Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

SUPPORTING INFORMATION

Stereo- and Regioselective Gold(I)-Catalyzed Hydroamination of 2-(Arylethynyl)pyridines with Anilines⁺

Sandro Cacchi,ª Giancarlo Fabrizi,ª Andrea Fochetti, ª Francesca Ghirga,^b Antonella Goggiamani,ª Antonia lazzetti^{*a}

^a Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185 Rome, Italy. ^b Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy

antonia.iazzetti@uniroma1.it

Contents

1. GENERAL INFORMATION	S2
1.1. Reagents and methods	S2
2. SYNTHETIC PROCEDURES	S2
2.1. Typical procedure for the preparation of 2-(arylethynyl)piridines 1: synthesis of compound 1a	S2
2.2. Typical procedure for the preparation of (<i>Z</i>)- <i>N</i> -(1-aryl-2-(pyridine-2-yl)vinyl)anilines 3 : synthesis compound 3a	of S2
3. CHARACTERIZATION DATA OF COMPOUND 1b – h, 6a – c, 8, 9	S2
3.1. Additional NMR data of compound 1b - h	S8
4. CHARACTERIZATION DATA OF COMPOUND $\mathbf{3b} - \mathbf{t}$, $\mathbf{4a}$, $\mathbf{5a}$, $\mathbf{7a} - \mathbf{g}$	S9
5. ¹ H, ¹³ C, ¹⁹ F SPECTRA OF COMPOUND 1a – h , 1a' – h ', 6a – c , 8 , 9	S19
6. ¹ H, ¹³ C, ¹⁹ F SPECTRA OF COMPOUND 3a – t , 7a – g	S52
7. ¹ H, ¹³ C SPECTRA OF [(LIGAND)Au(2-(ARYLETHYNYL)PYRIDINE)] ⁺ COMPLEXES	S77
8. OUTPUTS CALCULATION	S84
REFERENCES	S99

1. GENERAL INFORMATION

1.1. Reagents and methods

All of the commercially available reagents, catalysts, bases, solvents, and eluents were used as purchased, without further purification. 2-(Arylethynyl)pyridines were prepared through Sonogashira cross-coupling of 2-bromopyridine with terminal alkynes and were purified on axially compressed columns, packed with SiO₂ 25-40 µm, connected to a solvent delivery system and to a refractive index detector, and eluting with *n*-hexane/EtOAc mixtures. Reaction products **3a-t** were purified by flash chromatography on neutral Al₂O₃ (Brockmann activity 1) eluting with *n*-hexane or *n*-hexane/AcOEt mixtures.¹H NMR (400.13 MHz), ¹³C NMR (100.6 MHz), and ¹⁹F spectra (376.5 MHz) were recorded with a Bruker Avance 400 spectrometer. Splitting patterns are designed as s (singlet), d (doublet), t (triplet), td (triplet of doublets), q (quartet), m (multiplet), or br s (broad singlet). IR spectra were recorded with a Jasco FT/IR-430 spectrometer. Mass spectra were determined with a QP2010 Gas Chromatograph Mass spectrometer (EI ion source). HRMS were recorded with a Büchi B-545 apparatus and are uncorrected. Computational analysis have been performed on a Desktop PC with TITAN suite of programs.

2. SYNTHETIC PROCEDURES

2.1. Typical procedure for the preparation of 2-(arylethynyl)pyridines (1): synthesis of 2-(phenyethynyl)pyridine (1a).

A flask equipped with a magnetic stirring bar was charged with $PdCl_2(PPh_3)_2$ (49 mg, 0.07 mmol, 0.02 equiv.) and Cul (26.5 mg, 0.14 mmol, 0.04 equiv.) dissolved in diisopropylamine (7 mL) and *N*,*N*-dimethylformamide (5 mL). The resultant solution was stirred under nitrogen at room temperature for 10 minutes before adding 2-bromopyridine (553 mg, 3.5 mmol, 1.0 equiv.) in diisopropylamine (3 mL) and phenylacetylene (428.5 mg, 461 µl, 4.2 mmol, 1.2 equiv.). Then, stirring was continued at room temperature for an additional hour. After this time, the reaction mixture was diluted with Et_2O and washed with a saturated NH₄Cl solution and with brine. The organic layer was separated, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by chromatography on SiO₂ (25-40 µm) eluting with a 85/15 (v/v) *n*-hexane/AcOEt mixture ($R_f = 0.25$) to obtain 608.5 mg (97% yield) of 2-(phenyethynyl)pyridine **1a**.

2-(phenylethynyl)pyridine (1a)ⁱ: Brown oil (608.5 mg, 97%); IR (neat): 3054, 2919, 2222, 1580, 1490 cm ⁻¹; ¹H NMR (400.13 MHz) (DMSO d_6): δ = 8.62 (ddd, J_1 = 4.8 Hz, J_2 = 1.8 Hz, J_3 = 1.0, 1 H), 7.86 (td, J_1 = 7.7 Hz, J_2 = 1.8 Hz, 1 H), 7.66-7.60 (m, 3 H), 7.48-7.45 (m, 3 H), 7.42 (ddd, J_1 = 7.7 Hz, J_2 = 4.8 Hz, J_3 = 1.0 Hz, 1 H); ¹³C NMR (100.6 MHz) (DMSO d_6): δ = 150.6, 142.7, 137.2, 132.1, 129.0, 129.3, 127.8, 124.0, 121.9, 89.4, 88.8; MS (EI ion source): m/z (%) = 179 (100, [M⁺]), 151 (14), 126 (12); HRMS: m/z [M + H]⁺ calcd for C₁₃H₁₀N: 180.0808; found: 180.0808.

2.1. Typical procedure for the preparation of (*Z*)-*N*-(1-aryl-2-(pyridine-2-yl)vinyl)anilines (3): synthesis of (*Z*)-*N*-(1-phenyl-2-(pyridin-2-yl)vinyl)aniline (3a).

A Carousel Tube Reactor (Radley Discovery Technology) containing a stirring bar was charged with 2-(phenylethynyl)pyridine **1a** (89.6 mg, 0.5 mmol, 1.0 equiv) dissolved in CH₂Cl₂ (1.5 mL) and (acetonitrile)[(2-

biphenyl)di-*tert*-butylphosphine]gold(I) hexafluoroantimonate (15.4 mg, 0.02 mmol, 0.04 equiv.). Then, aniline **2a** was added (51 mg, 50 μ l, 0.55 mmol, 1.1 equiv). The resultant solution was warmed at 80 °C and stirred for 20 hours. After cooling, the volatile materials were evaporated at reduced pressure and the residue was purified by flash chromatography on neutral Al₂O₃ (Brockmann activity 1) eluting with *n*-hexane ($R_f = 0.21$) to obtain 126.5 mg of (*Z*)-*N*-(1-phenyl-2-(pyridin-2-yl)vinyl)aniline **3a** (93% yield).

(*Z*)-*N*-(1-phenyl-2-(pyridin-2-yl)vinyl)aniline (3a): Yellow solid (126.5 mg, 93% yield); mp: 83 - 85 °C; IR (KBr): 3357, 3050, 2923, 1626, 1587, 1374 cm⁻¹; ¹H NMR (400.13 MHz) (CDCl₃): δ = 11.61 (br s, 1 H), 8.40 (bd, *J* = 4.5 Hz, 1 H), 7.47 (td, *J*₁ = 7.7 Hz, *J*₂ = 1.6 Hz, 1 H), 7.43-7.40 (m, 2 H), 7.24 - 7.22 (m, 3 H), 7.01-6.97 (m, 3 H), 6.87 - 6.84 (m, 1 H), 6.73 (t, *J* = 7.2 Hz, 1 H), 6.61 (d, *J* = 7.7 Hz, 2 H), 5.52 (s, 1 H); ¹³C NMR (100.6 MHz) (CDCl₃): δ = 158.7, 148.5, 147.5, 142.6, 138.3, 136.0, 128.6, 128.5, 128.4, 128.1, 123.1, 121.03, 121.00, 118.6, 103.7; MS (EI ion source): *m/z* (%) = 272 (76 [M⁺]), 256 (16), 207 (13), 194 (26), 180 (55), 92 (18), 77 (100), 51 (23); HRMS: *m/z* [M + H]⁺ calcd for C₁₉H₁₇N₂: 273.1386; found: 273.1393.

3. CHARACTERIZATION DATA OF 1b - h, 6a - c, 8, 9

2-(*p***-tolylethynyl)pyridine (1b)**: Brown solid (588.1 mg, 87% yield); mp: 75-76 °C; IR (KBr): 3053, 2975, 2222, 1578, 1507, 1460 cm ⁻¹; ¹H NMR (400.13 MHz) (DMSO d_6): $\delta = 8.61$ (ddd, $J_1 = 4.8$ Hz, $J_2 = 1.6$ Hz, $J_3 = 1.1$, 1 H), 7.68 (td, $J_1 = 7.7$ Hz, $J_2 = 1.6$ Hz, 1 H), 7.62 (dt, $J_1 = 7.7$ Hz, $J_2 = 1.1$ Hz, 1 H), 7.50 (d, J = 8.1 Hz, 2 H), 7.40 (ddd, $J_1 = 7.7$ Hz, $J_2 = 4.8$ Hz, $J_3 = 1.1$ Hz, 1 H), 7.27 (d, J = 8.1 Hz, 2 H), 2.35 (s, 3 H); ¹³C NMR (100.6 MHz) (DMSO d_6): $\delta = 150.6$, 142.9, 139.8, 137.2, 132.1, 130.0, 127.6, 123.8, 118.8, 89.1, 89.0, 21.5; MS (EI ion source): m/z (%) = 193 (100, [M⁺]), 165 (13), 139 (9), 115 (20); HRMS: m/z [M + H]⁺ calcd for C₁₄H₁₂N:194.0964; found: 194.0966.

2-((4-methoxyphenyl)ethynyl)pyridine (1c): Brown oil (651.7 mg, 89% yield); IR (neat): 3052, 2919, 2219, 1605, 1580, 1028 cm⁻¹; ¹H NMR (400.13 MHz) (DMSO d_6): $\delta = 8.59$ (bd, J = 4.2 Hz .1 H), 7.83 (td, $J_1 = 7.7$ Hz, $J_2 = 1.7$ Hz, 1 H), 7.60 (d, J = 7.7 Hz, 1 H), 7.57 (d, J = 8.8 Hz, 2 H), 7.38 (ddd, $J_1 = 7.7$ Hz, $J_2 = 4.7$ Hz, $J_3 = 0.9$ Hz, 1 H), 7.01 (d, J = 8.8 Hz, 2 H), 3.81 (s, 3 H); ¹³C NMR (100.6 MHz) (DMSO d_6): $\delta = 160.5$, 150.5, 143.1, 137.2, 133.8, 132.5, 132.0, 129.3, 129.1, 127.5, 123.6, 115.0, 113.7, 89.2, 88.4, 55.8; MS (EI ion source): m/z (%) = 209 (100, [M⁺]), 194 (44), 166 (21), 140 (35); HRMS: m/z [M + H]⁺ calcd for C₁₄H₁₂NO: 210.0913; found: 210.0915.

2-((3-methoxyphenyl)ethynyl)pyridine (1d): Brown oil (724.7 mg, 99% yield); IR (neat): 3052, 2938, 2210 1240, 1042 cm⁻¹; ¹H NMR (400.13 MHz) (DMSO d_6): $\delta = 8.61$ (ddd, $J_1 = 4.9$ Hz, $J_2 = 1.8$ Hz, $J_3 = 1.0$, 1 H), 7.85 (td, $J_1 = 7.7$ Hz, $J_2 = 1.8$ Hz, 1 H), 7.65 (dt, $J_1 = 7.7$ Hz, $J_2 = 0.9$ Hz, 1 H) 7.42 (ddd, $J_1 = 7.7$ Hz, $J_2 = 4.9$ Hz, $J_3 = 1.0$ Hz, 1 H), 7.37 (t, J = 8.0 Hz, 1 H), 7.19 (dt, $J_1 = 7.7$ Hz, $J_2 = 1.0$ Hz, 1 H) 7.17-7.16 (m, 1 H), 7.05 (ddd, $J_1 = 8.4$ Hz, $J_2 = 2.6$ Hz, $J_3 = 0.9$ Hz, 1 H), 3.83 (m, 3 H); ¹³C NMR (100.6 MHz) (DMSO d_6): $\delta = 159.7$, 150.6, 142.7, 137.2, 130.5, 127.8, 124.5, 124.0, 122.9, 116.8, 116.4, 89.2, 88.7, 55.7; MS (EI ion source): m/z (%) = 209 (100, [M⁺]), 178 (15), 140 (24); HRMS: m/z [M + H]⁺ calcd for C₁₄H₁₂NO: 210.0913; found: 210.0916.

2-((2-bromophenyl)ethynyl)pyridine (1e): Brown oil (541.7 mg, 60% yield); IR (neat): 3056, 2919, 2224, 1580, 1470 cm⁻¹; ¹H NMR (400.13 MHz) (DMSO d_6): $\delta = 8.64$ (bd, J = 4.3 Hz, 1 H), 7.88 (td, $J_1 = 7.7$ Hz, $J_2 = 1.7$ Hz, 1 H), 7.78 (dd, $J_1 = 8.0$ Hz, $J_2 = 0.8$ Hz, 1 H), 7.73 (dd, $J_1 = 7.7$ Hz, $J_2 = 1.7$ Hz, 1 H), 7.67 (dt, $J_1 = 7.7$ Hz, $J_2 = 0.9$ Hz, 1 H), 7.49-7.38 (m, 3 H); ¹³C NMR (100.6 MHz) (DMSO d_6): $\delta = 150.7$, 142.4, 137.3, 134.3, 133.1, 131.6, 128.4, 128.0, 125.4, 124.4, 123.9, 93.4, 78.1; MS (EI ion source): m/z (%) = 259 (93 [⁸¹ Br M⁺]), 257 (100 [⁷⁹ Br M⁺]), 178 (77), 151 (43); HRMS: m/z [⁸¹Br M + H] ⁺ calcd for C₁₃H₉BrN: 259.9892; found: 259.9895; [⁷⁹Br M + H] ⁺ calcd for C₁₃H₉BrN: 257.9913; found: 257.9917.

2-((3-(trifluoromethyl)phenyl)ethynyl)pyridine (1f): Brown solid (522.5 mg, 60% yield); mp: 40 – 42 °C; IR (KBr): 3047, 2923, 2215, 1609, 1582, 1489, 1338 cm ⁻¹; ¹H NMR (400.13 MHz) (DMSO d_6): δ = (ddd, J_1 = 4.9 Hz, J_2 = 1.8 Hz, J_3 = 1.0, 1 H), 8.0 (s, 1 H), 7.93 (d, J = 7.8 Hz, 1 H), 7.89 (td, J_1 = 7.7 Hz, J_2 = 1.8 Hz, 1 H), 7.83 (d, J = 7.8 Hz, 1 H), 7.73-7.69 (m, 2 H), 7.45 (ddd, J_1 = 7.7 Hz, J_2 = 4.9 Hz, J_3 = 1.0 Hz, 1 H); ¹³C NMR (100.6 MHz) (DMSO d_6): δ = 150.7, 142.2, 137.3, 136.0, 130.6, 130.2 (q, J_{CF} = 32.3 Hz), 128.6 (q, J_{CF} = 3.8 Hz), 128.1, 126.4 (q, J_{CF} = 3.8 Hz), 124.4, 123.6 (q, J_{CF} = 271 Hz), 123.0, 90.7, 87.0; ¹⁹ F NMR (376.5 MHz) (DMSO d_6): δ = -61.5; MS (EI ion source): m/z (δ) = 247 (100, [M⁺]), 178 (8), 151 (8); HRMS: m/z [M + H]⁺ calcd for C₁₄H₉F₃N: 248.0682; found: 248.0685.

methyl 2-(pyridin-2-ylethynyl)benzoate (1g): Brown solid (773.1 mg, 93% yield); IR (neat): 3061, 2950, 2219, 1727, 1581, 1486 cm⁻¹; ¹H NMR (400.13 MHz) (DMSO d_6): $\delta = 8.64$ (bd, J = 4.3 Hz, 1 H), 7.95 (dd, $J_1 = 7.8$ Hz, $J_2 = 1.0$ Hz, 1 H), 7.87 (td, $J_1 = 7.8$ Hz, $J_2 = 1.7$ Hz, 1 H), 7.76 (dd, $J_1 = 7.6$ Hz, $J_2 = 0.8$ Hz, 1 H), 7.69-7.63 (m, 2 H), 7.58 (td, $J_1 = 7.7$ Hz, $J_2 = 1.1$ Hz, 1 H), 7.44.7.41 (m, 1 H), 3.90 (s, 3 H); ¹³C NMR (100.6 MHz) (DMSO d_6): $\delta = 166.2$, 150.7, 142.9, 137.3, 134.5, 132.8, 132.5, 130.7, 129.8, 128.0, 124.1, 121.9, 93.7, 87.5, 52.8; MS (El ion source): m/z (%) = 237 (43, [M⁺]), 208 (50), 180 (100), 151 (22). HRMS: m/z [M + H]⁺ calcd for C₁₅H₁₂NO₂: 238.0863; found: 238.0864.

