# Direct synthesis of indenes via a rhodium-catalyzed multicomponent $Csp^2$ -H annulation reaction

Pierre Querard and Chao-Jun Li\*

Department of Chemistry, and FQRNT Center for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada

cj.li@mcgill.ca

## **Supplementary Information**



## INDEX

| 1) | General information3                                                                 |
|----|--------------------------------------------------------------------------------------|
| 2) | Experimental details and characterization data for all compounds4                    |
|    | a) General procedure for optimization of reaction conditions4                        |
|    | b) Selected control experiments5                                                     |
|    | i) Table S1: Study of catalysts <sup>a</sup> 5                                       |
|    | ii) Table S2: Study of additives <sup>a</sup> 6                                      |
|    | iii) Scheme S1: Study of potential side product formation7                           |
|    | iv) Scheme S2: Reactivity of ammonia acetate7                                        |
| 3) | Spectroscopic data for indenes8                                                      |
| 4) | Computational studies19                                                              |
|    | a) Computational details                                                             |
|    | b) Summary of calculation results                                                    |
|    | i) Scheme S1. DFT computed mechanism pathway20                                       |
|    | ii) Scheme S2. List of intermediates and transition states                           |
|    | c) Various energy values for all the relevant intermediates and transition states 20 |
|    | d) Cartesian coordinates for all the relevant intermediates and transition states 23 |
|    | e) X-ray structure of compound 4i                                                    |
| 5) | NMR spectra                                                                          |
| 6) | References                                                                           |

## 1) General information

Solvents and reagents were purchased from Sigma-Aldrich chemical company and were used without further purification unless otherwise specified.

*NMR Spectroscopy:* Nuclear magnetic resonance spectra were recorded on a Bruker AV500 equipped with a 60-position SampleXpress sample changer (<sup>1</sup>H, 500 MHz; <sup>13</sup>C, 125 MHz; <sup>31</sup>P, 202 MHz), a Varian MERCURY plus-500 spectrometer (<sup>1</sup>H, 500 MHz; <sup>13</sup>C, 125 MHz) or Bruker AV400 spectrometer (<sup>1</sup>H, 400 MHz; <sup>13</sup>C, 100 MHz). Chemical shifts for both <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were expressed in parts per million (ppm) units downfield from TMS, with the solvent residue peak as the chemical shift standard (CDCl<sub>3</sub>:  $\delta$  7.28 ppm in <sup>1</sup>H NMR;  $\delta$  77.0 ppm in <sup>13</sup>C NMR; MeOD:  $\delta$  S-4 3.31 ppm in <sup>1</sup>H NMR;  $\delta$  49.0 ppm in <sup>13</sup>C NMR; C<sub>6</sub>D<sub>6</sub>:  $\delta$  7.16 ppm in <sup>1</sup>H NMR;  $\delta$  128.1 ppm in <sup>13</sup>C NMR; DMSO-d6:  $\delta$  2.50 ppm in <sup>1</sup>H NMR;  $\delta$  39.5 ppm in <sup>13</sup>C NMR). Data were reported as following: chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, t = triplet, td = triplet of doublets, q = quartet, quin = quintet, sep = septet, m = multiplet, br = broad singlet), coupling constants J (Hz), and integration.

*Mass Spectrometry:* Mass spectrometry (MS) was performed by the McGill Chemistry Department Mass Spectrometry Facility. High Resolution Mass spectra were recorded using electrospray ionization (ESI+) and/or atmospheric pressure chemical ionization APCI(+/-), performed either on "Exactive Plus Orbitrap" a ThermoScientific high resolution accurate mass (HR/AM) FT mass spectrometer, or a Bruker Daltonics Maxis Impact quadrupole-time of flight (QTOF) mass spectrometer. Protonated molecular ions (M+H)<sup>+</sup> or sodium adducts (M+Na)<sup>+</sup>, were used for empirical formula confirmation.

All preparative chromatography were performed using gradient elution (hexanes and diethyl ether) on a Biotage IsoleraTM One automated chromatography system with SNAP ultra-silica gel cartridges and sample cartridges.

