \mathrm{~Hz}\right), 127.00$, $126.78,117.11\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.6 \mathrm{~Hz}\right), 114.53\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=23.1 \mathrm{~Hz}\right), 61.03,44.40,21.51,14.30$; HRMS for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{FNO}_{4} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 376.1013$, found: 376.1005

Ethyl 1-tosyl-5-(trifluoromethoxy)-1,2-dihydroquinoline-3-carboxylate (2g)

White sticky solid; isolated yield $68 \%(60 \mathrm{mg}) . R_{f} 0.50(20 \% \mathrm{EtOAc} / \mathrm{hexane}) ;{ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.09-$ $7.12(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}$), $2.27(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 163.81, $145.58,144.28,137.57,135.52,130.46,129.29,126.87,126.84,126.38,125.77,121.79$, 121.67, 118.87, 61.10, 43.99, 21.49, 14.28; HRMS for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}$: calcd. (M+H) ${ }^{+}$ 442.0931, found: 442.0924

Ethyl 6-nitro-1-tosyl-1,2-dihydroquinoline-3-carboxylate (2h)

White solid; isolated yield 64% (52 mg). $R_{f} 0.50$ ($20 \% \mathrm{EtOAc} / \mathrm{hexane}$); Mp $147-148{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16(\mathrm{dd}, J=9.0 \mathrm{~Hz}, 2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.86$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J$ $=1.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.51,145.57,144.69,141.74,135.62,131.51,129.65,128.24,127.77$, 126.94, 126.86, 124.98, 123.49, 61.36, 44.35, 21.56, 14.27; HRMS for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 403.958$, found: 403.956

3-(Phenylsulfonyl)-1-tosyl-1,2-dihydroquinoline (2k)

White solid; isolated yield 72% (61 mg). $R_{f} 0.50$ ($20 \% \mathrm{EtOAc} / \mathrm{hexane}$); Mp $151-153{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.52-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.98 (peaks merged to appear as d, $J=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 6.91(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~s}$, 2H), $2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.99,138.96,135.20,134.68,134.46$,
133.99, 132.09, 131.38, 129.62, 129.24, 129.18, 128.17, 127.25, 127.18, 126.95, 126.90, 43.83, 21.56; HRMS for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}_{2}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 426.0828$, found: 426.0820

7-Methyl-3-(phenylsulfonyl)-1-tosyl-1,2-dihydroquinoline (21)

White solid; isolated yield 74% (66 mg). $R_{f} 0.50$ ($20 \% \mathrm{EtOAc} / \mathrm{hexane}$); Mp $162-164{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.54(\mathrm{~m}, 3 \mathrm{H}), 6.90-$ 7.00 (peaks merged to appear as m, 7H), 4.51 (d, $J=0.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.35 (s, 3H), 2.25 (s, 3H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.90,142.34,139.15,135.14,134.75,133.87,133.07$, $132.27,129.58,129.20,128.99,128.10,128.01,127.46,127.25,124.29,43.88,21.85,21.56$; HRMS for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}_{2}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 440.0985$, found: 440.0980

5-Bromo-7-methyl-3-(phenylsulfonyl)-1-tosyl-1,2-dihydroquinoline (2m)

White solid; isolated yield 74% (66 mg). $R_{f} 0.50$ ($20 \% \mathrm{EtOAc} / \mathrm{hexane}$); Mp $190-191{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.55(\mathrm{~m}$, $3 \mathrm{H}), 7.25(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H})$, $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 144.37, 142.90, 138.95, 136.70, $135.01,134.58,134.00,131.90,130.88$, 129.63, 129.38, 128.22, 127.28, 126.71, 124.20, 123.57, 43.53, 21.61, 21.53; HRMS for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{BrNO}_{4} \mathrm{~S}_{2}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 518.0090$, found: 518.0088

6-Fluoro-3-(phenylsulfonyl)-1-tosyl-1,2-dihydroquinoline (2n)

White solid; isolated yield 59% (52 mg). $R_{f} 0.50$ (20% EtOAc/hexane); Mp $158-160{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.54(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.03-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=7.9 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 160.90\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=247.0 \mathrm{~Hz}\right), 144.24,138.64,136.18,134.36,134.19,131.06\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=3.7 \mathrm{~Hz}), 130.87\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=1.9 \mathrm{~Hz}\right), 129.70,129.35,129.00\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.4 \mathrm{~Hz}\right), 128.55\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=8.6 \mathrm{~Hz}), 128.25,127.32,118.03\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.6 \mathrm{~Hz}\right), 115.28\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=23.5 \mathrm{~Hz}\right), 43.92,21.58$; HRMS for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{FNO}_{4} \mathrm{~S}_{2}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 444.0734$, found: 444.0732

3-(Phenylsulfonyl)-1-tosyl-7-(trifluoromethoxy)-1,2-dihydroquinoline (20)

White sticky solid; isolated yield 38% (38 mg). $R_{f} 0.50$ ($20 \% \mathrm{EtOAc} /$ hexane); ${ }^{1} \mathbf{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.54-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.11$ (d, $J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.01-7.06(\mathrm{~m}, 4 \mathrm{H}), 6.96(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.75,144.08,141.49,137.56,135.31,135.26,134.00,131.70,130.42$, 129.89, 129.43, 128.20, 127.66, 121.14, 119.03, 39.63, 21.59; HRMS for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}_{2}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 510.0651$, found: 510.0652