1-(4-(pyridin-2-ylethynyl)phenyl)ethanone (1h): Yellow solid (644.4 mg, 83% yield); mp: 112 - 114 °C ; IR (KBr): 3052, 2911, 2215, 1674, 1599, 1263 cm ⁻¹; ¹H NMR (400.13 MHz) (DMSO d_6): δ = 8.64 (ddd, J_1 = 4.9 Hz, J_2 = 1.8 Hz, J_3 = 1.1, 1 H), 8.03 (d, J = 8.3 Hz, 2 H), 7.89 (td, J_1 = 7.7 Hz, J_2 = 1.8 Hz, 1 H), 7.76 (d, J = 8.3 Hz, 2 H), 7.71 (dt, J_1 = 7.7 Hz, J_2 = 1.1 Hz, 1 H), 7.46 (ddd, J_1 = 7.7 Hz, J_2 = 4.9 Hz, J_3 = 1.1 Hz, 1 H), 2.62 (s, 3 H); ¹³C NMR (100.6 MHz) (DMSO d_6): δ = 197.8, 150.8, 137.4, 137.2, 132.4, 129.0, 128.1, 126.4, 124.4, 92.0, 87.9, 27.3; MS (EI ion source): m/z (%) = 221 (67, [M⁺]), 206 (100), 178 (38), 151 (23); HRMS: m/z [M + H]⁺ calcd for C₁₅H₁₂NO: 222.0913; found: 222.0917.

2-(phenylethynyl)-4-(trifluoromethyl)pyridine (6a): Brown oil (426.4 mg, 98% yield); IR (neat): 2927, 1564, 1404, 1337 cm⁻¹; 1H NMR (400.13 MHz) (CDCl₃): δ = 8.82 (d, *J* = 5.0 Hz, 1 H), 7.78-7.75 (m, 1 H), 7.66 - 7.62 (m, 2 H) 7.50 - 7.38 (m, 4 H); ¹³C NMR (100.6 MHz) (CDCl₃): 151.1, 144.9, 138.8 (q, *J*_{CF} = 34 Hz), 132.3, 129.6, 128.6, 122.8 (q, *J*_{CF} = 4 Hz), 122.6 (q, *J*_{CF} = 272 Hz), 121.7, 118.2 (q, *J*_{CF} = 4 Hz), 91.1, 87.6; ¹⁹F NMR (376.5 MHz) (CDCl₃): δ = -64.9; HRMS: *m*/*z* [M + H]⁺ calcd for C₁₄H₉F₃N: 248.0682; found: 248.0685.

5-fluoro-2-(phenylethynyl)pyridine (6b): Brown solid (354.3 mg, 79% yield); mp: 128 - 129 °C; IR (KBr): 2918, 1577, 1493, 1467 cm⁻¹; ¹H NMR (400.13 MHz) (CDCl₃): δ = 8.47 (d, *J* = 2.8 Hz 1 H), 7.62-7.51 (m, 3 H), 7.44-7.43 (m, 4 H); ¹³C NMR (100.6 MHz) (CDCl₃): δ = 158.7 (d, *J*_{CF} = 260 Hz), 139.7 (d, *J* = 4 Hz), 138.8 (d, *J*_{CF} = 24 Hz), 132.12, 129.19, 128.5, 128.3 (d, *J*_{CF} = 4 Hz), 123.3 (d, *J*_{CF} = 19 Hz), 122.2, 87.1, 87.7. ¹⁹F NMR (376.5 MHz) (CDCl₃): δ = -124.9; HRMS: *m*/*z* [M + H]⁺ calcd for C₁₃H₉FN: 198.0714; found: 198.0712.

2-(hept-1-yn-1-yl)pyridine (6c): Brown oil (1.013 g, 92% yield); IR (neat): 2956, 2931, 2858, 1582, 1561, 1463, 1427 cm⁻¹; ¹H NMR (400.13 MHz) (CDCl₃): δ = 8.54 (ddd, J_1 = 4.8 Hz, J_2 = 1.8 Hz, J_3 = 0.9, 1 H), 7.58 (td, J_1

= 7.7 Hz, J_2 = 1.8 Hz, 1 H), 7.36 (dt, J_1 = 7.8 Hz, J_2 = 1.3 Hz, 1 H), 7.18 (ddd, J_1 = 7.7 Hz, J_2 = 4.8 Hz, J_3 = 1.3 Hz, 1 H), 2.44 (t, J_2 = 7.1 Hz, 2 H), 1.65 (quintet, J = 7.7 Hz, 2 H), 1.50-1.31 (m, 4 H), 0.92 (t, J = 7.1 Hz, 3 H); ¹³C NMR (100.6 MHz) (CDCl₃): δ = 144.1, 136.1, 126.9, 122.3, 91.3, 80.4, 31.2, 28.32, 22.3, 19.4, 14.0; HRMS: m/z [M + H]⁺ calcd for C₁₂H₁₆N: 174.1272; found: 174.1272.

3-(phenylethynyl)pyridine (8): wax (269.4 mg, 88% yield); IR (KBr): 3053, 2918, 2222, 1580, 1460 cm $^{-1,1}$ H NMR (400.13 MHz) (CDCl₃): δ = 8.79 (bd, *J* = 1.5 Hz, 1H), 8.57 (dd, *J*₁ = 4.9 Hz, *J*₂ = 1.6 Hz, 1 H), 7.83 (dt, *J*₁ = 7.8 Hz, *J*₂ = 1.8 Hz, 1 H), 7.61-7.54 (m, 2 H), 7.43 -7.36 (m, 3 H), 7.31 (ddd, *J*₁ = 7.9 Hz, *J*₂ = 4.9 Hz, *J*₃ = 0.8 Hz 1 H), ¹³C NMR (100.6 MHz) (CDCl₃): 152.4, 148.7, 138.6, 131.8, 128.9, 128.6, 123.2, 122.7, 120.6, 92.8, 86.1; HRMS: *m/z* [M + H]⁺ calcd for C₁₃H₁₀N: 180.0808; found: 180.0806.

4-(phenylethynyl)pyridine (9): Orange solid (269.4 mg, 88% yield); mp: 92 - 93 °C; IR (KBr): 3390, 2917, 1590, cm $^{-1}$, ¹H NMR (400.13 MHz) (CDCl₃): δ = 8.63 (dd, J_1 = 6.0 Hz, J_2 = 1.4 Hz, 2 H), 7.62-7.54 (m, 2 H), 7.45 -7.36 (m, 5 H); ¹³C NMR (100.6 MHz) (CDCl₃): 149.9, 132.0, 131.6,129.3, 128.6, 125.7, 122.2, 94.21, 86.8; HRMS: m/z [M + H]⁺ calcd for C₁₃H₁₀N: 180.0808; found: 180.0808.

3.1 Additional NMR data of compounds 1a - h

Attribution of ¹H NMR and ¹³C NMR signals of compounds **1a** - **h** (and of the corresponding pyridinium salts **1a'- h'** generated in situ within an NMR tube using a solution of DMSO d_6 /DCl/D₂O) has been performed by homonuclear 2D NMR experiments (Cosy and Noesy) and heteronuclear 2D NMR experiments (HSQC and HMBC). δ_{C2} - δ_{C1} of each compound is reported in Table 1 and Table 2.

Table 1. $\delta_{\text{C2}}\text{-}\delta_{\text{C1}}$ of compounds 1a- h

Compound	δ _{c1} (ppm)	δ _{C2} (ppm)	δ _{c2 – c1} (ppm)
1a	88.6	89.2	0.6
1b	88.1	89.5	1.5
1c	87.6	89.5	1.9
1d	88.4	89.1	0.7
1e	92.8	87.6	-5.2
1f	89.9	87.3	-2.6
1g	93.3	87.9	-5.4
1ĥ	91.5	88.1	-2.4
6	86.6	92.7	6.1

Experiments were performed using a solution of alkyne (25 mg) in DMSO d_6 (0.7 mL).

Table 2. δ_{C2} - δ_{C1} of compounds 1a'- h'

Compound	δ _{C1} (ppm)	δ _{C2} (ppm)	δ _{c2 – C1} (ppm)
1a'	81.0	100.4	18.6
1b'	81.3	100.5	19.2
1c'	80.3	101.8	21.5
1d'	80.5	100.6	20.1
1e'	84.4	99.1	14.7
1f'	81.6	98.4	16.8
1g'	85.1	99.1	14.0
1ĥ'	83.4	98.7	15.3
6'	83.3	96.3	13.0

Experiments were performed by adding a solution of DCl/D₂O (0.1 mL) to a solution of alkyne (25 mg) in DMSO d_6 (0.7 mL).

4. CHARACTERIZATION DATA OF COMPOUND 3b - t, 6a - g, 4a, 5a

(*Z*)-4-methoxy-*N*-(1-phenyl-2-(pyridin-2-yl)vinyl)aniline (3b): Yellow oil (125.7 mg, 83% yield); IR (neat): 3362, 3054, 2950, 1629, 1033 cm⁻¹; ¹H NMR (400.13 MHz) (CDCl₃): δ = 11.58 (br s, 1 H), 8.50 (bd, *J* = 4.9 Hz, 1 H), 7.56 (td, *J*₁ = 7.6 Hz, *J*₂ = 1.8 Hz, 1 H), 7.51-7.46 (m, 2 H), 7.34-7.29 (m, 3 H), 7.10 (d, *J* = 8.2 Hz, 1 H), 6.94 (ddd, *J*₁ = 7.6 Hz, *J*₂ = 4.9 Hz, *J*₃ = 1.1 Hz, 1 H), 6.72-6.65 (m, 4 H), 5.56 (s, 1 H), 3.73 (s, 3 H); ¹³C NMR (100.6 MHz) (CDCl₃): δ = 159.1, 154.7, 149.5, 147.5, 138.4, 136.0, 135.9, 128.4, 128.3, 128.2, 123.1, 122.8, 118.2, 114.0, 102.1, 55.5; MS (EI ion source): *m/z* (%) = 302 (84 [M⁺]), 281 (37), 253 (15), 207 (83), 135 (26), 92 (30), 73 (100); HRMS: *m/z* [M + H]⁺ calcd for C₂₀H₁₉N₂O: 303.1492; found: 303.1499.

(*Z*)-2-bromo-*N*-(1-phenyl-2-(pyridin-2-yl)vinyl)aniline (3c): Yellow oil (62.1 mg, 35 % yield); IR (neat): 3322, 3013, 2919, 1620, 1580, 1377 cm⁻¹; ¹H NMR (400.13 MHz) (CDCl₃): δ = 12.03 (br s, 1 H), 8.57 (bd, *J* = 5.0 Hz, 1 H), 7.61 (td, *J*₁ = 7.7 Hz, *J*₂ = 1.8 Hz 1 H), 7.56 (dd, *J*₁ = 8.0 Hz, *J*₂ = 1.5 Hz 1 H), 7.53-7.49 (m, 2 H), 7.37-7.34 (m, 3 H), 7.16 (d, *J*= 8.0 Hz, 1 H) 7.02 (ddd, *J*₁ = 7.7 Hz, *J*₂ = 5.0 Hz, *J*₃ = 1.0 Hz 1 H), 6.87-6.83 (m, 1 H), 6.68 (td, *J*₁ = 7.7 Hz, *J*₂ = 1.8 Hz, 1 H), 6.31 (dd, *J*₁ = 8.0 Hz, *J*₂ = 1.3 Hz 1 H), 5.78 (s, 1 H); ¹³C NMR (100.6 MHz) (CDCl₃): δ = 158.0, 147.6, 147.2, 141.0, 138.0, 136.2, 132.7, 128.6, 128.5, 127.8, 127.1, 123.1, 122.0, 121.5, 119.1, 114.7, 105.9; MS (EI ion source): *m/z* (%) = 352 (12 [⁸¹Br M⁺]), 350 (13 [⁷⁹Br M⁺]), 271 (100), 207 (48), 135 (22), 73 (52); HRMS: *m/z* [⁸¹Br M + H] ⁺ calcd for C₁₉H₁₆BrN₂: 353.0471; found: 353.0479; [⁷⁹Br M + H] ⁺ calcd for C₁₉H₁₆BrN₂: 351.0491; found: 351.0499.

(Z)-4-bromo-N-(1-phenyl-2-(pyridin-2-yl)vinyl)aniline (3d): Yellow oil, (131.4 mg, 75% yield): IR (neat): 3326, 3010, 2922, 1620, 1585, 1360 cm⁻¹; ¹H NMR (400.13 MHz) (CDCl₃): δ = 11.62 (br s, 1 H), 8.40 (bd, J = 5.0 Hz, 1 H), 7.49 (td, J_1 = 7.6 Hz, J_2 = 1.8 Hz, 1 H), 7.40-7.36 (m, 2 H), 7.26-7.23 (m, 3 H), 7.08 (d, J = 8.8 Hz, 2

H), 7.02 (d, J = 8.0 Hz, 1 H), 6.88 (ddd, $J_1 = 7.6$ Hz, $J_2 = 5.0$ Hz, $J_3 = 1.0$ Hz, 1 H), 6.46 (d, J = 8.8 Hz 2 H), 5.54 (s, 1 H); ¹³C NMR (100.6 MHz) (CDCl₃): $\delta = 158.5$, 147.9, 147.5, 141.7, 137.9, 136.2, 131.5, 128.64, 128.59, 128.0, 123.3, 122.3, 118.9, 113.4, 104.4; MS (El ion source): m/z (%) = 352 (37 [⁸¹Br M⁺]), 350 (43 [⁷⁹Br M⁺]), 271 (41), 207 (55), 135 (32), 73 (100); HRMS: m/z [⁸¹Br M + H] ⁺calcd for C₁₉H₁₆N₂Br: 353.0471; found: 353.0470. [⁷⁹Br M + H] ⁺ calcd for C₁₉H₁₆N₂Br: 351.0491; found: 351.0490.

(*Z*)-4-chloro-*N*-(1-phenyl-2-(pyridin-2-yl)vinyl)aniline (3e): Yellow oil, (75.9 mg, 49% yield): IR (neat): 3342, 3026, 2948, 1628, 1589, 1358 cm⁻¹; ¹H NMR (400.13 MHz) (CDCl₃): δ = 11.62 (br s, 1 H), 8.40 (bd, *J* = 5.0 Hz, 1 H), 7.48 (td, *J*₁ = 7.7 Hz J₂ = 1.7 Hz 1 H), 7.39-7.37 (m, 2 H), 7.25-7.23 (m, 3 H), 7.01 (d, *J* = 8.0 Hz, 1 H), 6.93 (d, *J* = 8.8 Hz, 2 H), 6.87 (ddd, *J*₁ = 7.7 Hz, *J*₂ = 5.0 Hz, *J*₃ = 1.0 Hz, 1 H), 6.51 (d, *J* = 8.8 Hz 2 H), 5.53 (s, 1 H); ¹³C NMR (100.6 MHz) (CDCl₃): δ = 158.5, 148.1, 147.5, 141.2, 137.9, 136.2, 128.61, 128.60, 128.56, 128.0, 126.0, 123.2, 122.0, 118.8, 104.2; MS (EI ion source): *m/z* (%) = 306 (58 [M⁺]), 271 (21), 214 (44), 111 (41), 75 (75), 51 (100); HRMS: *m/z* [M + H]⁺ calcd for C₁₉H₁₅ClN₂: 307.0952; found: 307.0999.