## 2) <u>Experimental details and characterization data for all</u> <u>compounds</u>

General procedure for optimization of reaction conditions



A V-shaped 10 mL Biotage reaction vial was charged with Cp\*Rh(SbF<sub>6</sub>)<sub>2</sub>(MeCN)<sub>3</sub> (5 mol%, 4.2 mg),<sup>1</sup> Cu(OAc)<sub>2</sub> (5 mol%, 2.0 mg), followed by solid reagents if present. Toluene-TFA (0.25 mL, 10%) stock solution was added, followed by subsequent slow additions of the corresponding benzaldehyde (0.1 mmol), the amine derivatives (0.12 mmol) and the internal alkyne (0.12 mmol). The reaction vessel was placed on a magnetic stir plate under vigorous stirring (approx. 1200 rpm) and held for 18 hours open to air. The mixture was diluted with ethyl acetate (2 mL), washed with saturated aqueous solution of NaHCO<sub>3</sub> (2 mL), filtered through a pad of silica, and rinsed with additional ethyl acetate. The combined organic phases were concentrated and purified by column chromatography or preparative thin layer chromatography to yield the corresponding indene compound **4**.

Nitromethane was used as internal standard for <sup>1</sup>H-NMR analysis.

## a) Selected control experiments

### i) Table S1: Study of catalysts <sup>a</sup>



| Entry | Modification from standard conditions                                                                               | <b>4f</b> (%) <sup>b</sup> |
|-------|---------------------------------------------------------------------------------------------------------------------|----------------------------|
| 1     | No Cp*Rh(SbF <sub>6</sub> ) <sub>2</sub> (MeCN) <sub>3</sub>                                                        | 0                          |
| 2     | No Cu(OAc) <sub>2</sub> ·H <sub>2</sub> O                                                                           | 8                          |
| 3     | No Cp*Rh(SbF <sub>6</sub> ) <sub>2</sub> (MeCN) <sub>3</sub> / Cu(OAc) <sub>2</sub> ·H <sub>2</sub> O               | 0                          |
| 4     | Cp*RhCl <sub>2</sub> (5 mol%) / AgOTf (10 mol%)                                                                     | 50                         |
| 5     | Cp*Rh(SbF <sub>6</sub> ) <sub>2</sub> (MeCN) <sub>3</sub> (1 mol%) / Cu(OAc) <sub>2</sub> H <sub>2</sub> O (1 mol%) | 22                         |

<sup>a</sup>Reactions were performed on a 0.1 mmol scale using 5 mol% Cp\*Rh(SbF<sub>6</sub>)<sub>2</sub>(MeCN)<sub>3</sub>, 5 mol% Cu(OAc)<sub>2</sub>·H<sub>2</sub>O, **1** (0.1 mmol), **2** (1.2 equiv), **3** (1.2 equiv), in 0.25 mL of toluene and open air. <sup>b</sup>NMR yields of products are reported.

## ii) Table S2: Study of additives <sup>a</sup>



| Entry | Change from standard conditions                              | <b>4a</b> (%) <sup>b</sup> |
|-------|--------------------------------------------------------------|----------------------------|
| 1     | 10 mol% TFA, 5 mol% Cu(OAc) <sub>2</sub> .H <sub>2</sub> O   | >99                        |
| 2     | 20 mol% TFA, 5 mol% Cu(OAc) <sub>2</sub> .H <sub>2</sub> O   | >99                        |
| 3     | 50 mol% TFA, 5 mol% Cu(OAc) <sub>2</sub> .H <sub>2</sub> O   | >99                        |
| 4     | 100 mol% TFA, 5 mol% Cu(OAc) <sub>2</sub> .H <sub>2</sub> O  | >99                        |
| 5     | 10 mol% AcOH, 5 mol% Cu(OAc) <sub>2</sub> .H <sub>2</sub> O  | 56                         |
| 6     | 50 mol% AcOH, 5 mol% Cu(OAc) <sub>2</sub> .H <sub>2</sub> O  | 88                         |
| 7     | 50 mol% PivOH, 5 mol% Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | 53                         |
| 8     | 50 mol% TosOH, 5 mol% Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | 94                         |
|       | 10 mol% TFA, 5 mol% NaOAc                                    | 77                         |
|       | 10 mol% TFA, 5 mol% KOAc                                     | 90                         |
|       | 10 mol% TFA, 10 mol% KOAc                                    | 68                         |
|       | 10 mol% TFA, 20 mol% KOAc                                    | 69                         |
|       | 10 mol% TFA, 5 mol% NH <sub>4</sub> OAc                      | 60                         |
|       | 10 mol% TFA                                                  | 80                         |
|       | 5 mol% KOAc                                                  | 75                         |
|       | 5 mol% Cu(OAc) <sub>2</sub> .H <sub>2</sub> O                | 60                         |