1-(1-Tosyl-1,2-dihydroquinolin-3-yl)propan-1-one (2p)

White solid; isolated yield 70% (48 mg). $R_{f} 0.50$ (20% EtOAc/hexane); Mp $135-136{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.29(\mathrm{~m}, 3 \mathrm{H})$, $7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.33 ($\mathrm{s}, 3 \mathrm{H}$), $1.03(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.30, $143.66,136.63,136.01,132.74,132.55,130.79,129.09,128.71,128.07,127.40,127.02$, 126.97, 43.48, 30.09, 21.45, 8.40; HRMS for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}$: calcd. (M+H) ${ }^{+}: 342.1158$, found: 342.1147

1-(7-Methyl-1-tosyl-1,2-dihydroquinolin-3-yl)propan-1-one (2q)

White solid; isolated yield 72% (51 mg). $R_{f} 0.50$ (20% EtOAc/hexane); Mp $152-154{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.95-7.03(\mathrm{~m}, 4 \mathrm{H}), 6.73(\mathrm{~s}$, $1 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.25,143.55,141.63,136.60,136.10,132.70,131.71$, 129.04, 128.51, 127.97, 127.87, 127.05, 125.43, 43.54, 29.98, 21.83, 21.45, 8.45; HRMS for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 356.1315$, found: 356.1312

1-(6-Bromo-1-tosyl-1,2-dihydroquinolin-3-yl)propan-1-one (2r)

White solid; isolated yield 69% (58 mg). $R_{f} 0.50$ ($20 \% \mathrm{EtOAc} /$ hexane); Mp $137-139{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=8.6 \mathrm{~Hz}, 2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22$ (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J$ $=0.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.00,143.93,135.83,135.61,133.82,133.43,131.05,131.00,129.75$, 129.27, 128.95, 127.01, 120.20, 43.43, 30.21, 21.48, 8.30; HRMS for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{BrNO}_{3} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 420.0264$, found: 420.0268

1-(5-Fluoro-1-tosyl-1,2-dihydroquinolin-3-yl)propan-1-one (2s)

White solid; isolated yield 68% (49 mg). $R_{f} 0.50$ ($20 \% \mathrm{EtOAc} / \mathrm{hexane}$); Mp $141-143{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.99-7.01(\mathrm{~d}$ and s merged, 3 H), $6.90-6.94(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 2.35(\mathrm{q}, J=7.3 \mathrm{~Hz}$, 2H), 2.27 ($\mathrm{s}, 3 \mathrm{H}$), 0.97 ($\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.06,158.97$ (d, $\left.J_{\mathrm{C}-\mathrm{F}}=251.7 \mathrm{~Hz}\right), 143.98,137.71\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4.3 \mathrm{~Hz}\right), 135.98,132.87\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=1.9 \mathrm{~Hz}\right), 131.25$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=9.5 \mathrm{~Hz}\right), 129.26,129.96,124.96\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=5.2 \mathrm{~Hz}\right), 122.88\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.2 \mathrm{~Hz}\right), 116.78$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=16.3 \mathrm{~Hz}\right), 113.16\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=20.7 \mathrm{~Hz}\right), 43.22,30.15,21.48,8.31$; HRMS for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{FNO}_{3} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 360.1064$, found: 360.1067

1-(1-Tosyl-7-(trifluoromethoxy)-1,2-dihydroquinolin-3-yl)propan-1-one (2t)

White solid; isolated yield 63% (54 mg). $R_{f} 0.50$ (20% EtOAc/hexane); Mp $138-139{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-$ $7.06(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{q}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.27 ($\mathrm{s}, 3 \mathrm{H}$), 0.97 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.04, $150.17,144.03,138.14,135.84,133.00,131.15,129.64,129.28,127.02,126.36,121.65$, 119.65, 118.86, 43.31, 30.19, 21.47, 8.33; HRMS for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}$: 426.0981, found: 426.0983

Ethyl 6-chloroquinoline-3-carboxylate (3e) ${ }^{9}$

White solid; isolated yield 94% (22 mg). $R_{f} 0.50$ (20% EtOAc/hexane); Mp $106-108{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.35(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=9.0 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.97,150.25,148.17,137.57$, 133.26, 132.59, 131.10, 127.52, 127.50, 124.14, 61.70, 14.31; HRMS for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClNO}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 236.0473$, found: 236.0480

Ethyl 6-fluoroquinoline-3-carboxylate (3f) ${ }^{\mathbf{9}}$

White solid; isolated yield 87% (19 mg). $R_{f} 0.50$ ($20 \% \mathrm{EtOAc} /$ hexane) ; Mp $109-111{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.33(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.71(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{dd}, J=$ $9.2 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{q}, J=7.2 \mathrm{~Hz}$, 2 H), 1.39 ($\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.09,160.78\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=248.5\right.$ $\mathrm{Hz}), 149.39\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.6 \mathrm{~Hz}\right), 146.94,137.86\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=5.5 \mathrm{~Hz}\right), 132.04\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9.1 \mathrm{~Hz}\right)$, $127.59\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=10.2 \mathrm{~Hz}\right), 124.02,121.98\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=25.6 \mathrm{~Hz}\right), 111.87\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.7 \mathrm{~Hz}\right)$, 61.66, 14.30; HRMS for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{FNO}_{2}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 220.0768$, found: 220.0772