(*Z*)-ethyl 3-(1-phenyl-2-(pyridin-2-yl)vinylamino)benzoate (3f): Yellow oil, (125.9 mg, 73% yield): IR (neat): 3346, 3053, 2948, 1728, 1626, 1589, 1377 cm⁻¹; ¹H NMR (400.13 MHz) (DMSO d_6): δ = 11.61 (br s, 1 H), 8.57 (bd, J = 5.0 Hz, 1 H), 7.75 (td, J_1 = 7.6 Hz J_2 = 1.8 Hz 1 H), 7.49-7.46 (m, 2 H), 7.40-7.33 (m, 5 H), 7.23-7.19 (m, 2 H), 7.13 (ddd, J_1 = 7.6 Hz, J_2 = 5.0 Hz, J_3 = 1.0 Hz, 1 H), 6.89 (dd, J_1 = 8.3 Hz, J_2 = 2.3 Hz, 1 H), 5.85 (s, 1 H), 4.20 (q, J = 7.2 Hz, 2 H), 1.24 (t, J = 7.2 Hz, 3 H); ¹³C NMR (100.6 MHz) (DMSO d_6): δ = 165.9, 158.0, 148.0, 147.0, 143.0, 137.7, 137.2, 130.8, 129.5, 129.1 (2C), 127.9, 124.9, 124.0, 121.8, 120.6, 120.0, 105.8, 61.0, 14.5; HRMS: m/z [M + H]⁺ calcd for C₂₂H₂₀N₂O₂: 345.1603.; found: 345.1600.

(*Z*)-*N*-(2-(pyridin-2-yl)-1-p-tolylvinyl)aniline (3g): Yellow solid (121.7 mg, 85% yield); mp: 90 - 92 °C; IR (KBr): 3364, 3012, 2914, 1621, 1587, 1370 cm⁻¹; ¹H NMR (400.13 MHz) (CDCl₃): δ = 11.59 (br s, 1 H), 8.39 (bd, *J* = 4.5 Hz, 1 H), 7.46 (td, *J*₁ = 7.8 Hz, *J*₂ = 1.8 Hz, 1 H), 7.30 (d, *J* = 8.0 Hz, 2 H), 7.04 (d, *J* = 8.0 Hz, 2 H), 7.02-6.98 (m, 3 H), 6.86-6.83 (m, 1 H), 6.73 (t, *J* = 7.2 Hz, 1 H), 6.63 (d, *J* = 8.0 Hz, 2 H), 5.50 (s, 1 H), 2.27 (s, 3 H); ¹³C NMR (100.6 MHz) (CDCl₃): δ = 158.9, 148.6, 147.5, 142.7, 138.3, 136.0, 135.4, 129.2, 128.6, 128.0, 123.0, 121.0, 120.9, 118.4, 103.2, 21.4; MS (EI ion source): *m/z* (%) = 286 (100 [M⁺]), 270 (20), 208 (37), 207 (52), 194 (70), 92 (17), 77 (73); HRMS: *m/z* [M + H]⁺ calcd for C₂₀H₁₉N₂: 287.1543; found: 287.1547.

(*Z*)-4-methoxy-*N*-(2-(pyridin-2-yl)-1-*p*-tolylvinyl)aniline (3h): Yellow wax (155.7 mg, 98% yield); IR (neat): 3352, 3012, 1619, 1587, 1365, 1245, 1024 cm⁻¹; ¹H NMR (400.13 MHz) (CDCl₃): δ = 11.45 (br s, 1 H), 8.36 (bd, *J* = 5.0 Hz, 1 H), 7.44 (td, *J*₁ = 7.6 Hz, *J*₂= 1.8 Hz, 1 H), 7.27 (d, *J* = 8.0 Hz, 2 H), 7.02 (d, *J* = 8.0 Hz, 2 H), 6.98 (d, *J* = 8.0 Hz, 1 H) 6.82 (ddd, *J*₁ = 7.6 Hz, *J*₂= 5.0 Hz, *J*₃= 1.1 Hz 1 H), 6.62-6.56 (m, 4 H), 5.44 (s, 1 H), 3.63 (s, 3 H), 2.26 (s, 3 H); ¹³C NMR (100.6 MHz) (CDCl₃): δ = 159.1, 154.6, 149.5, 147.4, 138.1, 136.0, 135.9, 135.5, 129.0, 128.2, 123.1, 122.7, 118.0, 114.0, 101.7, 55.5, 21.4; MS (EI ion source): *m/z* (%) = 316 (21 [M⁺]), 281 (13), 224 (100), 207 (28), 181 (8), 92 (20); HRMS: *m/z* [M + H]⁺ calcd for C₂₁H₂₁N₂O: 317.1648; found: 317.1653.

(*Z*)-3-metossi-*N*-(2-(piridin-2-il)-1-*p*-tolilvinil)aniline (3i): Yellow solid (148.5 mg, 94% yield); mp: 88 - 90 °C; IR (KBr): 3342, 3012, 2950, 1630, 1588, 1370, 1035 cm⁻¹; ¹H NMR (400.13 MHz) (CDCl₃): δ = 11.70 (br s, 1 H), 8.51 (bd, *J* = 4.6 Hz, 1 H), 7.57 (td, *J*₁ = 7.6 Hz, *J*₂= 1.6 Hz, 1 H), 7.42 (d, *J* = 8.0 Hz, 2 H), 7.16 (d, *J* = 8.0 Hz, 2 H), 7.10 (d, *J* = 8.2 Hz, 1 H), 7.01 (t, *J* = 8.2 Hz, 1 H), 6.99-6.94 (m, 1 H), 6.41 (dd, *J*₁ = 8.2 Hz, *J*₂= 2.3 Hz, 1 H), 6.36 (dd, *J*₁ = 8.0 Hz, *J*₂ = 1.6 Hz, 1 H), 6.26 (bt, *J* = 2.0 Hz, 1 H), 5.61 (s, 1 H), 3.60 (s, 3 H), 2.38 (s, 3 H); ¹³C NMR (100.6 MHz) (CDCl₃): δ = 160.0, 158.7, 148.4, 147.5, 144.0, 138.3, 136.0, 135.5, 129.3, 129.2, 127.9, 123.0, 118.5, 113.5, 106.9, 106.4, 103.4, 55.0, 21.4; MS (EI ion source): *m/z* (%) = 316 (54 [M⁺]), 300 (34), 281 (30), 224 (45), 207 (79), 92 (40), 73 (100); HRMS: *m/z* [M + H]⁺ calcd for C₂₁H₂₁N₂O: 317.1648; found: 317.1655.

(*Z*)-*N*-(1-(4-methoxyphenyl)-2-(pyridin-2-yl)vinyl)aniline (3j): Yellow solid; (125.5 mg, 83% yield); mp: 131-132 °C; IR (neat): 3344, 3008, 2967, 1617, 1590, 1365, 1245, 1024 cm⁻¹; ¹H NMR (400.13 MHz) (CDCl₃): δ = 11.70 (br s, 1 H), 8.50 (bd, *J* = 5.0 Hz, 1 H), 7.57 (td, *J*₁ = 7.8 Hz, *J*₂ = 1.6 Hz, 1 H), 7.46 (d, *J* = 8.8 Hz, 2 H), 7.14-7.10 (m, 3 H), 6.95 (ddd, *J*₁ = 7.6 Hz, *J*₂ = 5.0 Hz, *J*₃ = 1.1 Hz 1 H), 6.88 (d, *J* = 8.8 Hz, 2 H), 6.87-6.83 (m, 1 H), 6.75 (d, *J*₁ = 7.6 Hz, 2 H), 5.59 (s, 1 H), 3.84 (s, 3 H); ¹³C NMR (100.6 MHz) (CDCl₃): δ = 159.8, 158.9, 148.2, 147.5, 142.8, 136.0, 130.7, 129.3, 128.6, 122.9, 121.0, 120.9, 118.3, 113.9, 102.8, 55.4; MS (EI ion source): *m/z* (%) = 302 (88 [M⁺]), 286 (32), 223 (42), 210 (87), 167 (34), 92 (22), 77 (100); HRMS: *m/z* [M + H]⁺ calcd for C₂₀H₁₉N₂O: 303.1492; found 303.1500.

(*Z*)-*N*-(1-(4-methoxyphenyl)-2-(pyridin-2-yl)vinyl)-4-methylaniline (3k): Yellow solid (106.1 mg, 67% yield); mp: 128 - 129 °C; IR (KBr): 3343, 3010, 1620, 1580, 1368, 1275, 1075 cm⁻¹; ¹H NMR (400.13 MHz) (CDCl₃): δ = 11.65 (br s, 1 H), 8.50 (bd, *J* = 4.4 Hz, 1 H), 7.52 (t, *J* = 7.8 Hz, 1 H), 7.46 (d, *J* = 8.3 Hz, 2 H), 7.10 (d, *J* = 7.8 Hz, 1 H), 6.94 (d, *J* = 7.8 Hz, 3 H), 6.88 (d, *J* = 8.3 Hz, 2 H), 6.67 (d, *J* = 7.8 Hz, 2 H), 5.56 (s, 1 H), 3.48 (s, 3 H), 2.26 (s, 3 H); ¹³C NMR (100.6 MHz) (CDCl₃): δ = 159.7, 159.0, 148.6, 147.4, 140.1, 135.9, 130.7, 130.4, 129.4, 129.2, 122.8, 121.3, 118.1, 113.8, 102.1, 55.3, 20.7; MS (EI ion source): *m/z* (%) = 316 (100 [M⁺]), 281 (32), 224 (88), 207 (76), 182 (28), 92 (25), 73 (96); HRMS: *m/z* [M + H]⁺ calcd for C₂₁H₂₁N₂O: 317.1648; found: 317.1655.

(*Z*)-3-methoxy-*N*-(1-(4-methoxyphenyl)-2-(pyridin-2-yl)vinyl)aniline (3l): Yellow oil (163.0 mg 98% yield); IR (neat): 3360, 3010, 2955, 1631, 1588, 1370, 1275, 1035 cm⁻¹; ¹H NMR (400.13 MHz) (CDCl₃): δ = 11.74 (br s, 1 H), 8.52 (bd, *J* = 4.8 Hz, 1 H), 7.57 (td, *J*₁ = 7.9 Hz, *J*₂ = 1.7 Hz, 1 H), 7.50 (d, *J* = 8.8 Hz, 2 H), 7.12 (d, *J* = 8.0 Hz, 1 H), 7.05 (t, *J* = 8.1 Hz, 1 H), 6.98-6.94 (m, 1 H), 6.91 (d, *J* = 8.6 Hz, 2 H), 6.45 (dd, *J*₁ = 8.2 Hz, *J*₂ = 2.1 Hz, 1 H), 6.40 (bd, *J* = 8.1 Hz, 1 H), 6.32 (bt, *J* = 2.1 Hz, 1 H), 5.63 (s, 1 H), 3.85 (s, 3 H), 3.65 (s, 3 H); ¹³C NMR (100.6 MHz) (CDCl₃): δ = 159.9, 159.8, 158.7, 148.0, 147.4, 144.0, 136.0, 130.7, 129.2 (2C), 122.9, 118.4,

113.8, 113.5, 106.8, 106.5, 103.1, 55.3, 55.0; MS (EI ion source): m/z (%) = 332 (8 [M⁺]), 281 (25), 267 (10), 253 (31), 207 (65), 193 (12), 92 (31), 73 (100); HRMS: m/z [M + H]⁺ calcd for C₂₁H₂₁N₂O₂: 333.1598; found: 333.1604.

(*Z*)-*N*-(1-(3-methoxyphenyl)-2-(pyridin-2-yl)vinyl)aniline (3m): Yellow solid (136.3 mg, 90% yield); mp: 81 - 82 °C; IR (KBr): 3341, 3010, 2950, 1621, 1604, 1378, 1218, 1042 cm⁻¹; ¹H NMR (400.13 MHz) (CDCl₃): δ = 11.59 (br s, 1 H), 8.40 (bd, *J* = 4.7 Hz, 1 H), 7.47 (td, *J*₁ = 7.6 Hz, *J*₂ = 1.5 Hz, 1 H), 7.14 (t, *J* = 8.0 Hz, 1 H), 7.03-6.95 (m, 5 H), 6.88-6.83 (m, 1 H), 6.77 (dd, *J*₁ = 8.1 Hz, *J*₂ = 2.2 Hz 1 H), 6.73 (t, *J* = 7.4 Hz, 1 H), 6.63 (d, *J* = 8.0 Hz, 2 H), 5.54 (s, 1 H), 3.66 (s, 3 H); ¹³C NMR (100.6 MHz) (CDCl₃): δ = 159.6, 158.7, 148.4, 147.5, 142.6, 139.8, 136.0, 129.5, 128.6, 123.1, 121.1, 120.9, 120.7, 118.6, 114.2, 113.4, 103.5, 55.4; MS (EI ion source): *m/z* (%) = 302 (100 [M⁺]), 281 (27), 224 (32), 210 (60), 195 (27), 92 (29), 77 (73); HRMS: *m/z* [M + H]⁺ calcd for C₂₀H₁₉N₂O: 303.1492; found: 303.1499.

(Z)-4-methoxy-N-(1-(3-methoxyphenyl)-2-(pyridin-2-yl)vinyl)aniline (3n): Yellow oil; (124.6 mg 75% yield); IR (neat): 3362, 3004, 2935, 1626, 1590, 1378, 1037 cm⁻¹; ¹H NMR (400.13 MHz) (CDCl₃): δ = 11.45 (br s, 1 H), 8.38 (bd, *J* = 4.8 Hz, 1 H), 7.46 (td, *J*₁ = 7.6 Hz, *J*₂ = 1.8 Hz, 1 H), 7.12 (t, *J* = 7.8 Hz, 1 H), 6.98 (t, *J* = 7.8 Hz, 2 H), 6.95-6.92 (m, 1 H), 6.86-6.81 (m, 1 H), 6.75 (dd, *J*₁ = 8.0 Hz, *J*₂ = 2.6 Hz, 1 H), 6.64-6.56 (m, 4 H), 5.48 (s, 1 H), 3.66 (s, 3 H), 3.63 (s, 3 H); ¹³C NMR (100.6 MHz) (CDCl₃): δ = 159.5, 159.0, 154.7, 149.4, 147.5, 139.8, 136.0, 135.9, 129.3, 123.1, 122.8, 120.9, 118.2, 114.1, 114.0, 113.7, 102.0, 55.6, 55.4; MS (EI ion source): *m/z* (%) = 332 (100 [M⁺]), 316 (18), 254 (26), 240 (72), 184 (26), 167 (25), 92 (39), 73 (41); HRMS: *m/z* [M + H]⁺ calcd for C₂₁H₂₁N₂O₂: 333.1598; found: 333.1603.

(*Z*)-4-(1-(3-methoxyphenyl)-2-(pyridin-2-yl)vinylamino)benzonitrile (3o): Yellow wax, (31.3 mg, 19% yield); IR (neat): 3332, 3036, 2950, 2210, 1620, 1580, 1368, 1267, 1037; ¹H NMR (400.13 MHz) (CDCl₃): δ = 12.02 (br s,, 1 H), 8.55 (bd, *J* = 4.7 Hz, 1 H), 7.64 (td, *J*₁ = 7.6 Hz, *J*₂ = 1.7 Hz, 1 H), 7.35 (d, *J* = 8.8 Hz, 2 H), 7.31 (t, *J* = 8.0 Hz, 1 H), 7.17 (d, *J* = 8.0 Hz, 1 H), 7.09-7.03 (m, 3 H), 6.94 (m, 1 H), 6.66 (d, *J* = 8.8 Hz, 2 H), 5.78 (s, 1 H), 3.81 (s, 3 H); ¹³C NMR (100.6 MHz) (CDCl₃): δ = 159.9, 157.7, 147.6, 146.7, 146.1, 138.9, 136.5, 132.9, 130.0, 123.8, 120.2, 120.0, 119.7, 119.3, 114.4, 113.2, 107.0, 102.4, 55.4; MS (EI ion source): *m/z* (%) = 327(24 [M⁺]), 281 (41), 253 (18), 207 (89), 135 (17), 73 (100); HRMS: *m/z* [M + H]⁺ calcd for C₂₁H₁₈N₃O: 328.1444; found: 328.1452.