<sup>a</sup>Reactions were performed on a 0.1 mmol scale using 5 mol% Cp\*Rh(SbF<sub>6</sub>)<sub>2</sub>(MeCN)<sub>3</sub>, 5 mol% Cu(OAc)<sub>2</sub>·H<sub>2</sub>O, **1** (0.1 mmol), **2** (1.2 equiv), **3** (1.2 equiv), in 0.25 mL of toluene and open air. <sup>b</sup>NMR yields of products are reported.

#### iii) Scheme S1: Study of potential side product formation



Under our optimized reaction conditions, we investigated the potential side product that could be generated. The reaction of benzaldehyde with internal alkyne resulted in the recovery of the starting material quantitatively. Similalrly, the reaction of benzyl amine with internal alkyne did not resulted in the formation of side product under our reaction conditions.

iv) Scheme S2: Reactivity of ammonia acetate.

. .

$$\begin{array}{c|cccc} H & Ph & Cp*Rh(SbF_6)_2(MeCN)_3 (5 mol\%) \\ H & + & NH_4OAc & Cu(OAc)_2.H_2O (5 mol\%) \\ \hline & Me & TFA (10 mol\%) \\ & toluene, r.t., air & \end{array}$$

During our investigation, we found that the nucleophilicity of the amine is of high importance. Thus, we evaluated the ability of aniline and ammonia acetate under our reaction conditions, generating the corresponding indene in 35% yield and 0% yield, respectively. Low nucleophilic amine partner was not suitable for this reaction.

v) Scheme S3: Reactivity of ethyl amine (66% in water).

$$\begin{array}{c|cccc} O & H & Ph & Cp^*Rh(SbF_6)_2(MeCN)_3 (5 \text{ mol}\%) \\ H & + & EtNH_2 & Cp^*Rh(SbF_6)_2(MeCN)_3 (5 \text{ mol}\%) \\ \hline & Cu(OAc)_2.H_2O (5 \text{ mol}\%) \\ \hline & TFA (10 \text{ mol}\%) \\ \hline & toluene, r.t., air \end{array}$$

We evaluated the tolerance to ethyl amine in water towards our reaction conditions and no product was formed. The starting materials were recovered.

## 3) Spectroscopic data for indenes



<u>4a</u>

*N*-benzyl-3-methyl-2-phenyl-1*H*-inden-1-amine

Use the general procedure described above, compound **4a** was obtained from benzaldehyde (0.1 mmol, 11  $\mu$ L), benzylamine (0.12 mmol, 13.1  $\mu$ L) and prop-1-yn-1-ylbenzene (0.12 mmol, 15  $\mu$ L) as a light yellow solid (31.0 mg) in 99 % yield.

<sup>1</sup>**H NMR (CDCl<sub>3</sub>, 500 MHz):** δ = 7.68 (m, 1H), 7.48 (m, 4H), 7.44 – 7.34 (m, 3H), 7.32 (m, 1H), 7.24 – 7.15 (m, 3H), 7.10 – 7.03 (m, 2H), 5.10 – 4.88 (q, J = 1.9 Hz, 1H), 3.37 (d, J = 12.6, Hz, 1H), 3.29 (dd, J = 12.6, Hz, 1H), 2.32 (d, J = 1.9 Hz, 3H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz): δ = 145.7, 143.9, 143.7, 140.5, 135.7, 135.5, 128.9, 128.6, 128.2, 128.1, 127.8, 126.9, 126.7, 125.5, 123.3, 119.2, 65.7, 47.4, 11.7.