Ethyl 7-nitroquinoline-3-carboxylate (3i)

Yellow solid; isolated yield 76% (37 mg). $R_{f} 0.50$ ($20 \% \mathrm{EtOAc} / \mathrm{hexane}$); Mp $159-160{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.51(\mathrm{~s}, 1 \mathrm{H}), 8.97(\mathrm{~s}, 1 \mathrm{H}), 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $8.04(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.48,152.18,149.41,148.86,138.21,130.73,129.99,125.87,125.65$, 120.91, 62.11, 14.30; HRMS for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 247.0713$, found: 247.0706

Ethyl thieno[3,2-b]pyridine-6-carboxylate (3j)

White solid; isolated yield 38% (16 mg). $R_{f} 0.50$ ($20 \% \mathrm{EtOAc} /$ hexane); Mp $88-90{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.23(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.78(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$

NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.46,158.50,148.35,134.77,132.29,125.17,121.33,61.52$, 14.34; HRMS for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{2} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}$: 208.0427, found: 208.0423

3-(Phenylsulfonyl)quinoline ($\mathbf{3 k})^{10}$

White solid; isolated yield 81% (22 mg). $R_{f} 0.50$ (20% EtOAc/hexane); Mp $151-153{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.21(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.75(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.96-7.98$ (m, 2H), 7.90 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.79-7.83 (m, 1H), 7.60-7.64 (m, 1H), 7.45-7.56 (m, 3H); ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.40,147.14,141.04,136.91,134.76$, 133.74, 132.78, 129.67, 129.60, 129.19, 128.38, 127.83, 126.39; HRMS for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 270.0583$, found: 270.0588

7-Methyl-3-(phenylsulfonyl)quinoline (31)

White solid; isolated yield 84% (24 mg). $R_{f} 0.50$ (20\% EtOAc/hexane); Mp $161-163{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.16(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.68(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.96(\mathrm{~m}$, $2 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.54(\mathrm{~m}, 4 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.65,147.19,143.92,141.24,136.56,133.87,133.62,130.67,129.55$, 128.77, 128.64, 127.75, 124.45, 22.17; HRMS for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}$: 284.0740, found: 284.0745

3-(Phenylsulfonyl)-7-(trifluoromethoxy)-1,2-dihydroquinoline (3o)

White solid; isolated yield 22% (15 mg). $R_{f} 0.50$ (20% EtOAc/hexane); Mp $139-140{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.24(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.78(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.99(\mathrm{~m}$, 4H), 7.47-7.58 (m, 4H); ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 152.01, 149.98, 148.42, 140.73, 136.56, 135.28, 133.95, 131.13, 129.70, 127.86, 124.54, 122.29, 119.02; HRMS for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 354.0406$, found: 354.0409

1-(Quinolin-3-yl)propan-1-one (3p)

White solid; isolated yield 89% (16 mg). $R_{f} 0.50$ ($20 \% \mathrm{EtOAc} / \mathrm{hexane}$); Mp $138-139{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.38(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=8.1 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.59(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 199.48, 149.77, 149.13, 136.87, 131.89, 129.45, 129.34, 129.13, 127.53, 126.96, 32.26, 8.03; HRMS for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 186.0913$, found: 186.0911

1-(7-Methylquinolin-3-yl)propan-1-one (3q)

White solid; isolated yield 90% (17 mg). $R_{f} 0.50$ (20% EtOAc/hexane); Mp $126-127{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.33(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 199.49,149.98,149.19,142.84,136.58,129.83,128.97,128.51$,
128.44, 124.98, 32.17, 22.14, 8.06; HRMS for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}$: calcd. (M+H) ${ }^{+}: 200.1070$, found: 200.1071

Ethyl-2-(((4-methylphenyl)sulfonamido)(phenyl)methyl)-3-phenylacrylate (4a) ${ }^{\mathbf{3}}$

White solid; isolated yield 62% (270 mg). The spectroscopic data matches well with the reported data.