(*Z*)-*N*-(1-(2-bromophenyl)-2-(pyridin-2-yl)vinyl)aniline (3p): Yellow oil (131.4 mg, 75% yield); IR (neat): 3343, 3023, 2956, 1620, 1580, 1377 cm⁻¹; ¹H NMR (400.13 MHz) (CDCl₃): δ = 11.98 (br s, 1 H), 8.54 (bd, *J* = 4.9 Hz, 1 H), 7.60-7.55 (m, 2 H), 7.52 (dd, *J*₁ = 7.6 Hz *J*₂ = 1.7 Hz, 1 H), 7.34 (td, *J*₁ = 7.6 Hz *J*₂ = 1.2 Hz, 1 H), 7.22 (td, *J*₁ = 7.6 Hz, *J*₂ = 1.7 Hz, 1 H), 7.11-7.06 (m, 3 H), 6.97 (ddd, *J*₁ = 7.6 Hz, *J*₂ = 4.9 Hz *J*₃ = 1.1 Hz, 1 H), 6.87-6.83 (m, 1 H), 6.69-6.67 (m, *J* = 7.1, 2 H), 5.33 (s, 1 H); ¹³C NMR (100.6 MHz) (CDCl₃): δ = 158.7, 147.5, 147.1, 141.7, 139.1, 136.0, 133.3, 131.4, 129.7, 128.7, 127.5, 123.0, 122.9, 121.4, 120.4, 118.4, 101.9; MS (EI ion source): *m/z* (%) = 352 (10 [⁸¹Br M⁺]), 350 (8 [⁷⁹Br M⁺]), 271 (100), 207 (64), 135 (18), 73 (55); HRMS: *m/z* [⁸¹Br M + H] ⁺ calcd for C₁₉H₁₆BrN₂: 353.0471; found: 353.0480; [⁷⁹Br M + H] ⁺ calcd for C₁₉H₁₆BrN₂: 351.0491; found: 351.0501.

(*Z*)-4-methoxy-*N*-(2-(pyridin-2-yl)-1-(3-(trifluoromethyl)phenyl)vinyl)aniline (3q): Yellow oil (146.3 mg 79% yield); IR (neat): 3354, 3008, 2928, 1621, 1590, 1245, 1170, 1037 cm⁻¹; ¹H NMR (400.13 MHz) (CDCl₃): δ = 11.44 (br s, 1 H), 8.39 (bd, *J* = 4.9 Hz, 1 H), 7.69 (br s, 1 H), 7.51-7.44 (m, 3 H), 7.28 (t, *J* = 7.8 Hz, 1 H), 7.03 (d, *J* = 8.0 Hz, 1 H), 6.88 (ddd, *J*₁ = 7.6 Hz, *J*₂ = 4.9 Hz, *J*₃ = 0.9 Hz, 1 H), 6.58 (br s, 4 H), 5.48 (s, 1 H), 3.63 (s, 3 H); ¹³C NMR (100.6 MHz) (CDCl₃): δ = 158.6, 155.0, 147.9, 147.5, 139.3, 136.1, 135.4, 131.7, 130.8 (q, *J_{CF}* = 32 Hz), 128.7, 124.9-124.8 (m, 2C), 124.1 (q, *J_{CF}* = 273 Hz), 123.5, 123.1, 118.7, 114.7, 103.0, 55.6; ¹⁹F NMR (376.5 MHz) (CDCl₃): δ = -62.6; MS (EI ion source): *m/z* (%) = 370 (100 [M⁺]), 355 (15), 278 (46), 248 (19), 184 (29), 92 (39), 78 (53); HRMS: *m/z* [M + H]⁺ calcd for C₂₁H₁₈F₃N₂O: 371.1366; found: 371.1373.

(*Z*)-methyl 2-(1-(phenylamino)-2-(pyridin-2-yl)vinyl)benzoate (3r): Yellow oil (131.0 mg, 79% yield); IR (neat): 3342, 3056, 2948, 1728, 1626, 1589 cm⁻¹; ¹H NMR (400.13 MHz) (CDCl₃): δ = 11 95 (br s, 1 H), 8.51 (bd, *J* = 4.9 Hz, 1 H), 7.76 (dd, *J*₁ = 7.6 Hz, *J*₂ = 1.0 Hz 1 H), 7.57-7.52 (m, 1 H), 7.50-7.39 (m, 3 H), 7.10-7.02 (m, 3 H), 6.94 (ddd, *J*₁ = 7.6 Hz, *J*₂ = 4.9 Hz, *J*₃ = 1.1 Hz, 1 H), 6.89-6.82 (m, 1 H), 6.74 (d, *J* = 7.6 Hz, 2 H), 5.28 (s, 1 H), 3.75 (s, 3 H); ¹³C NMR (100.6 MHz) (CDCl₃): δ = 168.7, 158.8, 147.7, 147.4, 141.6, 138.4, 135.9, 131.5, 131.4, 130.3, 129.6, 128.6, 128.2, 122.7, 121.4, 120.8, 118.2, 101.5, 55.4; MS (EI ion source): *m/z* (%) = 330(40 [M⁺]), 271 (100), 238 (44), 207 (39), 135 (29), 73 (43); HRMS: *m/z* [M + H]⁺ calcd for C₂₁H₁₉N₂O₂: 331.1441; found: 331.1447.

(*Z*)-1-(4-(1-(phenylamino)-2-(pyridin-2-yl)vinyl)phenyl)ethanone (3s): Yellow solid (72.1 mg 46% yield); mp: 112 - 114 °C; IR (KBr): 3344 3012, 2948, 1678, 1626, 1596, 1368, 1263 cm⁻¹; ¹H NMR (400.13 MHz) (CDCl₃): δ = 11.68 (br s, 1 H), 8.53 (bd, *J* = 5.0 Hz, 1 H), 7.93 (d, *J* = 8.5 Hz, 2 H), 7.64-7.58 (m, 3 H), 7.18-7.09 (m, 3 H), 7.00 (ddd, *J*₁ = 7.6 Hz, *J*₂ = 5.0 Hz, *J*₃ = 1.0 Hz, 1 H), 6.86 (t, *J* = 7.4 Hz, 1 H), 6.71 (d, *J* = 7.6 Hz, 2 H), 5.70 (s, 1 H), 2.62 (s, 3 H); ¹³C NMR (100.6 MHz) (CDCl₃): δ = 197.7, 158.3, 147.6, 147.3, 143.2, 142.3, 136.7, 136.2, 128.8, 128.6, 128.2, 123.4, 121.4, 121.1, 119.1, 105.1, 26.7; MS (EI ion source): *m/z* (%) = 314 (20 [M⁺]), 281 (36), 253 (16), 207 (69), 135 (18), 96 (15), 73 (100); HRMS: *m/z* [M + H]⁺ calcd for C₂₁H₁₉N₂O: 315.1492; found: 315.1498.

(*Z*)-1-(4-(1-(4-methoxyphenylamino)-2-(pyridin-2-yl)vinyl)phenyl)ethanone (3t): Yellow oil (153.4 mg, 89% yield); IR (neat): 3353, 3003, 2950, 1680, 1626, 1580, 1274, 1037 cm⁻¹; ¹H NMR (400.13 MHz) (CDCl₃): δ = 11.53 (br s, 1 H), 8.50 (bd, *J* = 4.3 Hz, 1 H), 7.90 (d, *J* = 8.2 Hz, 2 H), 7.60-7.57 (m, 3 H), 7.13 (d, *J* = 8.0 Hz, 1 H), 6.99-6.96 (m, 1 H), 6.71-6.66 (m, 4 H), 5.63 (s, 1 H), 3.72 (s, 3 H), 2.60 (s, 3 H); ¹³C NMR (100.6 MHz) (CDCl₃): δ = 197.7, 158.6, 155.0, 148.2, 147.6, 143.3, 136.6, 136.1, 135.6, 128.45, 128.39, 123.3, 123.1, 118.8, 114.1, 103.5, 55.5, 26.7; MS (EI ion source): *m/z* (%) = 344 (24 [M⁺]), 281 (40), 207 (86), 135 (18), 96 (14), 73 (100); HRMS: *m/z* [M + H]⁺ calcd for C₂₂H₂₁N₂O₂: 345.1598; found: 345.1605.

1-phenyl-2-(pyridin-2-yl)ethanone (4a): known compound; lit mp: 52 - 54ⁱⁱ; mp 55 – 57.

2-phenyl-2-(phenylimino)-1-(pyridin-2-yl)ethanone (5a): yellow solid, mp :123 - 124 °C; IR (KBr): 3059, 2940, 1686, 1622 1579, 1445, 1231, 1194 cm⁻¹; ¹H NMR (400.13 MHz) (CDCl₃): δ = 8.61 (bd, *J* = 4.8 Hz , 1 H), 7.89 (d, *J* = 6.8 Hz, 2 H), 7.82 (d, *J* = 8.0 Hz, 1 H), 7.73 (td, *J*₁ = 8.0 Hz, *J*₂ = 1.6 Hz, 1 H), 7.52-7.43 (m, 3 H), 7.39-7.36 (m, 1 H), 7.10 (t, *J* = 7.6 Hz, 2 H), 6.91 (t, *J* = 7.2 Hz, 1 H) 6.86 (d, *J* = 6.8 Hz, 2 H); ¹³C NMR (100.6 MHz) (CDCl₃): δ = 198.4, 167.1, 152.4, 149.7, 149.6, 136.9, 135.2, 131.4, 128.7, 128.4, 128.1, 127.5, 124.2, 122.3, 120.1; MS (EI ion source): m/z (%) = 286 (12 [M⁺]), 180 (100), 77 (45).

(*Z*)-*N*-(1-phenyl-2-(4-(trifluoromethyl)pyridin-2-yl)vinyl)aniline (7a): Yellow solid (163.3 mg, 96% yield); mp: 76 - 77 °C; IR (KBr): 3398, 2926, 1633, 1134 cm⁻¹; ¹H NMR (400.13 MHz) (DMSO d_6): δ = 11.39 (br s, 1 H), 8.76 (d, *J* = 5.3 Hz, 1 H), 7.69 (s, 1 H), 7.51-7.43 (m, 2 H), 7.42-7.34 (m, 4 H), 7.10 (t, *J* = 7.8 Hz, 2 H), 6.85 (t, *J* = 7.3 Hz, 1 H), 6.69 (d, *J* = 7.7 Hz, 2 H), 5.90 (s, 1 H); ¹³C NMR (100.6 MHz) (DMSO d_6): δ = 159.7, 149.7, 149.6, 142.0, 137.7, 137.2 (q, *J*_{CF} = 33.0 Hz), 129.3, 129.2, 129.0, 128.3, 123.5 (q, *J*_{CF} = 273.6 Hz), 122.1, 121.4, 118.9 (q, *J*_{CF} = 3.8 Hz), 113.9 (q, *J*_{CF} = 3.4 Hz), 103.1. ¹⁹F NMR (376.5 MHz) (DMSO d_6): δ = -63.6; HRMS: *m*/*z* [M + H]⁺ calcd for C₂₀H₁₆F₃N₂: 341.1260; found: 341.1254.

(Z)-4-chloro-*N*-(1-phenyl-2-(4-(trifluoromethyl)pyridin-2-yl)vinyl)aniline (7b): Wax (185.1 mg, 99% yield); IR (neat): 3061, 1624, 1549, 1332, 1171 cm⁻¹; ¹H NMR (400.13 MHz) (DMSO d_6): $\delta = 11.38$ (br s, 1 H), 8.77 (d, J = 5.2 Hz, 1 H), 7.71 (s, 1 H), 7.49-7.37 (m, 6 H), 7.15 (d, J = 8.8 Hz, 2 H), 6.69 (d, J = 8.8 Hz, 2 H), 5.96 (s, 1 H); ¹³C NMR (100.6 MHz) (DMSO d_6): $\delta = 159.4$, 149.6, 149.0, 141.0, 137.3 (q, $J_{CF} = 33.0$ Hz), 137.2, 129.5, 129.1, 129.0, 128.2, 125.9, 123.5 (q, $J_{CF} = 273.3$ Hz), 122.7, 119.0 (q, $J_{CF} = 3.8$ Hz), 114.2 (q, $J_{CF} = 3.2$ Hz), 103.1. ¹⁹F NMR (376.5 MHz) (DMSO d_6): $\delta = -63.6$; HRMS: m/z [M + H]⁺ calcd for C₂₀H₁₆ClF₃N₂: 375.0870; found: 375.0866.

(*Z*)-*N*-(2-(5-fluoropyridin-2-yl)-1-phenylvinyl)aniline (7c): Yellow solid (124.7 mg 86% yield); mp: 128 - 129 °C; IR (neat): 3390, 2927, 1624, 1596, 1477, 1385, 1230 cm⁻¹; ¹H NMR (400.13 MHz) (DMSO *d*₆): δ = 11.06 (br s, 1 H), 8.54 (bd, *J* = 2.9 Hz, 1 H), 7.69 (td, *J*₁ = 8.8 Hz, *J*₂ = 3.1 Hz, 1 H), 7.49-7.33 (m, 6 H), 7.11-7.05 (m, 2 H), 6.80 (dt, *J*₁ = 7.2, *J*₂ = 0.9 Hz, 1 H), 6.64 (d, *J* = 7.6 Hz, 2 H), 5.83 (s, 1 H); ¹³C NMR (100.6 MHz) (DMSO *d*₆): δ = 156.3 (d, *J*_{CF} = 249.0 Hz), 155.2 (d, *J*_{CF} = 3.5 Hz), 146.9 (d, *J*_{CF} = 2.1 Hz), 142.6, 138.1, 135.5 (d, *J*_{CF} = 24.2 Hz), 129.4, 129.1, 129.0, 128.8, 125.2 (d, *J*_{CF} = 4.3 Hz), 124.5 (d, *J*_{CF} = 19.3 Hz), 121.4, 120.7. 104.1. ¹⁹F NMR (376.5 MHz) (DMSO *d*₆): δ = -131.8; HRMS: *m*/*z* [M + H]⁺ calcd for C₁₉H₁₆FN₂: 291.1292; found: 291.1289.

(*Z*)-*N*-(2-(5-fluoropyridin-2-yl)-1-phenylvinyl)-3-methoxyaniline (7d): Yellow solid (153.6 mg, 96% yield); 90% yield); mp: 88 - 89 °C; IR (neat): 3390, 2926, 1627, 1596, 1478, 1230, 1140 cm⁻¹; ¹H NMR (400.13 MHz) (DMSO *d*₆): δ = 11.05 (br s, 1 H), 8.55 (bd, *J* = 2.8 Hz, 1 H), 7.70 (td, *J*₁ = 9.0 Hz, *J*₂ = 3.0 Hz, 1 H), 7.50-7.34 (m, 6 H), 6.98 (t, *J* = 8.1 Hz, 1 H), 6.37 (dd, *J*₁ = 8.0 Hz, *J*₂ = 2.1 Hz, 1 H), 6.26 (dd, *J*₁ = 7.8 Hz, *J*₂ = 1.6 Hz, 1 H), 6.13 (t, *J* = 2.1 Hz, 1 H), 5.83 (s, 1 H), 3.52 (s, 3 H); ¹³C NMR (100.6 MHz) (DMSO *d*₆): δ = 160.0, 156.4 (d, *J*_{CF} = 250.0 Hz), 155.7 (d, *J*_{CF} = 3.6 Hz),146.7 (d, *J*_{CF} = 2.0 Hz), 143.8, 138.2, 135.5 (d, *J*_{CF} = 24.3 Hz), 129.8, 129.0, 128.0, 125.2 (d, *J*_{CF} = 4.2 Hz), 124.7 (d, *J*_{CF} = 19.0 Hz), 113.1, 107.0, 106.3, 104.3, 55.1. ¹⁹F NMR (376.5 MHz) (DMSO *d*₆): δ = -131.7; HRMS: *m*/*z* [M + H]⁺ calcd for C₂₀H₁₈FN₂O: 321.1398; found: 321.1394.