**HRMS (ESI)** m/z:  $[M + H]^+$  calculated for C<sub>23</sub>H<sub>22</sub>N 312.1752, found 312.1743.

**Rf** (Hexane/Et<sub>2</sub>O 4:1): 0.4.



#### 3-methyl-2-phenyl-N-(1-phenylethyl)-1H-inden-1-amine

Use the general procedure described above, compound **4b** was obtained from benzaldehyde (0.1 mmol, 11.0  $\mu$ L), 1-phenylethan-1-amine (0.12 mmol, 15.5  $\mu$ L) and prop-1-yn-1-ylbenzene (0.12 mmol, 15.0  $\mu$ L) as a light yellow solid (21.5 mg) in 66 % yield.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 7.62 - 7.58$  (m, 1H), 7.50 - 7.46 (m, 2H), 7.40 - 7.31 (m, 9H), 7.23 - 7.19 (m, 1H), 4.64 (d, J = 2.0 Hz, 1H), 4.21 (q, J = 6.6 Hz, 1H), 2.26 (d, J = 2.0 Hz, 3H), 1.26 (d, J = 6.6 Hz, 3H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz): δ = 145.63, 145.60, 145.3, 143.9, 135.5, 134.8, 129.3, 128.33, 128.30, 127.5, 127.2, 127.0, 126.9, 125.2, 123.7, 119.3, 63.2, 55.8, 24.9, 11.6.

**HRMS (ESI)** m/z:  $[M + H]^+$  calculated for C<sub>24</sub>H<sub>24</sub>N 326.1909, found 326.1904.

Rf (Hexane/Et<sub>2</sub>O 4:1): 0.6.



#### 3-methyl-N,2-diphenyl-1H-inden-1-amine

Use the general procedure described above, compound **4c** was obtained from benzaldehyde (0.1 mmol, 11.0  $\mu$ L), aniline (0.12 mmol, 11.0  $\mu$ L) and prop-1-yn-1-ylbenzene (0.12 mmol, 15.0  $\mu$ L) as a yellow solid (10.4 mg) in 35 % yield.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 7.55 - 7.51$  (m, 1H), 7.46 - 7.35 (m, 6H), 7.32 - 7.27 (m, 1H), 7.22 - 7.09 (m, 3H), 6.74 - 6.70 (m, 1H), 6.68 - 6.66 (m, 2H), 5.54 (q, J = 2.2 Hz, 1H), 2.32 (d, J = 2.2 Hz, 3H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz): δ = 147.7, 145.1, 144.8, 142.2, 135.7, 135.1, 129.19, 129.10, 128.3, 127.9, 126.9, 125.9, 122.9, 119.4, 117.6, 113.7, 62.1, 11.9.

**HRMS (ESI)** m/z:  $[M + H]^+$  calculated for C<sub>22</sub>H<sub>20</sub>N 298.1596, found 398.1590.

**Rf** (Hexane/Et<sub>2</sub>O 4:1): 0.4.



#### N-benzyl-3-methyl-2-phenyl-1H-inden-1-amine

Use the general procedure described above, compound **4d** was obtained from benzaldehyde (0.1 mmol, 11.0  $\mu$ L), 4-phenylbutan-1-amine (0.12 mmol, 18.9  $\mu$ L) and prop-1-yn-1-ylbenzene (0.12 mmol, 15  $\mu$ L) as a light yellow solid (35.2 mg) in 99 % yield.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 7.57 - 7.55$  (m, 1H), 7.48 – 7.40 (m, 4H), 7.38 – 7.29 (m, 3H), 7.28 – 7.26 (m, 1H), 7.25 - 7.20 (m, 2H), 7.16 – 7.12 (m, 1H), 7.04 – 7.01 (m, 2H), 4.87 (q, J = 1.9 Hz, 1H), 3.50 (d, J = 7.0 Hz, 1H), 3.47 (d, J = 7.0 Hz, 1H), 2.40 (dd, J = 8.7, 6.7 Hz, 2H), 2.27 – 2.22 (m, 3H), 2.11 (ddd, J = 11.2, 7.6, 6.3 Hz, 1H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz): δ = 145.6, 144.2, 143.9, 142.4, 135.8, 135.2, 128.8, 128.5, 128.3, 128.1, 127.6, 126.8, 125.5, 125.4, 123.2, 119.1, 65.9, 42.8, 35.4, 29.8, 28.7, 11.6.