Ethyl (\boldsymbol{E})-2-(((4-methylphenyl)sulfonamido)(p-tolyl)methyl)-3-phenylacrylate (4b)
White solid; isolated yield 63% (283 mg). $R_{f} 0.50$ ($20 \% \mathrm{EtOAc} / \mathrm{hexane}$); ${ }^{1} \mathbf{H}$ NMR (500 MHz , CDCl_{3}): $\delta 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.12(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.07(\mathrm{~m}, 4 \mathrm{H}), 6.27(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.04-4.09(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.52,142.83,142.36,137.87,137.28,136.23,133.83,129.49,129.37$, 129.30, 129.26, 129.00, 128.78, 127.10, 126.25, 61.14, 53.87, 21.50, 21.01, 14.09; HRMS for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 472.1553$, found: 472.1548

Ethyl-2-((2,6-dichlorophenyl)((4-methylphenyl)sulfonamido)methyl)-3-phenylacrylate

 (4c)White solid; isolated yield 67% (337 mg). $R_{f} 0.50(20 \% \mathrm{EtOAc} / \mathrm{hexane})$; ${ }^{1} \mathbf{H}$ NMR (400 MHz , CDCl_{3}) ($E-\mathrm{Z}$ mixture): $\delta 7.62-7.64$ (m appearing as $\mathrm{br} \mathrm{d}, 4 \mathrm{H}$), 7.13-7.30 $(\mathrm{m}, 12 \mathrm{H}), 7.03-7.11$ (m, 6H), 6.39-6.43 (m, 4H), 6.28-6.31 (m, 1H, E), 6.07-6.11 (m, 1H, Z), 5.90-5.93 (m, 1H, E), 5.83 (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, E), 4.04-4.14(\mathrm{~m}, 4 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}, E), 2.31(\mathrm{~s}, 3 \mathrm{H}, Z), 1.21(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}, E), 1.11(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, Z) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.32$, 165.23, $143.24,137.71,137.04,134.73,133.36,132.54,132.46,131.14,129.57,129.24,129.19$, $128.36,128.23,127.22,126.88,126.85,61.31,61.16,56.11,54.19,21.42,21.39,13.95$, 13.72; HRMS for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{NO}_{4} \mathrm{~S}$: calcd. (M+H) ${ }^{+}$: 504.0798 , found: 504.0795

Ethyl-2-(((4-methylphenyl)sulfonamido)(thiophen-3-yl)methyl)-3-phenylacrylate (4d)

White solid; isolated yield 50% (220 mg). $R_{f} 0.50$ ($20 \% \mathrm{EtOAc} / \mathrm{hexane}$); ${ }^{1}$ H NMR (400 MHz , CDCl_{3}) ($E-Z$ mixture): $\delta 7.66$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, Z$), 7.54 (s, $1 \mathrm{H}, E$), $7.30-7.35$ (m, 6H), 7.11$7.20(\mathrm{~m}, 7 \mathrm{H}), 7.02-7.08(\mathrm{~m}, 6 \mathrm{H}), 6.95-6.96$ (m, 1H, E), 6.86-6.90 (m, 2H), 6.53 (s, 1H, Z), 6.32 (d, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, E), 5.94(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, Z), 5.71(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, E)$, 5.22 (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, Z), 4.02-4.10(\mathrm{~m}, 2 \mathrm{H}, E), 3.79-3.89(\mathrm{~m}, 2 \mathrm{H}, Z), 2.32(2 \mathrm{~s}, 3 \mathrm{H}, E), 2.14(\mathrm{~s}, 3 \mathrm{H}$, $Z), 1.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, E), 0.80(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, Z) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.47,143.38,142.95,141.90,141.02,140.01,137.89,137.77,134.63,133.72,130.14$, 129.56, 129.30, 128.98, 128.83, 128.55, 128.43, 127.88, 127.27, 127.08, 126.62, 126.40, 126.34, 126.24, 122.12, 121.71, 61.20, 60.94, 58.88, 51.33, 21.51, 21.30, 14.09, 13.39; HRMS for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}_{2}$: calcd. (M+H) ${ }^{+}$: 464.0961 , found: 464.0953