(*Z*)-*N*-(2-(5-fluoropyridin-2-yl)-1-phenylvinyl)-4-methylaniline (7e): Yellow solid (135.3 mg, 89% yield); mp: 143 – 144 °C; IR (neat): 3398, 3024, 1624, 1478, 1386, 1230, 1084 cm⁻¹; ¹H NMR (400.13 MHz) (DMSO *d*₆): δ = 11.00 (br s, 1 H), 8.52 (bd, *J* = 2.8 Hz, 1 H), 7.68 (td, *J*₁ = 8.9 Hz, *J*₂ = 3.1 Hz, 1 H), 7.47-7.31 (m, 6 H), 6.89 (d, *J* = 8.1 Hz, 2 H), 6.55 (d, *J* = 8.3 Hz, 2 H), 5.77 (s, 1 H), 2.14 (s, 3 H); ¹³C NMR (100.6 MHz) (DMSO *d*₆): δ = 156.2 (d, *J*_{CF} = 249.0 Hz), 155.4 (d, *J*_{CF} = 3.6 Hz),147.4 (d, *J*_{CF} = 1.7 Hz), 140.0, 138.1, 135.5 (d, *J*_{CF} = 24.1 S17

Hz),130.5, 129.6, 128.92, 128.88, 128.1, 125.0 (d, J_{CF} = 4.3 Hz), 124.6 (d, J_{CF} = 18.9 Hz), 121.1, 103.2, 20.6. ¹⁹F NMR (376.5 MHz) (DMSO d_6): δ = -132.2; HRMS: m/z [M + H]⁺ calcd for C₂₀H₁₈FN₂: 305.1449; found: 305.1446.

(*Z*)-4-methoxy-*N*-(1-(pyridin-2-yl)hept-1-en-2-yl)aniline (7f): wax (145.9 mg, 79% NMR yield); ¹H NMR (400.13 MHz) (DMSO d_6) (selected signals): δ = 11.34 (br s, 1 H), 8.36 (bd, *J* = 4.3 Hz, 1 H), 7.57 (td, J_1 = 7.7 Hz, J_2 = 1.7 Hz, 1 H), 7.06 (d, *J* = 8.8, 2 H), 7.01 (d, *J* = 8.2, 1 H), 6.91 (d, *J* = 8.8, 2 H), 6.67-6.62 (m, 1 H), 6.54-6.49 (m, 1 H), 5.21 (s, 1 H), 2.33 (d, *J* = 7.6, 2 H), 1.40-1.34 (m, 2 H), 1.22-1.14 (m, 4H), 0.80-0.69 (m, 3 H) ; ¹³C NMR (100.6 MHz) (DMSO d_6): δ = 159.6, 156.3, 152.2, 147.3, 136.4, 134.1, 126.0, 122.3, 122.1, 121.8, 117.5, 114.7, 55.7, 32.7, 31.3, 27.9, 22.2, 14.2.

(*Z*)-*N*-(1-(pyridin-2-yl)hept-1-en-2-yl)aniline (7g): oil (63.9 mg, 48 % NMR yield); ¹H NMR (400.13 MHz) (DMSO d_6) (selected signals): δ = 11.63 (br s, 1 H), 8.40 (bd, *J* = 4.2 Hz, 1 H), 5.30 (s, 1 H).

1-(pyridin-2-yl)heptan-2-one (4b): known compound; yellow oil. lit mp: 52 - 54ⁱⁱⁱ; mp 55 - 57.

¹H, ¹³C, ¹⁹F NMR SPECTRA OF COMPOUNDS 3a – t, 5a, 7a -g

¹H NMR (400.13 MHz), CDCl₃: (Z)-N-(1-phenyl-2-(pyridin-2-yl)vinyl)aniline (3a)

¹³C NMR (100.6 MHz), CDCl₃

158.750	148.513 147.511 142.571 138.357 138.357 138.651 138.624 128.473 128.473 128.473 128.373 129.3757 129.3757 129.	103.663	77.477 77.159 76.841
			\vee

¹H NMR (400.13 MHz), CDCl₃: (*Z*)-4-methoxy-*N*-(1-phenyl-2-(pyridin-2-yl)vinyl)aniline (3b)

¹H NMR (400.13 MHz), CDCl₃: (*Z*)-*N*-(2-(pyridin-2-yl)-1-*p*-tolylvinyl)aniline (3g)

¹H NMR (400.13 MHz), CDCl₃: (*Z*)-4-methoxy-*N*-(2-(pyridin-2-yl)-1-*p*-tolylvinyl)aniline (3h)

¹H NMR (400.13 MHz), CDCl₃: (*Z*)-3-methoxy-*N*-(2-(pyridin-2-yl)-1-*p*-tolylvinyl)aniline (3i)

¹H NMR (400.13 MHz), CDCl₃: (*Z*)-*N*-(1-(4-methoxyphenyl)-2-(pyridin-2-yl)vinyl)-3-methylaniline (3k)

¹H NMR (400.13 MHz), CDCl₃: (Z)-4-methoxy-N-(1-(4-methoxyphenyl)-2-(pyridin-2-yl)vinyl)aniline (3I)

¹H NMR (400.13 MHz), CDCl₃: (Z)-4-methoxy-N-(1-(3-methoxyphenyl)-2-(pyridin-2-yl)vinyl)aniline (3n)

¹H NMR (400.13 MHz), CDCl₃: (Z)-4-(1-(3-methoxyphenyl)-2-(pyridin-2-yl)vinylamino)benzonitrile (30)

¹H NMR (400.13 MHz), CDCl₃: (*Z*)-4-methoxy-*N*-(2-(pyridin-2-yl)-1-(3-(trifluoromethyl)phenyl)vinyl)aniline (3q)

¹³C NMR (100.6 MHz), CDCl₃ (expansion)

¹H NMR (400.13 MHz), CDCl₃: (*Z*)-methyl 2-(1-(phenylamino)-2-(pyridin-2-yl)vinyl)benzoate (3r)

¹H NMR (400.13 MHz), CDCl₃: (*Z*)-1-(4-(1-(phenylamino)-2-(pyridin-2-yl)vinyl)phenyl)ethanone (3s)

¹H NMR (400.13 MHz), CDCl₃: (Z)-1-(4-(1-(4-methoxyphenylamino)-2-(pyridin-2-yl)vinyl)phenyl)ethanone (3t)

¹H NMR (400.13 MHz), DMSOd₆: (*Z*)-*N*-(1-phenyl-2-(4-(trifluoromethyl)pyridin-2-yl)vinyl)aniline (7a)

-50.0

-75.0

ppm

¹H NMR (400.13 MHz), DMSOd₆: (*Z*)-4-chloro-*N*-(1-phenyl-2-(4-(trifluoromethyl)pyridin-2-yl)vinyl)aniline (7b)

¹H NMR (400.13 MHz), DMSOd₆: (*Z*)-*N*-(2-(5-fluoropyridin-2-yl)-1-phenylvinyl)aniline (7c)

-10.0 -12.0 -15.0 ppm

¹H NMR (400.13 MHz), DMSOd₆: (*Z*)-*N*-(2-(5-fluoropyridin-2-yl)-1-phenylvinyl)-3-methoxyaniline (7d)

-125.0

ppm

¹H NMR (400.13 MHz), DMSOd₆: (*Z*)-*N*-(2-(5-fluoropyridin-2-yl)-1-phenylvinyl)-4-methylaniline (7e)

¹H NMR (400.13 MHz), DMSOd₆: (*Z*)-4-methoxy-*N*-(1-(pyridin-2-yl)hept-1-en-2-yl)aniline (7f)

¹H NMR (400.13 MHz), DMSOd₆: (Z)-N-(1-(pyridin-2-yl)hept-1-en-2-yl)aniline (7g)

¹H, ¹³C, ¹⁹F NMR SPECTRA Compounds 1a – h, 6a – c, 8, 9 ¹H NMR (400.13 MHz), DMSOd₆: 2-(phenylethynyl)pyridine (1a)

¹³C NMR (100.6 MHz), DMSOd₆

¹H NMR (400.13 MHz), DMSOd₆/DCl/D₂O: 2-(phenylethynyl)pyridinium chloride (1a')

¹³C NMR (100.6 MHz), DMSOd₆/DCI/D₂O

146.875 142.952 134.151 134.151 132.797 131.831 131.831 130.695 129.556 119.354	 	39.625 39.416 39.207 38.784 38.775 38.375

S54

¹H NMR (400.13 MHz), DMSOd₆: 2-((4-methoxyphenyl)ethynyl)pyridine (1c)

¹³C NMR (100.6 MHz), DMSOd₆

¹³C NMR (100.6 MHz), DMSOd₆/DCI/D₂O

161.828	146.767	142.389	134.910 134.542 130.245	126.144 115.164	110.989	101.853	80.340	55.943	39.352 39.133 38.9133 38.713 38.505 38.291 38.291
			\vee [

¹H NMR (400.13 MHz), DMSOd₆: 2-((3-methoxyphenyl)ethynyl)pyridine (1d)

			137.251 130.495 127.804 124.538 124.020 122.94020 116.819	89.231	55.742 56.742 40.635 40.426 40.218 39.800 39.591
--	--	--	---	--------	--

¹H NMR (400.13 MHz), DMSOd₆: 2-((3-methoxyphenyl)ethynyl)pyridinium chloride (1d')

¹H NMR (400.13 MHz), DMSOd₆: 2-((2-bromophenyl)ethynyl)pyridine (1e)

¹³C NMR (100.6 MHz), DMSOd₆

150.760	142.394 137.357 137.357 133.107 133.107 131.610 128.438 128.055 125.422 124.370 124.370 124.370	93.382 87.126	40.642 40.433 40.225 39.807 39.599 39.390
	111111/		

¹H NMR (400.13 MHz), DMSOd₆/DCl/D₂O: 2-((2-bromophenyl)ethynyl)pyridinium chloride (1e')

¹³C NMR (100.6 MHz), DMSOd₆/DCI/D₂O

¹H NMR (400.13 MHz), DMSOd₆: 2-((3-(trifluoromethyl)phenyl)ethynyl)pyridine (1f)

¹³C NMR (100.6 MHz), DMSOd₆ (expansion)

¹⁹F NMR (376.5 MHz), DMSOd₆

¹H NMR (400.13 MHz), DMSOd₆/DCl/D₂O: 2-((3-(trifluoromethyl)phenyl)ethynyl)pyridinium chloride (1f')

 ^{13}C NMR (100.6 MHz), DMSOd_6/DCl/D_2O

¹H NMR (400.13 MHz), DMSOd₆: methyl 2-(pyridin-2-ylethynyl)benzoate (1g)

¹H NMR (400.13 MHz), DMSOd₆/DCl/D₂O: 2-((2-(methoxycarbonyl)phenyl)ethynyl)pyridinium chloride (1g')

200.0

175.0

150.0

125.0

100.0

75.0

50.0

25.0

0.0 ppm

¹H NMR (400.13 MHz), DMSOd₆: 1-(4-(pyridin-2-ylethynyl)phenyl)ethanone (1h)

¹³C NMR (100.6 MHz), DMSOd₆

¹H NMR (400.13 MHz), DMSOd₆/DCl/D₂O: 2-((4-acetylphenyl)ethynyl)pyridinium chloride (1h')

¹H NMR (400.13 MHz), CDCl₃: 2-(phenylethynyl)-4-(trifluoromethyl)pyridine (6a)

¹H NMR (400.13 MHz), CDCl₃: 5-fluoro-2-(phenylethynyl)pyridine (6b)

¹H NMR (400.13 MHz), CDCl₃: 2-(hept-1-yn-1-yl)pyridine (6c)

¹H NMR (400.13 MHz), CDCl₃: 3-(phenylethynyl)pyridine (8)

¹³C NMR (100.6 MHz), CDCl₃

- 152.414	- 148.705	- 138.555	131.831 128.945 128.587 123.160 123.160 123.160	- 92.766	-86.071	~77.469 ~77.354 ~77.152 ~76.834
			$\langle \rangle \rangle \langle \rangle / $			\bigvee

¹H NMR (400.13 MHz), CDCl₃: 4-(phenylethynyl)pyridine (9)

¹H, ¹³C SPECTRA OF [(LIGAND)Au(2-(ARYLETHYNYL)PYRIDINE)]⁺ COMPLEXES

¹H NMR (400.13 MHz), CDCl₃: 2-((4-methoxyphenyl)ethynyl)pyridine (1c)

¹H NMR (400.13 MHz), CDCl₃: 2-((4-methoxyphenyl)ethynyl)pyridine (1c) + JPAu(CH₃CN)SbF₆

S78

¹H NMR (400.13 MHz), CDCl₃: 1-(4-(pyridin-2-ylethynyl)phenyl)ethanone (1h)

¹H NMR (400.13 MHz), CDCl₃: 3-(phenylethynyl)pyridine (6)

¹³C NMR (100.6 MHz), CDCl₃: 3-(phenylethynyl)pyridine (6)

DOSY, CDCl₃: 2-((4-methoxyphenyl)ethynyl)pyridine (1c) + JPAu(CH₃CN)SbF₆

OUTPUTS CALCOLATION FOR 3a Z isomer

```
+--------------+
 | Jaguar version 3.5, release 42
 Copyright 1991-1998 Schrodinger, Inc.
 1
 I.
    All Rights Reserved.
 | Use of this program should be acknowledged in publications as:
   Jaguar 3.5, Schrodinger, Inc., Portland, Oregon, 1998.
 1
 +-----+
 start of program pre
 Job name: WF29836
 Executables used: C:\USERS\GIANCARLO\DOCUMENTS\1.
 Temporary files : LAVORO\C.
 Input file comments:
   Molecule001
   This file created by Spartan
                      6-31G**
 basis set:
 net molecular charge:
                     0
 multiplicity:
                        1
 number of basis functions....
                                   395
Input geometry:
                           angstroms
 atom
               х
                                V
                         -1.2762350000
         0.5543850000
                                         -2.4395500000
 C3
                         -1.3969400000
          0.6152290000
                                          -0.9915580000
 C1
 C2
          0.4857320000
                         -0.4264550000
                                         -0.0382740000
         0.7994000000
                        -2.4268240000
                                          -0.6376890000
 HЗ
 N1
         0.4025910000
                          0.9382840000
                                          -0.2966610000
         0.5613240000
                        -0.8726740000
 C9
                                          1.3758640000
                        1.2234090000
 H7
         0.6097430000
                                         -1.2336360000
 C5
         -0.4435910000
                          1.8200590000
                                          0.3979150000
 C4
         0.4260130000
                       -1.1831790000
                                         -5.2065090000
                         -2.4825670000
         0.5963150000
                                          -3.1911500000
 C6
 C7
                         -2.4265990000
         0.5304180000
                                         -4.5800100000
 C8
         0.3941080000
                        -0.0373770000
                                         -4.3935330000
 H10
          0.6793880000
                         -3.4469690000
                                          -2.6725740000
                         -3.3504960000
                                          -5.1760230000
         0.5605480000
 H11
         0.3138760000
                          0.9698580000
 H12
                                          -4.8414960000
 Н13
         0.3711390000
                         -1.0958190000
                                          -6.2982980000
         0.4564740000
                        -0.0655830000
                                         -3.0523640000
 NЗ
 C10
          0.7644830000
                         -1.8029430000
                                          4.0046140000
                         -1.9332560000
 C11
         -0.2441460000
                                           1.8124590000
                                          2.2624980000
 C12
          1.4689120000
                         -0.2805520000
 C13
          1.5679420000
                         -0.7482820000
                                           3.5725190000
 C14
         -0.1416760000
                        -2.3938070000
                                          3.1234510000
         -0.9582560000
                         -2.3983140000
                                           1.1160140000
 H20
                                          1.9255920000
 H21
         2.1041730000
                          0.5527780000
 H22
         2.2832340000
                         -0.2813160000
                                          4.2655810000
         -0.7771810000
 H23
                         -3.2249650000
                                           3.4625480000
         0.8444040000
                        -2.1686250000
                                          5.0387670000
 H24
                          3.6875900000
                                         1.7628900000
         -2.0521730000
 C15
 C16
         -1.4420680000
                          1.3912440000
                                           1.2985050000
         -0.2825370000
                          3.2118550000
                                          0.1823640000
 C17
                                          0.8619750000
         -1.0809510000
                          4.1234020000
 C18
 C19
         -2.2259280000
                          2.3217270000
 H1
         -1.6051030000
                         0.3166400000
                                           1.4754180000
                                         -0.5252050000
 H2
         0.4762800000
                          3.5784970000
 Н4
         -0.9413210000
                         5.2005840000
                                          0.6851970000
                          1.9680340000
                                          2.6778020000
2.2984320000
         -2.9944920000
 Н5
 Hб
         -2.6766900000
                          4.4158160000
```