HRMS (ESI) m/z:  $[M + H]^+$  calculated for C<sub>26</sub>H<sub>27</sub>N 353,2143, found 353.2140. Rf (Hexane/Et<sub>2</sub>O 4:1): 0.5.



#### N-(furan-2-ylmethyl)-3-methyl-2-phenyl-1H-inden-1-amine

Use the general procedure described above, compound **4e** was obtained from benzaldehyde (0.1 mmol, 11.0  $\mu$ L), furan-2-ylmethanamine (0.12 mmol, 10.7  $\mu$ L) and prop-1-yn-1-ylbenzene (0.12 mmol, 15.0  $\mu$ L) as a light yellow solid (16.6 mg) in 55 % yield.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 7.66 - 7.63$  (m, 1H), 7.51 - 7.47 (m, 2H), 7.46 - 7.41 (m, 2H), 7.40 - 7.38 (m, 1H), 7.37 - 7.34 (m, 2H), 7.32 - 7.26 (m, 2H), 6.23 (dd, J = 3.2, 1.8 Hz, 1H), 5.96 (d, J = 3.2 Hz, 1H), 4.96 (t, J = 2.0 Hz, 1H), 3.45 (d, J = 14.1 Hz, 1H), 3.36 (d, J = 14.1 Hz, 1H), 2.29 (d, J = 2.0 Hz, 3H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz): δ = 153.8, 145.6, 143.5, 143.1, 141.6, 135.8, 135.5, 128.8, 128.6, 127.9, 127.0, 125.6, 123.4, 119.2, 110.0, 106.7, 65.1, 40.5, 11.6.

**HRMS (ESI)** m/z:  $[M + H]^+$  calculated for C<sub>21</sub>H<sub>20</sub>NO 302.1545, found 302.1534.

Rf (Hexane/Et<sub>2</sub>O 4:1): 0.5.



#### N-benzyl-5-methoxy-3-methyl-2-phenyl-1H-inden-1-amine

Use the general procedure described above, compound **4f** was obtained from 4methoxybenzaldehyde (0.1 mmol, 12.1  $\mu$ L), benzylamine (0.12 mmol, 13.1  $\mu$ L) and prop-1-yn-1ylbenzene (0.12 mmol, 15  $\mu$ L) as a light yellow solid (20.5 mg) in 60 % yield.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz): δ = 7.55 – 7.53 (m, 1H), 7.51 – 7.43 (m, 4H), 7.38 – 7.32 (m, 1H), 7.23 – 7.13 (m, 3H), 7.08 – 7.00 (m, 2H), 6.94 – 6.92 (m, 1H), 6.85 – 6.83 (m, 1H), 4.94 (q, J = 1.8 Hz, 1H), 3.91 (s, 3H), 3.34 (d, J = 12.7 Hz, 1H), 3.28 (d, J = 12.7 Hz, 1H), 2.28 (d, J = 1.8 Hz, 3H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz): δ = 160.1, 147.3, 145.2, 140.7, 136.0, 135.7, 135.1, 128.8, 128.5, 128.2, 128.1, 126.9, 126.6, 123.8, 110.5, 105.5, 65.1, 55.5, 47.3, 11.6.

HRMS (ESI) m/z:  $[M + H]^+$  calculated for C<sub>24</sub>H<sub>24</sub>NO 342.1858, found 342.1850. Rf (Hexane/Et<sub>2</sub>O 4:1): 0.3.