Ethyl-3-(2,4-dimethylphenyl)-2-(((4-methylphenyl)sulfonamido)(phenyl)methyl)acrylate (4e)
White solid; isolated yield 58% (268 mg). $R_{f} 0.50\left(20 \%\right.$ EtOAc/hexane); ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right)(E-Z$ mixture $): \delta 7.75(\mathrm{~s}, 1 \mathrm{H}, E), 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, E), 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$, $E), 7.26(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, Z), 7.16-7.23(\mathrm{~m}, 8 \mathrm{H}), 7.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, Z), 7.00(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}, Z$), 6.98 (s, 1H, Z), 6.84-6.91 (m, 3H), $6.74(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}, E), 6.41(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}, Z), 6.26(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, E), 5.94(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, Z), 5.67(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}$, $E), 5.28(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, Z), 4.04-4.12(\mathrm{~m}, 2 \mathrm{H}, E), 3.72(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, Z), 2.29(\mathrm{~s}, 3 \mathrm{H}$, $E), 2.27(\mathrm{~s}, 3 \mathrm{H}, E), 2.22,2.21(2 \mathrm{~s}$ merged, $6 \mathrm{H}, Z), 2.10(\mathrm{~s}, 3 \mathrm{H}, E), 2.07(\mathrm{~s}, 3 \mathrm{H}, Z), 1.13(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}, E), 0.68(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, Z) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.46,166.73$, $143.32,142.81,141.42,139.77,139.54,138.83,138.74,138.16,138.07,137.95,137.30$, 135.54, 131.82, 131.21, 131.04, 130.35, 130.06, 129.61, 129.49, 129.31, 128.52, 128.45, $128.00,127.85,127.69,127.35,127.19,126.97,126.89,126.47,126.34,125.77,61.40$, 61.14, 60.64, 53.96, 21.47, 21.37, 21.29, 21.14, 19.83, 19.79, 14.07, 13.33; HRMS for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 464.1890$, found: 464.1896
Ethyl-3-(2,4-dimethylphenyl)-2-(((4-methylphenyl)sulfonamido)(p-tolyl)methyl) acrylate (4f)
White solid; isolated yield $46 \% ~(219 \mathrm{mg}) . R_{f} 0.50(20 \% \mathrm{EtOAc} / \mathrm{hexane}) ;{ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}) ($E-\mathrm{Z}$ mixture): $\delta 7.73(\mathrm{~s}, 1 \mathrm{H}, E), 7.67(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, Z), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, E), 7.08-7.13 (m, 6H), 6.97-7.02 (m, 7H), 6.73-6.89 (m, 5H), $6.41(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Z}), 6.24$ (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, E), 5.87(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, Z), 5.62(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, E), 5.23(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}, Z), 4.03-4.11(\mathrm{~m}, 2 \mathrm{H}, E), 3.72(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, Z), 2.29$ (s, 3H, E), 2.26 (s, 3H, $E), 2.22(\mathrm{~s}, 9 \mathrm{H}, Z), 2.21(\mathrm{~s}, 3 \mathrm{H}, E), 2.09(\mathrm{~s}, 3 \mathrm{H}, Z), 2.06(\mathrm{~s}, 3 \mathrm{H}, E), 1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, E)$, $0.69(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, Z) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.48,166.78,143.26,142.74$, $141.23,139.48,138.61,138.10,138.07,137.99$, 137.41, 137.29, 137.03, 136.76, 135.77, $135.53,131.92,131.18,130.32,130.09$, 129.58, 129.53, 129.27, 129.21, 129.16, 128.01, 127.87, 127.21, 126.98, 126.86, 126.38, 126.26, 125.74, 61.18, 61.09, 60.59, 53.78, 21.47, 21.37, 21.28, 21.13, 21.01, 20.99, 19.83, 19.79, 14.10, 13.35; HRMS for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 500.1866$, found: 500.1873
Ethyl-3-(2,4-dimethylphenyl)-2-(((4-methylphenyl)sulfonamido)(thiophen-3-yl) methyl) acrylate (4g)
White solid; isolated yield 39% (183 mg). $R_{f} 0.50(20 \% \mathrm{EtOAc} / \mathrm{hexane}) ;{ }^{1} \mathbf{H}$ NMR (400 MHz , CDCl_{3}) ($E-Z$ mixture): $\delta 7.67-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, E), 6.87-7.17(\mathrm{~m}, 14 \mathrm{H})$, $6.74(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, Z), 6.72(\mathrm{~s}, 1 \mathrm{H}, Z), 6.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, Z), 6.29(\mathrm{~d}, J=10.2 \mathrm{~Hz}$,
$1 \mathrm{H}, E), 6.02(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, Z), 5.61(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, E), 5.27(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, Z)$, 4.04-4.16 (m, 2H, E), 3.72-3.80 (m, 2H, Z), 2.28, $2.30(2 \mathrm{~s}, 6 \mathrm{H}, E), 2.21,2.22(2 \mathrm{~s}, 6 \mathrm{H}, Z), 2.09$ (s, 3H, Z), $2.06(\mathrm{~s}, 3 \mathrm{H}, E), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, E), 0.72(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, Z) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.50,166.72,143.35,142.85,141.46,140.98,140.58,139.53,138.54$, $138.24,138.08$, 137.89, 137.17, 135.52, 131.69, 131.19, 130.71, 130.37, 129.98, 129.65, $129.62,129.32,127.99,127.19,126.94,126.88,126.65,126.43,126.31,126.00,125.77$, $121.95,121.62,61.16,60.68,58.57,51.17,21.48,21.38,21.29,21.14,19.82,19.77,14.10$, 13.36; HRMS for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}_{2}$: calcd. $(\mathrm{M}+\mathrm{Na})^{+}$: 492.1274, found: 492.1276

Ethyl-3-(4-isopropylphenyl)-2-(((4-methylphenyl)sulfonamido)(p-tolyl)methyl)acrylate