Molecular weight: 272.13 amu

Stoichiometry: C19N2H16 Molecular Point Group: C1

Point Group used: C1 nuclear repulsion energy..... 1478.021441331 hartrees Non-default options chosen: Geometry will be optimized in redundant internal coordinates Initial Hessian: from previous calculation end of program pre start of program onee smallest eigenvalue of S: 4.381E-04 number of canonical orbitals..... end of program onee start of program hfig initial wavefunction generated automatically from atomic wavefunctions Total no No of occupied orbitals Irreducible Shell_1 Shell_2 ... representation orbitals No Symm _____ Orbital occupation/shell 1.000 end of program hfig start of program probe end of program probe start of program grid number of gridpoints: С3 atom C1 C2 HЗ N1 C9 H7 C.5 grid # 1 grid # 2 grid # 3 grid # 4 number of gridpoints: C6 C7 C8 C4 H10 H11 H12 H13 atom grid # 1 grid # 2 grid # 3 grid # 4 number of gridpoints: ____N3 C10 C11 C12 C13 C14 H20 H21 atom grid # 1 grid # 2 grid # 3 grid # 4 number of gridpoints: C17 atom H22 H23 H24 C15 C16 C18 C19 grid # 1 grid # 2 grid # 3 grid # 4 number of gridpoints: Н1 H2 H5 Н4 H6 total atom grid # 1 grid # 2 grid # 3 grid # 4 232 10670

end of program grid

start of program rwr end of program rwr

sta	rt of p	rogran	n scf				1	1 / /						
numb	er of e	lectro	ons	••••	• • • •		1	144 72						
numb	er of b	⊥pna e ota ol	erect.	ons.				72						
numb	er of o	rbital	s. to	otal	••••		-	393						
numb	er of c	ore oi	bita.	ls				72						
numb	er of o	pen sł	nell (orbs.				0						
numb	er of o	ccupie	ed orl	bital	Ls			72						
numb	er of v	irtual	orb	itals	3		3	321						
numb	er of h	amilto	nian	s				1						
numb	er of s	hells.						1						
SCF	type: H	F												
	i u	d i	g											
	t p	i c	r								RM.	1S	maximum	
	e d	i u	i		_				energ	ЗХ	dens	sity	DIIS	
	r t	s t	d	to	otal	ene	rgy		chang	ge	char	ıge	error	
	1 17	N7 F		0.0 5	004	1 -	0.070				4 1 -		0 07 00	
etot		N 5	M .	-835.	.084.	2918	2672	2	4	20	4.18	-03	9.8E-02	
etot	2 I 3 V	I O	M .	-037. -837	696	0934 1130	2560	2	0F=() ()) 1	1.JE	-03	3.0E=02	
etot	4 N	v 2	TT -	-837.	703	6266	2300 N994	7	2E-()⊥ าว	3 15	2-04	1.2E 02	
etot	5 Y	Y 6	M ·	-837	711	3431	7223	7	.7E-(13	1.5F	1-03	1.1E-02	
etot	6 N	¥ 2	Ū ·	-837	72.4	0357	3531	1	.3E-(12	1.9F	2-04	2.4E-03	
etot	7 Y	Y 6	M	-837.	725	2450	0821	1	.2E-0	03	5.6E	S-05	5.8E-04	
etot	8 Y	Y 6	M	-837.	725	3500	2794	1	.1E-0	04	1.4E	C-05	3.1E-04	
etot	9 N	Y 2	U ·	-837.	725	0734	5400	-2	.8E-0	04	8.5E	2-06	1.4E-04	
etot	10 Y	Y 6	M	-837.	725	0804	9397	7	.0E-0	06	7.9E	2-06	9.1E-05	
etot	11 Y	Y 6	М·	-837.	.725	0831	1296	2	.6E-(06	1.5E	E-06	2.2E-05	
etot	12 Y	N 6	М·	-837.	725	0746	1584	-8	.5E-(06	0.0E	C+00	0.0E+00	
_														
Ener	gy comp	onents	s, in	hart	ree	s:		1 4	70 0/	71 4 /	11 2 2 1	0.5		
(A (F) NUCL	ear re	epuis:	ion	• • • •	••••	• • •	14	70.02	2144	11331 20270	23		
(E) (T) Tota	1 two-	-elec	tron	tor		•••	17	56 10)420)777	73/31	54		
(I.) Elec	tronic	ene:	rav.	CCTI			-23	15.74	4651	15947	108	(E+T)	
(12 (N) Tota	l enei	av	-91.				-8	37.72	2507	74615	584	(A+L)	
``	,		22										· · ·	
SCFE	: SCF e	nergy:	HF	- 8	337.	7250	74615	584	hart	tree	es	ite	rations:	12
HOMO	energy	: -	-0.26	214										
LUMO	energy	:	0.08	644										
o 1														
Urb.	Ital en	ergies	3:	1 1	201	170	1 1	20	E10	1 1	1 070	20	11 0701	0
-13	25961	-13.3	00000/	-11	2.29	1/9 010	-11.	. 28 23	033	-11	L.Z/S	138 163	-11 2393	2
-11	23802	-11 3	24010	-11	23	010 764	-11	-23 23	900 158	_11	1 230	167	-11 2258	2
-11	22229	-11 0	23794	-11	21	961	-1	26	004	-1	1 242	207	-1 1536	6
-1	.12768	-1.()7769	-1	.07	035	-1.	.03	358	-1	1.012	26	-1.0023	2
-0	99271	-0.0	95613	-(87	561	-0	84	882	-0	1 827	798	-0 8197	6
-0	.81508	-0.8	30279	-0).75	713	-0.	.71	105	- (.698	340	-0.6868	8
-0	.66980	-0.6	55308	-(.64	731	-0.	.63	156	-0	0.623	307	-0.6070	0
-0	.59873	-0.5	59012	-(.58	188	-0.	.57	529	-0).571	58	-0.5611	1
-0	.55329	-0.5	53699	-(.51	984	-0.	.51	731	- (0.503	819	-0.4961	3
-0	.49113	-0.4	18856	- (.47	653	-0.	.45	875	- 0	0.409	957	-0.3921	5
-0	.37419	-0.3	34349	-().33	473	-0.	.32	642	- 0	0.299	923	-0.2621	4
0	.08644	0.1	2829	(.13	579	0.	.14	497	C	0.157	709	0.1655	2
0	.23430	0.2	23606	(.23	785	0.	.24	992					
	_		_											
end	of pro	gram s	sci											

start of program derla end of program derla

start of program rwr end of program rwr

start of program der1b

forces (hartrees/bohr) : total

atom	label	х	У	Z
1	C3	-1.542875E-03	3.646308E-03	-2.906296E-02
2	C1	-2.324435E-04	4.792924E-03	2.414893E-02
3	C2	5.335123E-03	-1.389357E-02	-2.716176E-02
4	HЗ	-3.307716E-03	2.186555E-02	-4.271514E-03
5	N1	-2.860477E-03	-5.449803E-03	3.260275E-03
6	С9	2.202102E-03	-3.881972E-03	1.100600E-02
7	H7	-2.167217E-03	-7.635024E-03	9.732142E-04
8	C5	-7.952156E-03	1.535489E-02	9.490476E-03
9	C4	-8.303780E-04	1.118600E-02	4.438588E-04
10	C6	2.395493E-05	4.434787E-03	1.356033E-04
11	C7	3.049618E-04	-3.676661E-03	1.788950E-03
12	C8	-3.762192E-05	-2.429385E-03	5.871002E-03
13	H10	-1.312318E-03	1.523448E-02	-7.752719E-03
14	H11	-4.521867E-04	1.401801E-02	9.256511E-03
15	H12	1.559827E-03	-1.878091E-02	7.291051E-03
16	H13	8.326388E-04	-4.289418E-04	1.613293E-02
17	NЗ	2.505258E-03	-2.548728E-02	-1.025266E-02
18	C10	5.323462E-05	-3.101873E-03	7.571697E-03
19	C11	-1.073400E-03	-4.551145E-03	-1.239650E-03
20	C12	2.569482E-03	5.443399E-03	7.195323E-04
21	C13	5.290639E-03	3.953008E-03	3.527297E-03
22	C14	-3.958366E-03	-6.188202E-03	2.654124E-03
23	H20	1.136265E-02	8.570429E-03	1.161285E-02
24	H21	-1.135958E-02	-1.382589E-02	4.629758E-03
25	H22	-1.096300E-02	-7.453607E-03	-1.082575E-02
26	H23	9.625166E-03	1.287094E-02	-5.121827E-03
27	H24	-1.309925E-03	5.763879E-03	-1.588890E-02
28	C15	-5.921954E-03	5.751779E-03	5.732774E-03
29	C16	3.575054E-03	-9.592031E-03	-5.136667E-03
30	C17	3.432719E-03	-8.424406E-03	-2.741380E-03
31	C18	-3.091095E-04	6.915719E-03	-2.164843E-03
32	C19	-4.375752E-03	9.379986E-04	3.948199E-03
33	Н1	1.845620E-03	2.290765E-02	-4.082681E-03
34	H2	-1.034525E-02	-7.856500E-03	1.110648E-02
35	H4	-1.984061E-03	-1.679544E-02	2.517084E-03
36	Н5	1.198217E-02	5.173634E-03	-1.124901E-02
37	НG	9.359219E-03	-1.087102E-02	-7.934838E-03
to	tal	-4.359610E-04	-1.502282E-03	-1.068571E-03

end of program der1b

start of program onee smallest eigenvalue of S: 4.070E-04 number of canonical orbitals..... 393 end of program onee

start of program probe end of program probe

start of program grid

number	of	gridpoints:							
ator	n	C3	C1	C2	HЗ	Nl	С9	Н7	C5
grid #	1	89	87	86	71	95	92	67	86
grid #	2	97	96	94	112	103	100	106	93
grid #	3	189	187	192	207	201	194	186	192
grid #	4	329	327	325	203	374	341	191	326
number	of	gridpoints:							
ator	n	C4	С6	С7	C8	H10	H11	H12	H13
grid #	1	89	88	89	83	73	73	73	73
grid #	2	97	97	97	94	115	118	118	118
grid #	3	184	184	183	178	216	224	224	224
grid #	4	330	328	328	314	215	224	222	224

,		~		,																					
numbe	er o	ΪÇ	gric	ipoi M	LNts	:	0		C1	1		0	1.2		C	1 2		C	1 /		11/	20		1101	
a arid	± 1			101	2	L J	g		8	1 7		C	28		C.	29		C	29		п.	20 70		ΠΖΙ 71	
grid	# 2			111	L	g	7		9	5			96			97			96		1:	14		115	
grid	# 3			228	3	18	3		18	3		1	33		1	84		1	84		2	16		216	
grid	# 4			411	L	32	7		32	8		3	27		3	27		3	27		21	14		214	
numbe	er o	fq	gric	lpoi	ints	:	~					~	. –		~	1.0		~	1 -		~	1.0		~1 0	
a: aa	tom " 1			H22	2	H2	3		H2	4		C	15		C.	16		С	17		С.	18		CI9	
grid	#⊥ #2			119	2	11	2		11	с С			59 27			88 96			80		(59 27		88 97	
arid	# 3			222	>	22	3		22	4		1	34		1	90 84		1	82		18	34		183	
grid	# 4			223	3	22	4		22	4		3	27		3	27		3	28		32	28		328	
2																									
numbe	er o	fq	gric	lpoi	ints	:																			
a	tom			H1	L	H	12		H	4]	15]	H6	t	ot	al						
grid	# 1			11	L .	11	2		11	3		1	13		1	13		30	21						
grid	# 2 # 3			210	± 5	21	2		22	а 8		2	19		2	18 27		30	30						
arid	# 4			211	I	21	9		2.2	4		2	22		2	24	1	04	85						
9110	" -				-					-							-								
end o	of p	roc	gran	n gi	cid																				
star	t oi	pr	rogi	cam	rwr																				
ena	ог р	roc	Jran	ll r'v	V Ľ																				
star	t of	pr	ogi	cam	scf																				
	i	u	d	i	g																				
	t	р	i	С	r													R	MS		ma	axi	mum		
	е	d	i	u	i ,				,					en	ner	дХ	d	len	si	ty	I	DII	S		
	r	t	S	t	d		to	ta	Lе	ne	rg	У		cn	lan	ge	С	na	ng	е	e	err	or		
etot	1	N	N	1	IJ	-83	7.	741	121	02	32	18					1	. 8	E-	05	3	.0E	-04		
etot	2	Y	Y	4	M	-83	7.	741	123	21	24	78	2	2.2	2E-	05	5	.5	— Е-	06	1	.2E	-04		
etot	3	Y	Y	4	М	-83	7.	741	123	48	04	01	2	2.7	7E-	06	1	. 5	Е-	06	2	.9E	-05		
etot	4	Y	Ν	4	М	-83	7.	741	123	36	45	37	-1	2	2E-	06	0	.0	E+	00	0	.0E	+00		
					4	la a																			
Energ	y co	mpc	ner	ror	, in	i na	rτ	ree	es:				1 /	00	0	106	05	06	21	6					
(A) (E)	To	tal	or	TeF	lec	t rc	in .	•••	· · · rms	•••	••	•	-40	193	3.0	490 750	77	32	38	8					
(I)	To	tal	. tv	vo-e	elec	trc	n	tei	rms		•••		17	, 53 167	7.1	,90 841	58	61	60	5					
(L)	El	ect	ror	nic	ene	rgy	·					•	-23	326	5.5	909	18	70	78	3	(E-	+I)			
(N)	То	tal	. er	herg	gy		• •	••		• •	• •	•	-8	337	.7	412	33	64	53	7	(A-	+L)			
											~ ~														
SCFE:	SCF	er	hero	Jλ:	HF.		-8	37.	• 74	12	33	64	531	'n	lar	tre	es		1	ter	at:	lon	s:	4	
HOMO (ener	qy:		-(.26	441																			
LUMO (ener	gy:		(0.09	507																			
Orbi	tal	ene	ergi	les	:																				
-15.	5656	4	-15	5.55	5761	-	11	.28	350	4	-	11	.27	87	74	-1	1.	26	87	8	-11	1.2	684	5	
-11.	2512	4	-11	1.24	1092	-	· ⊥ ⊥ 1 1	.23	319 207	8	-	11 11	.23	514 570	12 0 1	-1	1.	23	03	/	-1.	1.2	299	9 2	
-11	2290 2197	d T	-11	1 21	1926 1926	_	· ⊥ ⊥ · 1 1	.24	207 154	0 4	-	_1 _1	· 22	572	5 E	-1	1. 1	24	90	1	-1.	1.2	202 562	0	
-1.	1363	0	-1	L.08	3356		-1	.07	706	3		-1	. 01	.,2 364	12	_	1	01	43	7	_	1.0	088	5	
-1.0	0002	9	- ().90	5172		-0	.87	744	1		-0	. 85	559	8	_	0.	83	23	5	- (0.8	241	3	
-0.	8213	6	- ().80	0823		-0	.76	617	3		-0	.71	.93	34	-	0.	70	28	0	- (0.6	913	6	
-0.	6772	9	- ().65	5621		-0	.65	528	5		-0	. 63	335	51	-	0.	62	56	0	- (0.6	148	3	
-0.	6062	0	- ().59	9685		-0	.58	346	3		-0	.57	93	35	-	0.	57	44	4	- ().5	655	0	
-0.	5578	8	- ().54	1479		-0	.51	183	6		-0	.51	.42	24	-	0.	50	41	7	- ().5	016	8	
-0.	4934	6	- ().48	3872		-0	.48	330	8		-0	.46	20	8	-	0.	40	62	6	- (J.3	880	3	
-0.	3/32 Ngsn	ö 7	-().34) 13	72 V 2 7 2 V 2		-0	. 3: 1 /	こごご 111	б б		0-	. 32 1 /	. Ծ 1 1 7 1	с. 2	-	0.	3U 15	4 b 0 0	/ 1	-(ש.2 ר ר	044 660	.⊤ 1	
0.0	2410	2	ſ),24	1243 1241		0	. 24	156	4		0	• ± 4 . 2 5	580)1		υ.	тЭ	צר	1	(T	000	5	
0	_ 1 _ U	-	C		. c1 1		0	• •		-		0	•		·										
end o	of p	roc	gran	n so	f																				

start of program derla end of program derla start of program rwr end of program rwr

start of program der1b

forces (hartrees/bohr) : total

atom	label	Х	У	Z			
					-		
1	C3	-2.021163E-05	5.280463E-05	1.684405E-05	-		
2	CI	-1.984294E-05	-1.54/55/E-05	-4.943061E-03			
3	02	-1.84691/E-U5	-9.625238E-U5	-1.1//382E-04	1		
4	HJ N1	2.0/00//E-05	- /.4/8640E-05	1.119/82E-03	2		
5	N L C O	-2.726502E-05	-6.5/04/0E-05	-1.200928E-04	1		
6	09	-1.59156/E-U5	-1.020228E-06	-8.355042E-03) =		
0	н / СБ	1.309481E-00 2.950705E 05	-5.204811E-05	-Z.4300/2E-U:	5		
0	CJ	-3.039703E-03	-6 030102E-05		5		
10	C4 C6	9 076312F=06	-0.038182E-05	-4.304977E-0	5		
11	C7	6 104584E-06	-6 027015E-05	8 669350E-0	7		
12	C8	-1 065334E-05	9 540286E-07	4 079139E-0	5		
13	H10	6 355058E-06	-4 750746E-05	-2 919421E-0	5		
14	H11	-7.276552E-06	-1.009745E-04	-3.370954E-05	5		
15	H12	-3.689606E-05	-1.007186E-04	-4.605551E-05	5		
16	H13	-2.881020E-05	-8.792266E-05	-4.049425E-05	5		
17	N3	-4.809336E-05	-9.571790E-05	-1.444937E-04	1		
18	C10	7.714203E-05	4.319996E-05	5.802132E-05	5		
19	C11	-3.261100E-06	-1.339159E-05	-3.422662E-05	5		
20	C12	1.089018E-05	-3.085249E-05	-5.377819E-05	5		
21	C13	-2.686455E-05	-6.615379E-05	-2.517352E-05	5		
22	C14	-2.504870E-05	-6.867181E-06	-4.480960E-05	5		
23	H20	-6.179840E-05	-9.658877E-05	-9.383987E-05	5		
24	H21	4.056638E-05	6.240829E-05	-6.721947E-05	5		
25	H22	7.690476E-05	9.533908E-05	2.986209E-05	5		
26	H23	-3.221663E-05	-7.888804E-05	-2.456498E-06	5		
27	H24	6.614136E-06	1.550125E-05	-3.755216E-05	5		
28	C15	9.313368E-05	4.242534E-05	-1.580565E-04	1		
29	C16	2.803974E-05	-8.816430E-05	-8.368042E-05	5		
30	C17	7.116703E-05	1.081799E-04	-9.985564E-05	5		
31	C18	-7.889525E-05	-1.700266E-04	-5.062186E-05	2		
32	C19	3.416835E-05	-4.831333E-05	-3.735926E-05	-		
33	HI	4.644/63E-05	3.681081E-05	-3.922043E-05) -		
34	HZ	-1.843033E-04	-9.436454E-05	4.516645E-U	-		
35	H4	3.383338E-US	9./9010UE-US	-/.U42551E-U3	-		
30	HD	0.39/404E-00	-3.300/14E-05	-8.414884E-U	5		
	HO	3.989012E-05	-1.694/35E-05	-9.064292E-03	-		
+ 0	+ - 1	-8 023905F-05	_1 1351/2F_03	-1 623130F-03	-		
00	cui	0.0200001 00	1.1331420 03	1.0201001	<i>,</i>		
end	of prog	ram der1b					
	15						
star	t of pr	ogram geopt 19					
	-						
geom	etry op	timization step	19				
read	ling inp	ut hessian of di	mension 111				
in	five co	lumns format					
read	ling inp	ut hessian of di	mension 111				
in	five co	lumns format					
ener	gy chan	ge: -1.	3371E-05 * (5.0000E-05)			
grad	lient ma	ximum: 2.	2255E-04 * (4.5000E-04)			
grad	lient rm	s: 5.	52/2E-05 # (3.0000E-04)			
step	sıze:	0.00937 trust	radius: 0.30	000			
disp	lacemen	t maximum: 4.	2185E-U3 . (1.8000E-03)			
disp	⊥acemen	trms: 8.	UU94E-U4 * (1.2000E-03)	0 2747 02	£	0 27475 00
pred	ircrea e	nergy change:	-9.09U3E-U/	yeom step:	9.3/4/E-U3	iuii step:	9.3/4/E-03

S89

center o x:	f mass moved by: 0.0000E+00	y: 0.0000E+00	z :	0.0000E+00
final ge	ometry:			
		angstroms		
atom	Х	У		Z
С3	0.5196620952	-1.3247128884	-2.4605	946789
C1	0.5664128189	-1.4720346837	-1.0030	935993
C2	0.4043668536	-0.5219300365	-0.0624	755040
нЗ	0.8001922234	-2.4593578374	-0.6531	021855
N1	0.2506313758	0.8151383791	-0.3520	383484
С9	0.5284036460	-0.9068119190	1.3781	227692
Н7	0.3434822496	1.0187804556	-1.3262	512830
C5	-0.5017921379	1.7521375168	0.3884	554991
C4	0.4434978263	-1.0757935870	-5.1922	971123
C6	0.5997200790	-2.4719994983	-3.2627	843986
C7	0.5605346507	-2.3424712180	-4.6323	565356
C8	0.3749344668	-0.0039324534	-4.3273	718913
Н10	0.6894148658	-3.4391245267	-2.8029	920993
Н11	0.6204242325	-3.2141327827	-5.2606	900484
Н12	0.2879465154	0.9993440613	-4.7096	351779
Н13	0.4102887996	-0.9268224080	-6.2555	148525
N3	0.4145108754	-0.1166079313	-3.0095	140928
C10	0.8479260197	-1.6664872282	4.0423	489757
C11	-0.1220643252	-2.0304861081	1.8761	630672
C12	1 3353702113	-0 1611073284	2 2341	575875
C13	1 4979907003	-0 5424552643	3 5540	300606
C14	0 0360134133	-2 4080327709	3 2005	039665
H20	-0 7641304221	-2 6000534738	1 2288	000004
u21	1 8380005108	0 7118985605	1 8607	326117
H21 H22	2 1307176762	0.0300260000	1 2010	J20117
n22 u23	_0 /703096306	-3 2759941955	3 5720	010017
123	-0.4793000300	-5.2750041555	5.5720	0744047
HZ4 015	0.9708065855	-1.9580244131	3.0707	2/4424
C15 C16	-1.93/8558019	3./105661443	1.10//	921049
C16 C17	-1.6149632930	1.40580/9353	1.146/	905397
C17	-0.1236088988	3.0901358647	0.3170	289183
C18	-0.8423668046	4.0605138409	0.9929	1045/71
C19	-2.315081/636	2.3/98999632	1.8404	125051
HI	-1.9343/616/1	0.3819998227	1.1950	239388
H2	0.7417044151	3.3584318989	-0.2641	470925
H4	-0.5360192043	5.0897970406	0.9251	443728
Н5	-3.1684792735	2.0937061582	2.4303	780490
H6	-2.4892088712	4.4627480262	2.3037	405754
nuclear	repulsion energy	1488.84968	5062 hart	rees
/ end of	geometry optimi	zation iteration 1	9 /	

end of program geopt

start of program post Writing a SPARTAN archive file end of program post

Total cpu seconds user: 2375.094 user+sys: 2375.094

OUTPUTS CALCOLATION FOR 3a E isomer

```
+-----+
 | Jaguar version 3.5, release 42
 Copyright 1991-1998 Schrodinger, Inc.
 | All Rights Reserved.
 | Use of this program should be acknowledged in publications as:
 | Jaguar 3.5, Schrodinger, Inc., Portland, Oregon, 1998.
 +-----
                            start of program pre
 Job name: WF13223
 Executables used: C:\USERS\GIANCARLO\DOCUMENTS\1.
 Temporary files : LAVORO\C.
 Input file comments:
   Molecule001
   This file created by Spartan
                        6-316**
 basis set:
                       0
 net molecular charge:
 multiplicity:
                         1
 number of basis functions....
                                      395
Input geometry:
                              angstroms
 atom
                 х
                                V
                                                    7.
 C1
          1.3160650000 -1.3742920000 -0.6127530000
          0.9278180000 -0.1173390000 -0.2737740000
0.7832540000 -2.6062330000 -0.0213730000
 C2
                          -2.6062330000
 C3
          0.7832540000
                                             -0.0213730000
          1.6497640000
 N1
                            1.0076460000
                                            -0.7316570000
                           0.1280750000
         -0.1806120000
                                             0.6728710000
 C9
 H7
         2.5363490000
                           0.7719070000
                                            -1.1342250000
         1.02501900002.0828560000-2.27530800000.5529870000-1.4334020000-0.46048400000.01467500000.9353190000
                                            -1.3981520000
                           2.0828560000
 C15
                                             2.4769010000
0.4504920000
 C10
 C11

        0.0146750000
        0.9353190000

        -1.0313950000
        1.1424710000

        -2.4745600000
        -0.2473720000

                                             1.8006760000
 C12
                                             2.6992600000
 C13
 C14
                                             1.3516790000
         -1.5871440000 -1.0955340000
                                            -0.4360190000
 H20
                           1.4085280000
1.7759900000
 Н21
          0.9926970000
                                              1.9758450000
                                             3.5842810000
 H22
         -0.8728030000
                          -0.7122560000
                                             1.1730150000
         -3.4552000000
 H23
 H24
         -3.0988620000
                           0.7198530000
                                             3.1863930000
                                            -1.3715000000
          2.1003030000 -1.5451770000
 H9
                           -4.9746630000
                                            1.0781730000
1.3648600000
          -0.1097410000
 C4
                          -2.8348760000
         0.9468770000
 C6
                                             1.9131750000
                          -4.0341750000
         0.4923760000
 C7
         -0.2316790000
                          -4.6656580000
 C8
                                            -0.2894210000
 Н13
          1.4217690000
                          -2.0690340000
                                            1.9927280000
                          -4.2324360000
 H14
          0.6088520000
                                             2.9886080000
                                             -0.9888330000
          -0.7032140000
                           -5.3799140000
 H15
 H16
         -0.4801010000
                           -5.9308240000
                                              1.4680970000
 N2
          0.1984960000
                           -3.5196740000
                                            -0.8431100000
 C16
         -0.1184910000
                           4.3329480000
                                            -2.6486220000
                            3.1798400000
                                            -1.7941650000
 C17
          1.8295720000
                            2.1360640000
3.2556080000
 C18
          -0.3596490000
                                             -1.6606370000
 C19
         -0.9168990000
                                             -2.2717550000
          1.2544760000
                           4.2854370000
 C20
                                             -2.4087300000
 H2.5
         2.9148170000
                           3.1659950000
                                            -1.6128020000
         -2.0006450000 3.2816610000
        -1.0108780000
 H26
                                            -1.3780810000
 Н27
                                             -2.4615120000
```

Н28 1.8928370000 5.1308100000 -2.7068430000 -3.1330930000 Н29 -0.5654340000 5.2121290000 Molecular weight: 272.13 amu Stoichiometry: C19N2H16 Molecular Point Group: C1 Point Group used: C1 nuclear repulsion energy..... 1499.115451548 hartrees Non-default options chosen: Geometry will be optimized in redundant internal coordinates Initial Hessian: from previous calculation end of program pre start of program onee smallest eigenvalue of S: 4.427E-04 number of canonical orbitals.... 393 end of program onee start of program hfig initial wavefunction generated automatically from atomic wavefunctions Irreducible Total no No of occupied orbitals representation orbitals Shell 1 Shell 2 . . . 72 No Symm 393 _____ Orbital occupation/shell 1.000 end of program hfig start of program probe end of program probe start of program grid C9 H7 C15 C10 92 70 00 number of gridpoints: N1 C9 97 92 C1 C2 C3 atom grid # 1 87 87 87 94 96 grid # 2 96 105 100 111 98 97
 185
 194
 191
 201
 193

 331
 324
 329
 378
 341
 195 193 185 grid # 3 arid # 4 331 206 328 330 number of gridpoints: atom C11 C12 C13 C14 H20 H21 H22 Н23 89 89 69 87 87 73 73 73 grid # 1 95 95 grid # 2 118 95 96 113 114 118 grid # 3 183 185 184 184 215 220 224 222 329 329 330 217 232 225 grid # 4 328 230 number of gridpoints: C4 C6 C7 atom H24 H9 C8 H13 H14 72 89 83 72 grid # 1 73 88 89 73 97 115 96 96 116 93 grid # 2 118 118 grid # 3 185 224 218 185 185 182 219 223 232 225 331 331 331 318 224 grid # 4 231 number of gridpoints: atom H15 H16 N2 C16 C17 C18 C19 C20 89 97 104 89 97 89 73 73 89 grid # 1 88 grid # 2 118 118 114 97 96 97 grid # 3 224 224 233 187 184 185 185 185

grio	d #	4		232	2	232	418	332	331	331	328	329
numb	ber	of	grid	dpo	ints	:						
ario	atom d #	1		H2: 72	5 2	H26 69	H27 73	H28 73	H29 73	total 3028		
grid	d # 1	2		11	6	111	118	118	118	3905		
grid	d#.	3 1		218	8	208	223	223	224	7478		
grid.	. #	4		221		210	232	232	232	10075		
end	of j	prog	grai	n gi	rid							
sta: end	rt o of j	f pi prog	rogi grai	ram n rī	rwr wr							
sta	rt o	fpi	rogi	ram	scf							
numbe	er o er o	fei fai	Lect Iph/	troi a e	ns lect	rons	••	144 72				
numbe	er o	f be	eta	ele	ectr	ons	••	72				
numbe	er o	foi foi	cbit	cals	s, t	otal	••	393				
numbe	er o	f op	pen	she	ell	orbs	••	0				
numbe	er o	f od	ccur	pied	d or	bitals	••	72				
numbe numbe	er o er o	tv: fha	irtı ami:	ıa⊥ ltoı	orb nian	ıtals. s	 	321 1				
numbe	er o	f sł	neli	ls.			••	1				
SCF 1	type	: HI	-									
	i	u	d	i	g							
	t	p	i	С	r ;			0	norau	RMS	maximu	m
	r	t	s	t	d	tota	al ener	.dà c	hange	change	error	
otot	1	N	NT	5	м	-035 0	5216100	120		1 35-03	1 28-0	1
etot	2	Y	Y	6	M	-837.4	9477884	410 2.	4E+00	4.3E-03 1.5E-03	3.6E-0	2
etot	3	Y	Y	6	М	-837.6	8340752	646 1.	9E-01	6.2E-04	1.2E-0	2
etot etot	4	N Y	Y Y	2	U M	-837.6	9057794 9885498	326 /. 153 8.	2E-03 3E-03	4.9E-04 1.8E-03	1.4E-0 1.1E-0	2 2
etot	6	Ν	Y	2	U	-837.7	1013652	769 1.	1E-02	2.3E-04	2.5E-0	3
etot	7	Y	Y	6	M	-837.7	1119785	386 1.	1E-03	6.1E-05	5.6E-0	4
etot	° 9	ı N	т Ү	2	M U	-837.7	1105402	332 -2.	4E-03 2E-04	1.1E-05 5.5E-06	9.7E-0	4 5
etot	10	Y	Y	6	М	-837.7	1106116	970 7.	1E-06	4.4E-06	4.9E-0	5
etot	11	Y	Ν	6	М	-837.7	1106509	012 3.	9E-06	0.0E+00	0.0E+0	0
Enero (A) (E) (I) (L)	gy C) N ⁻) T) T	ompo ucle otal otal lect	onen ear Lon Ltu	nts, rep ne-e wo-e nic	, in puls elec elec ene	hartro ion tron to tron to rgy	ees: erms 	149 411 177 233	9.1154 4.3342 7.5077 6.8265	5154768 2019094 0355315 1663780	(E+I)	
(N)) T	otai	L ei	nerg	gy	• • • • • •		83	7.7110	6509012	(A+L)	
SCFE	: SC	Fei	nerg	3Y:	ΗF	-83	7.71106	509012	hartre	es iter	rations:	11
HOMO LUMO	ene: ene:	rgy rgy	:	— ((0.27 0.10	977 104						
Orb	ital	ene	erg	ies	:	11	00651	11 070	0 5 1	1 27065	11 074	1 2
-15 -11	.283 .254	3⊥ 99	-13).50 1.2	o∠30 4502	-11.3	∠ơюэ⊥ 23953	-11.238	∞⊃ -1 96 -1	1.23864	-11.238	13 06
-11	.237	64	-12	1.2	3690	-11.2	23624	-11.234	27 -1	1.23293	-11.228	91
-11	.228	06 67	-11	1.22	2440	-11.3	22213	-1.258	17 -	1.24225	-1.153	61 58
-1 -0	.⊥∠9 .995	07 74	 - (1.0 2.9!	,501 5681	-1.	87142	-1.026	44 - 58 -	0.82725	-0.823	05