 (4h)White solid; isolated yield 52% (255 mg). $R_{f} 0.50$ ($20 \% \mathrm{EtOAc} / \mathrm{hexane}$); ${ }^{1} \mathbf{H}$ NMR (400 MHz , CDCl_{3}) ($E-Z$ mixture): $\delta 7.63$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Z}$), 7.53 (s, $\left.1 \mathrm{H}, E\right), 7.33$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$, $E), 7.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, E), 7.10-7.14(\mathrm{~m}, 4 \mathrm{H}), 6.97-7.04(\mathrm{~m}, 12 \mathrm{H}), 6.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}, Z), 6.47$ (s, 1H, Z), 6.29 (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, E), 5.88(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, Z), 5.76$ (d, $J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}, E), 5.17$ (d, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, Z$), 3.97-4.05 (m, 2H, E), 3.78-3.86 (m, 2H, Z), 2.762.86 (m, 2H), 2.31 (s, 3H, E), 2.24 (s, 3H, E), 2.20 (s, 3H, Z), 2.10 (s, 3H, Z), 1.19 (s, 3H, E), 1.17 (s, 3H, E), $1.15(\mathrm{~s}, 3 \mathrm{H}, Z), 1.13(\mathrm{~s}, 3 \mathrm{H}, Z), 1.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, E), 0.79(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}, Z$) ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.97,166.67,150.71,149.57,143.23,142.81$, $142.58,137.98,137.93,137.87,137.42,137.23,136.34$, 135.43, 132.16, 131.30, 129.68, 129.53, 129.32, 129.30, 129.23, 129.17, 128.71, 128.31, 127.27, 127.14, 126.91, 126.48, 126.34, 125.93, 61.61, 61.06, 60.81, 54.00, 34.00, 33.94, 31.69, 23.88, 23.84, 23.81, 23.79, 21.53, 21.27, 21.03, 14.11, 13.44; HRMS for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{Na})^{+}: 514.2023$, found: 514.2027

Ethyl 2-phenyl-1-tosyl-1,2-dihydroquinoline-3-carboxylate (5a)

White solid; isolated yield $62 \%(30 \mathrm{mg}) . R_{f} 0.50$ ($20 \% \mathrm{EtOAc} / \mathrm{hexane}$); Mp $99-100{ }^{\circ} \mathrm{C}^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.29(\mathrm{~m}, 11 \mathrm{H}), 6.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, 2H), $6.44(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.59,143.78,137.38,135.75,134.12,133.41,130.71,129.15,128.38$, $128.29,128.12,128.02,127.84,127.45,127.22,126.98$, 126.81, $60.97,55.90,21.53,14.28$;

HRMS for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}$: 434.1421, found: 434.1418

Ethyl 2-(p-tolyl)-1-tosyl-1,2-dihydroquinoline-3-carboxylate (5b)

White solid; isolated yield 69% (62 mg). $R_{f} 0.50$ ($20 \% \mathrm{EtOAc} / \mathrm{hexane}$); Mp $128-129{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.24(\mathrm{~m}, 2 \mathrm{H})$, 7.14 (s, 1H), 7.08-7.13 (m, 2H), 7.06 (br d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.93$ (d,
$J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.59,143.71,137.79,135.81,134.31,134.12$, $133.26,130.65,129.13,129.10,128.23,128.15,127.99,127.51,126.76,60.93,55.74,21.52$, 21.04, 14.28; HRMS for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 448.1577$, found: 448.1576

Ethyl 2-(2,6-dichlorophenyl)-1-tosyl-1,2-dihydroquinoline-3-carboxylate (5c)

White solid; isolated yield 56% (44 mg). $R_{f} 0.50$ ($20 \% \mathrm{EtOAc} / \mathrm{hexane}$); Mp $147-148{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.22(\mathrm{~m}, 2 \mathrm{H})$, 7.12-7.16 (m, 2H), 7.00-7.06 (m, 4H), 4.00-4.08 (m, 2H), $2.28(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.51,143.94,136.76,136.40,135.59,135.31,135.04$, 130.93, 129.65 129.30, 128.16, 127.57, 127.43, 126.64, 126.28, 124.87, 60.92, 54.53, 21.56, 14.06; HRMS for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{NO}_{4} \mathrm{~S}$: calcd. (M+H)+: 502.0641, found: 502.0643

Ethyl 2-(thiophen-3-yl)-1-tosyl-1,2-dihydroquinoline-3-carboxylate (5d)

White solid; isolated yield 40% (21 mg). $R_{f} 0.50$ ($20 \% \mathrm{EtOAc} / \mathrm{hexane}$); Mp $130-132{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, 2 H), 7.13-7.16 (m, 1H), 7.06-7.09 (m, 3H), 6.99 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.94$ (dd, $J=5.0 \mathrm{~Hz}, 1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 4.12-4.18(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.45,143.82,138.71,135.77,134.31,132.84$, 130.78 , 129.17, 128.41, 128.20, 127.90, 126.95, 126.83, 126.80, 125.91, 122.91, 60.99 , 52.68, 21.52, 14.31; HRMS for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}_{2}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 440.0985$, found: 440.0976

Ethyl 5,7-dimethyl-2-phenyl-1-tosyl-1,2-dihydroquinoline-3-carboxylate (5e)

White solid; isolated yield 61% (28 mg). $R_{f} 0.50\left(20 \%\right.$ EtOAc/hexane); Mp $129-130{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.21-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.17(\mathrm{~m}$, $4 \mathrm{H}), 6.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~s}$, $3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 164.90 , 143.61, $140.73,137.59,135.98$, 135.80, 134.23, 130.72, 129.51, 129.01, 128.28, $127.83,127.20,127.01,126.50,126.17,123.59,60.84,55.25,21.68,21.54,18.91,14.33$; HRMS for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}$: 462.1734, found: 462.1736

Ethyl 5,7-dimethyl-2-(p-tolyl)-1-tosyl-1,2-dihydroquinoline-3-carboxylate (5f)