-0.81774	-0.80168	-0.75609	-0.71379	-0.68922	-0.68761
-0.66441	-0.65501	-0.64541	-0.63562	-0.62493	-0.61552
-0.60105	-0.59207	-0.58228	-0.57758	-0.57396	-0.56673
-0.55090	-0.52942	-0.52168	-0.50866	-0.50522	-0.49704
-0.48980	-0.48754	-0.47725	-0.45727	-0.40671	-0.37801
-0.36554	-0.34503	-0.33289	-0.32865	-0.30235	-0.27977
0.10104	0.12910	0.13459	0.14646	0.15143	0.15772
0.21300	0.23419	0.24368	0.24530		

end of program scf

start of program derla end of program derla

start of program rwr end of program rwr

start of program der1b

forces (hartrees/bohr) : total

atom	label	Х	У	Z
1	C1	2.630444E-03	3.109732E-02	-1.423350E-02
2	C2	2.597317E-02	-3.014770E-02	-1.485961E-02
3	C3	-1.213302E-02	-3.365286E-02	1.389391E-02
4	N1	-5.094356E-03	-5.496506E-03	-4.299005E-03
5	С9	-1.144541E-02	3.512291E-03	1.090766E-02
6	H7	-4.289779E-03	1.475398E-04	3.093485E-03
7	C15	-5.133622E-03	1.868782E-02	-6.281287E-03
8	C10	-5.684629E-03	1.159525E-03	5.045989E-03
9	C11	-2.231432E-03	-4.443870E-03	-1.063272E-03
10	C12	3.743678E-03	4.226272E-03	4.766037E-04
11	C13	1.609276E-03	4.451288E-03	6.136883E-03
12	C14	-6.640197E-03	-3.804574E-03	-1.974408E-03
13	H20	2.652840E-03	1.121532E-02	1.501640E-02
14	H21	-1.577193E-02	-8.028384E-03	-4.133369E-03
15	H22	-2.446909E-03	-9.881469E-03	-1.352232E-02
16	H23	1.509670E-02	7.271584E-03	2.674826E-03
17	H24	1.262647E-02	-2.435675E-03	-1.091675E-02
18	Н9	-1.330114E-02	8.113315E-03	1.052495E-02
19	C4	-2.755515E-03	-1.730516E-03	-8.731948E-03
20	C6	-1.036901E-03	-7.578122E-04	-5.449722E-03
21	C7	2.997199E-04	1.203987E-03	2.810823E-03
22	C8	2.578465E-03	6.530586E-03	-2.200171E-03
23	H13	-7.354264E-03	-1.271574E-02	-1.088184E-02
24	H14	-1.692608E-03	2.872641E-03	-1.637878E-02
25	H15	8.417814E-03	1.232205E-02	1.352266E-02
26	H16	5.275173E-03	1.383716E-02	-6.372756E-03
27	N2	9.143374E-03	3.170863E-04	3.266538E-02
28	C16	-5.762583E-03	7.405390E-03	-3.917737E-03
29	C17	2.039215E-04	-7.537377E-03	4.068141E-03
30	C18	2.006899E-03	-1.211894E-02	4.393745E-03
31	C19	-4.719670E-03	3.320375E-03	-2.564979E-03
32	C20	4.645023E-03	4.522173E-03	-3.432856E-03
33	H25	-1.673904E-02	-1.500656E-03	-8.834457E-04
34	H26	1.349930E-02	1.845471E-02	-7.449234E-03
35	Н27	1.709736E-02	-8.470896E-04	2.970633E-03
36	H28	-9.692512E-03	-1.330912E-02	4.650844E-03
37 	H29	6.704612E-03	-1.316460E-02	7.383534E-03
to	tal	2.787116E-04	-9.044464E-04	6.894980E-04

end of program der1b

start of program onee smallest eigenvalue of S: 4.190E-04 number of canonical orbitals..... 393 end of program onee

start of program probe end of program probe

start of program grid

number of	gridpoints	s:						
atom	C1	C2	C3	N1	С9	н7	C15	C10
arid # 1	88	86	86	96	92	71	86	89
arid # 2	94	96	94	104	100	111	93	97
grid # 3	182	192	186	202	193	196	193	184
grid # 4	322	317	323	377	340	208	327	326
gria # 4	522	517	525	511	540	200	527	520
number of	gridpoints	3:						
atom	C11	C12	C13	C14	H20	H21	H22	Н23
grid # 1	87	87	89	89	70	73	73	73
grid # 2	95	95	96	96	113	114	118	118
grid # 3	182	182	183	183	216	217	222	222
grid # 4	326	326	326	326	215	215	224	223
number of	gridpoints	3:						
atom	H24	Н9	C4	C6	C7	C8	H13	H14
grid # 1	73	72	89	88	89	81	71	73
grid # 2	118	115	97	96	97	91	114	118
grid # 3	223	216	184	182	183	178	218	223
grid # 4	224	212	329	327	328	313	211	223
-								
number of	gridpoints	3:						
atom	H15	H16	N2	C16	C17	C18	C19	C20
grid # 1	73	73	103	89	86	88	88	89
grid # 2	118	118	111	97	96	96	97	97
grid # 3	224	224	233	184	182	184	183	185
grid # 4	222	224	417	328	328	327	328	329
number of	gridpoints	3:				_		
atom	H25	H26	H27	H28	H29	total		
grid # 1	72	71	73	73	73	3022		
grid # 2	115	114	118	118	118	3893		
grid # 3	218	214	223	223	224	7443		
grid # 4	218	211	223	224	224	10491		

end of program grid

start of program rwr end of program rwr

start of program scf

	i t e r	u p d t	d i s	i c u t	g r i d	total energy	energy change	RMS density change	maximum DIIS error
etot	1	N	N	1	U	-837.72875434650	2.3E-04	3.5E-05	1.3E-03
etot	2	Y	Y	4	M	-837.72898488926		1.7E-05	5.1E-04

etot etot etot	3 Y 4 Y 5 Y	Y Y N	4 M 4 M 4 M	-837. -837. -837.	7290185 7290216 7290199	57434 58341 96426	3.4E- 3.1E- -1.7E-	05 5 06 2 06 0	5.1E-06 2.4E-06 0.0E+00	1.2E-04 6.0E-05 0.0E+00	
Energ (A) (E) (I) (L) (N)	y comp Nucl Tota Tota Elec Tota	ooner ear 1 or 1 tv tror 1 er	nts, ir repuls ne-elec wo-elec nic ene nergy	h hart sion ctron ctron ergy	rees: terms terms		1499.0 -4114.0 1777.2 -2336.7 -837.7	17052 01252 55179 46072 29019	276839 267898 994633 273266 996426	(E+I) (A+L)	
SCFE:	SCF e	energ	gy: HF	-8	37.7290)19964	126 har	trees	s ite	rations:	5
HOMO LUMO	energy energy	7:	-0.27	7693)056							
Orbi -15. -11. -11. -11. -1. -1. -1. -0. -0. -0. -0. -0. -0. 0. 0. end	tal en 57643 24559 23142 22276 13902 00453 8265 67008 60819 54895 49360 36724 10056 22799 of pro	ergi -15 -11 -11 -11 -11 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	ies: 5.55011 1.24182 1.22067 1.22190 1.22190 1.07950 0.96330 0.96330 0.966093 0.66093 0.59968 0.53236 0.53236 0.53236 0.49027 0.34843 0.13068 0.24264 n scf	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.28203 .23424 .22960 .21585 .07248 .87259 .76237 .64661 .58749 .52343 .48362 .33330 .14241 .24895	-111. -111. -11. -11. -0. -0. -0. -0. -0. -0. -0. 0.	27255 23305 22728 26049 03021 84864 72220 63845 58379 51065 45839 33158 14793 25407	-11. -11. -11. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0	.27204 .23280 .22578 .25381 .01604 .83274 .69885 .62803 .58164 .50727 .40069 .30779 .15462	-11.26090 -11.23173 -11.22412 -1.15846 -1.01228 -0.82818 -0.69381 -0.62107 -0.56980 -0.50256 -0.38595 -0.27693 0.16082	
star	t of p	rogi	ram dei	1a							
end	of pro	gran	n derla	1							
star end	t of p of prc	orogi ogran	ram rwi n rwr	-							
star	t of p	rogi	ram dei	:1b							

forces (hartrees/bohr) : total

atom	label	Х	У	Z
1	 C1	7.986386E-05	-8.753600E-05	-1.325119E-04
2	C2	7.744534E-05	6.602647E-05	-2.561828E-06
3	C3	1.723764E-04	2.838905E-04	3.497936E-04
4	N1	2.041631E-04	-1.594347E-04	-2.534863E-05
5	С9	-3.502879E-05	6.703332E-05	1.410291E-04
6	H7	-1.523555E-04	1.114477E-06	7.805942E-05
7	C15	-6.919679E-05	-1.711158E-05	-6.257239E-05
8	C10	-1.341867E-05	-3.116849E-05	-7.896304E-05
9	C11	5.812720E-05	4.758275E-05	4.993117E-05
10	C12	-2.938052E-05	-1.127346E-04	-9.999172E-05
11	C13	6.705963E-05	3.355296E-05	1.746523E-05
12	C14	6.085397E-05	7.521205E-05	4.231705E-05
13	H20	2.612211E-05	5.030862E-05	1.213717E-04
14	H21	-8.582909E-05	-3.506808E-05	-4.865307E-05
15	H22	-1.099783E-05	8.710297E-07	-8.259217E-05
16	H23	7.767185E-05	4.468633E-05	4.365762E-05

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	H24 $4.064644E$ $H9$ $-8.511383E$ $C4$ $-6.579702E$ $C6$ $7.402946E$ $C7$ $1.166242E$ $C8$ $6.271631E$ $H13$ $2.039987E$ $H14$ $2.358110E$ $H15$ $-7.455694E$ $H16$ $-7.001959E$ $N2$ $-5.435847E$ $C16$ $1.320666E$ $C17$ $-2.236293E$ $C18$ $9.616181E$ $C19$ $-2.905264E$ $C20$ $9.657132E$ $H25$ $4.376494E$ $H26$ $2.677806E$ $H27$ $6.417499E$ $H28$ $-2.360051E$ $H29$ $3.379375E$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-2.495552E-05 2.751741E-04 -3.523254E-04 -1.499552E-05 3.973756E-04 3.035171E-04 -2.440987E-05 -1.705182E-04 1.044940E-04 5.141291E-05 3.593817E-05 5.238811E-05 -7.482440E-05 7.324105E-05 -2.287451E-04 -9.764024E-05 3.265464E-05 3.242475E-05 -4.365005E-05 -4.887513E-05 -6.804695E-05	
LC)tal 0.554454E	-04 -2.31/694E-04	5.200643E-04	
end	of program der1b			
star geom read in read in read in	nt of program geopt metry optimization s ding input hessian o five columns format ding input hessian o five columns format ding input hessian o five columns format	23 tep 23 f dimension 111 f dimension 111 f dimension 111		
ener grad grad step disp pred 9.1531	rgy change: dient maximum: dient rms: o size: 0.00915 t placement maximum: placement rms: dicted energy change LE-03	-1.6816E-06 # (3.8542E-04 * (1.2044E-04 * (rust radius: 0.07 5.4741E-03 . (7.9667E-04 * (: -2.7668E-06	5.0000E-05) 4.5000E-04) 3.0000E-04) 500 1.8000E-03) 1.2000E-03) geom step: 9.1531E-03	full step:
* * * *	****	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * *	
* * * * * *	Geometry o	ptimization complet *********	e ** ****	
cent x	ter of mass moved by c: 0.0000E+00	: y: 0.0000E+00	z: 0.0000E+00	
fina	al geometry:			
>+~~	0 7	angstroms	7	
atom C1 C2 C3 N1 C9 H7 C15 C10 C11 C12	" x 1.1435995465 0.8196208055 0.7355333759 1.5246127727 -0.2106378125 2.3800563469 0.9333961178 -2.1199210636 -1.4854986071 0.0919422642	y -1.4446779688 -0.1930563197 -2.7154069863 0.8800316367 0.1806756523 0.6159078076 2.0358882554 0.8761512716 -0.3755464430 1.1029950908	z -0.6630201310 -0.3290428281 -0.0211886325 -0.8897465093 0.6877665623 -1.3264799168 -1.4477425631 2.5948557874 0.6466353200 1.6852031971	

C13	-0.8547802082	1.4414576082	2.6381500989
C14	-2.4345942239	-0.0299490528	1.5936799164
Н20	-1.7317820833	-1.0758911206	-0.1312004430
H21	1.0691158780	1.5502929530	1.7111222190
Н22	-0.6060862595	2.1486076886	3.4100589201
Н23	-3.4176672900	-0.4648353614	1.5471952788
H24	-2.8569600191	1.1443523008	3.3315011246
Н9	1.8044459992	-1.5853755852	-1.5025261918
C4	0.0566842165	-5.1642652385	0.9819014912
C6	0.6015648104	-2.8721541914	1.3595498005
С7	0.2519417502	-4.1100797207	1.8598354907
C8	0.2380996961	-4.9157161778	-0.3664929394
Н13	0.7723386788	-2.0426565717	2.0174337123
H14	0.1422991221	-4.2525264193	2.9212259982
Н15	0.1127006637	-5.7060016992	-1.0876991338
Н16	-0.2137986320	-6.1449677259	1.3276201819
N2	0.5712477209	-3.7354029929	-0.8557143251
C16	-0.1191358724	4.3778840224	-2.5406829191
C17	1.7158411287	3.1835306512	-1.5484581653
C18	-0.3770223954	2.0676417251	-1.9083199897
C19	-0.8984606188	3.2389009883	-2.4363242441
C20	1.1962961043	4.3394505476	-2.1013363268
Н25	2.7271401146	3.1625842667	-1.1806961480
Н26	-0.9868545265	1.1852629685	-1.8580966089
Н27	-1.9184594508	3.2513757845	-2.7793082229
H28	1.8154818198	5.2167316912	-2.1737018285
H29	-0.5277492680	5.2812913989	-2.9571947330
nuclear	repulsion energy	1499.01705	2768 hartrees

/ end of geometry optimization iteration 23 /

end of program geopt

start of program post Writing a SPARTAN archive file end of program post

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	2210 02	0
IOLAI CPU SECONUS USEL. JZ49.930 USELTSYS.	5249.95	0

REFERENCES

- ⁱⁱ Jahangir, J.; Wang, Smith, R. W; MacLean, D. B; Holland, H. L.; Can. J. Chem. **1990**, 68, 587.
- iii Muir, C. W.; Kennedy, A. R.; Joanna M.; Redmond; Watson, A. J. B. Org. Biomol. Chem., 2013, 11, 3337

ⁱ Yang, F.; Cui, X.; Li, Y.; Zhang, J.; Ren, G.; Wu, Y. Tetrahedron **2007**, 63, 1963.