White solid; isolated yield 56% (32 mg). $R_{f} 0.50$ ($20 \% \mathrm{EtOAc} / \mathrm{hexane} \mathrm{);} \mathrm{Mp} \mathrm{90-91{ }}^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}, ~$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 4.12$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $2.27(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.91,143.56,140.64,137.56,136.02,135.74,134.51$, $134.22,130.59,129.47,129.02,128.99,127.14,127.00$, $126.53,126.30,123.63,60.80$,
55.09, 21.68, 21.53, 21.05, 18.91, 14.33; HRMS for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{~S}$: calcd. (M+H) ${ }^{+}$: 476.1890, found: 476.1890

Ethyl 7-isopropyl-2-(p-tolyl)-1-tosyl-1,2-dihydroquinoline-3-carboxylate (5g)

White solid; isolated yield 47% (28 mg). $R_{f} 0.50$ ($20 \% \mathrm{EtOAc} /$ hexane); $\mathrm{Mp} 98-99{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.13$ (br s, 1H), 7.07 (br d, $J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.93-6.98(\mathrm{~m}, 6 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 4.11$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.78-2.88(\mathrm{~m}, 1 \mathrm{H})$, $2.26(\mathrm{~s}, 3 \mathrm{H}), 2.17$ (s, 3H), 1.16-1.19 (m, 9H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.81,152.22$, $143.59,137.63,135.82,134.76,134.08,133.36,129.08,129.05,128.21,127.20,127.00$, $126.64,126.23,125.10,124.79,60.80,55.82,34.17,23.75,23.47,21.51,21.06,14.29$; HRMS for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{~S}$: calcd. $(\mathrm{M}+\mathrm{H})^{+}: 490.2047$, found: 490.2045

Ethyl 5,7-dimethyl-2-(thiophen-3-yl)-1-tosyl-1,2-dihydroquinoline-3-carboxylate (5h)

White solid; isolated yield 57% (31 mg). $R_{f} 0.50$ ($20 \% \mathrm{EtOAc} / \mathrm{hexane}$); Mp $135-136{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33$ (br s, 1H), $7.21-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{dd}, J=5.0 \mathrm{~Hz}, 3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.99$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.93 (dd, $J=5.0 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.84 (m, 1H), 6.79 (br s, 1H), $6.42(\mathrm{~s}, 1 \mathrm{H}), 4.11-4.19(\mathrm{~m}, 2 \mathrm{H}), 2.26,2.27(2 \mathrm{~s}, 6 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.73,143.66,140.80,138.95,135.98,135.92,134.44,130.11$, $129.52,129.03,126.99,126.90,126.57,126.28,125.68,123.32,122.73,60.86,52.21,21.71$, 21.53, 18.91, 14.36; HRMS for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}_{2}$: calcd. (M+H) ${ }^{+}$: 468.1298, found: 468.1288

4. References

(1) K. H. Kim, S. H. Kim, H. J. Lee and J. N. Kim, Adv. Synth. Catal., 2013, 355, 1977.
(2) D. Y. Park, M. J. Lee, T. H. Kim and J. N. Kim, Tetrahedron Lett., 2005, 46, 8799.
(3) J. M. Kim, S. H. Kim and J. N. Kim, Bull. Korean Chem. Soc., 2008, 29, 1583.
(4) E. Tang, D. Mao, W. Li, Z. Gao and P. Yao, Heterocycles, 2012 , 85, 667.
(5) J. N. Kim, H. J. Lee, K. Y. Lee and H. S. Kim, Tetrahedron Lett., 2001, 42, 3737.
(6) H. S. Kim, H. S. Lee and J. N. Kim, Bull. Korean Chem. Soc., 2009, 30, 941.
(7) M. J. Lee, S. C. Kim and J. N. Kim, Bull. Korean Chem. Soc., 2006, 27, 439.
(8) Q. Niu, H. Mao, G. Yuan, J. Gao, H. Liu, Y. Tu, X. Wang and X. Lv, Adv. Synth. Catal., 2013, 355, 1185.
(9) H. Venkatesan, F. M. Hocutt, T. K. Jones and M. H. Rpbinowitz, J. Org. Chem., 2010, 75, 3488.
(10) M. J. Cabrera-Afonso, Z.-P. Lu, C. B. Kelly, S. B. Lang, R. Dykstra, O. Gutierrez and G. A. Molander, Chem. Sci., 2018, 9, 3186.

5. ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR Spectra of Products

Figure 2: ${ }^{13} \mathrm{C}$ NMR spectrum of 2a

Figure 3: ${ }^{1} \mathrm{H}$ NMR spectrum of 2 b

Figure 4: ${ }^{13} \mathrm{C}$ NMR spectrum of 2 b

Figure 5: ${ }^{1} \mathrm{H}$ NMR spectrum of 2 c

Figure 6: ${ }^{13} \mathrm{C}$ NMR spectrum of 2 c

Figure 7: ${ }^{1} \mathrm{H}$ NMR spectrum of 2 d

Figure 8: ${ }^{13} \mathrm{C}$ NMR spectrum of 2d

Figure 9: ${ }^{1} \mathrm{H}$ NMR spectrum of 2e

Figure 10: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 e}$

Figure 11: ${ }^{1} \mathrm{H}$ NMR spectrum of $2 f$

Figure 12: ${ }^{13} \mathbf{C}$ NMR spectrum of $2 f$

Figure 13: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 g}$

Figure 14: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 g}$

Figure 15: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 h}$

Figure 16: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 h}$

Figure 17: ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{2 k}$

Figure 18: ${ }^{13} \mathrm{C}$ NMR spectrum of 2 k

NRAT-VI-3

Figure 19: ${ }^{1} \mathrm{H}$ NMR spectrum of 21

Figure 20: ${ }^{13} \mathrm{C}$ NMR spectrum of 21

Figure 21: ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{2 m}$

Figure 22: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 m}$

Figure 23: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 n}$

Figure 24: ${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{2 n}$

Figure 25: ${ }^{1} \mathrm{H}$ NMR spectrum of 20

Figure 26: ${ }^{13} \mathrm{C}$ NMR spectrum of 20

Figure 27: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 p}$

Figure 28: ${ }^{13} \mathrm{C}$ NMR spectrum of 2p

Figure 29: ${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum of $\mathbf{2 q}$

Figure 30: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 q}$

Figure 31: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 r}$

Figure 32: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 r}$

Figure 33: ${ }^{1} \mathrm{H}$ NMR spectrum of 2 s

Figure 34: ${ }^{13} \mathrm{C}$ NMR spectrum of 2 s

Figure 36: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 t}$

Figure 37: ${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 e}$

Figure 38: ${ }^{13} \mathrm{C}$ NMR spectrum of 3 e

Figure 39: ${ }^{1} \mathrm{H}$ NMR spectrum of $3 f$

Figure 40: ${ }^{13} \mathrm{C}$ NMR spectrum of $3 f$

Figure 41: ${ }^{1} \mathrm{H}$ NMR spectrum of 3i

Figure 42: ${ }^{13} \mathbf{C}$ NMR spectrum of 3 i

Figure 43: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 j}$

Figure 44: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 j}$

Figure 45: ${ }^{1} \mathrm{H}$ NMR spectrum of 3 k

Figure 46: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 k}$

Figure 47: ${ }^{1} \mathrm{H}$ NMR spectrum of 31

Figure 48: ${ }^{13} \mathrm{C}$ NMR spectrum of 31

Figure 49: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 o}$

Figure 50: ${ }^{13} \mathrm{C}$ NMR spectrum of 3 o

Figure 51: ${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 p}$

Figure 52: ${ }^{13} \mathrm{C}$ NMR spectrum of 3p

Figure 53: ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{3 q}$

Figure 54: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 q}$

Figure 55: ${ }^{1} \mathrm{H}$ NMR spectrum of 5 a

Figure 56: ${ }^{13} \mathrm{C}$ NMR spectrum of 5a

Figure 57 : ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 b}$

Figure 58: ${ }^{13} \mathrm{C}$ NMR spectrum of 5b

Figure 59: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 c}$

Figure 60: ${ }^{13} \mathrm{C}$ NMR spectrum of 5 c

Current Data Parameters EXPNO 320
F2 - Acquisition Parameters
Time 20180308
INSTRUM ${ }_{\text {INPect }}^{15.51}$ PROBHD 5 mm PABBO BB/ TD ROG ${ }_{65536}{ }^{\text {zg } 30}$ $\begin{array}{lc} & \\ \text { NS } & 8 \\ \text { CDC13 } \\ \text { DSH } & 0 \\ \text { SWH } & 9615.385 \mathrm{~Hz} \\ & 0.146719 \mathrm{~Hz}\end{array}$ $\begin{array}{ll}\text { IDRES } & \left.\begin{array}{r}9615.385 \mathrm{~Hz} \\ 0.146719 \mathrm{~Hz} \\ 3.4078720 \mathrm{sec}\end{array}\right]\end{array}$ $\begin{array}{ll}\mathrm{AQ} & 3.4078720 \mathrm{sec} \\ \text { RG } & 14529\end{array}$ 52.000 us 6.50 usec 52.00 usec
100000000 1.00000000 sec FO1 $\quad 400.1629712 \mathrm{MHz}=$ 13.20 us 13.00000000 W
2- Processing parameters $\begin{array}{lc}\text { SF } & 400.1605378 \mathrm{MH} \\ \text { NDW } & \text { EM }\end{array}$
SSB $0 \quad$ EM
$0 \quad 0.30 \mathrm{~Hz}$
\square
n

Figure 61: ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{5 d}$

Figure 62: ${ }^{13} \mathrm{C}$ NMR spectrum of 5d

Figure 63: ${ }^{1} \mathrm{H}$ NMR spectrum of 5 e

Figure 64: ${ }^{13} \mathrm{C}$ NMR spectrum of 5 e

Figure 65: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 f}$

Figure 66: ${ }^{13} \mathrm{C}$ NMR spectrum of $5 f$

Figure 67: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 g}$

Figure 68: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 g}$

NRAT VI 78

Figure 69: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 h}$

Figure 70: ${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{5 h}$