1-(benzylamino)-3-methyl-2-phenyl-1H-inden-5-ol

Use the general procedure described above, compound 4g was obtained from 4hydroxybenzaldehyde (0.1 mmol, 12.2 mg), benzylamine (0.12 mmol, 11.8  $\mu$ L) and prop-1-yn-1ylbenzene (0.12 mmol, 15.0  $\mu$ L) as a light yellow solid (13.1 mg) in 40 % yield.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 7.58 - 7.55$  (m, 1H), 7.50 - 7.46 (m, 2H), 7.44 - 7.39 (m, 2H), 7.38 - 7.34 (m, 1H), 7.22 - 7.16 (m, 3H), 7.05 - 6.99 (m, 2H), 6.84 - 7.81 (m, 1H), 6.73 - 6.70 (m, 1H), 4.99 (d, J = 2.1 Hz, 1H), 3.38 (d, J = 2.9 Hz, 2H), 2.23 (d, J = 1.8 Hz, 3H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz): δ = 156.6, 147.5, 143.8, 139.1, 136.0, 135.1, 134.1, 128.8, 128.7, 128.5, 128.3, 127.2, 127.1, 124.4, 112.6, 107.2, 64.4, 47.3, 11.6.

HRMS (ESI) m/z:  $[M + H]^+$  calculated for C<sub>23</sub>H<sub>21</sub>NO 328.1695, found 328.1692. Rf (Hexane/Et<sub>2</sub>O 4:1): 0.3.



#### *N*-benzyl-3,5-dimethyl-2-phenyl-1*H*-inden-1-amine

Use the general procedure described above, compound **4h** was obtained from 4methylbenzaldehyde (0.1 mmol, 11.8  $\mu$ L), benzylamine (0.12 mmol, 11.8  $\mu$ L) and prop-1-yn-1ylbenzene (0.12 mmol, 15.0  $\mu$ L) as a light yellow solid (27.7 mg) in 85 % yield.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 7.59 - 7.56$  (m, 1H), 7.52 - 7.44 (m, 4H), 7.39 - 7.34 (m, 1H), 7.24 - 7.16 (m, 4H), 7.15 - 7.12 (m, 1H), 7.08 - 7.04 (m, 2H), 4.98 (d, J = 2.0 Hz, 1H), 3.35 (d, J = 12.6 Hz, 1H), 3.30 (d, J = 12.6 Hz, 1H), 2.49 (s, 3H), 2.30 (d, J = 2.0 Hz, 3H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz): δ = 145.9, 143.8, 140.9, 140.5, 137.5, 135.7, 135.5, 128.9, 128.6, 128.2, 128.1, 126.9, 126.7, 126.2, 123.1, 120.0, 65.4, 47.3, 21.7, 11.7.

**HRMS (ESI)** m/z:  $[M + H]^+$  calculated for C<sub>24</sub>H<sub>24</sub>N 326.1909, found 326.1903.

**Rf** (Hexane/Et<sub>2</sub>O 4:1): 0.5.



#### N-benzyl-7-chloro-3-methyl-2-phenyl-1H-inden-1-amine

Use the general procedure described above, compound **4i** was obtained from 2chlorobenzaldehyde (0.1 mmol, 11.2  $\mu$ L), benzylamine (0.12 mmol, 11.8  $\mu$ L) and prop-1-yn-1ylbenzene (0.12 mmol, 15.0  $\mu$ L) as a light yellow solid (19.4 mg) in 56 % yield.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 7.56 - 7.52$  (m, 2H), 7.52 - 7.46 (m, 2H), 7.41 - 7.33 (m, 2H), 7.30 - 7.26 (m, 1H), 7.24 - 7.20 (m, 1H), 7.19 - 7.13 (m, 3H), 7.00 - 6.95 (m, 2H), 5.19 (q, J = 2.0 Hz, 1H), 3.20 (m, 2H), 2.29 (d, J = 2.0 Hz, 2H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz): δ = 173.1, 148.2, 143.7, 139.8, 135.2, 134.9, 130.0, 129.6, 129.2, 128.4, 128.3, 128.0, 127.2, 126.7, 126.1, 117.7, 66.2, 46.7, 11.8.

HRMS (ESI) m/z:  $[M + H]^+$  calculated for C<sub>23</sub>H<sub>21</sub>ClN 346.1363, found 346.1357. Rf (Hexane/Et<sub>2</sub>O 4:1): 0.4.



#### N-benzyl-3-methyl-2-phenyl-5-(trifluoromethyl)-1H-inden-1-amine

Use the general procedure described above, compound **4j** was obtained from 4-(trifluoromethyl)benzaldehyde (0.1 mmol, 11.5  $\mu$ L), benzylamine (0.12 mmol, 13.1  $\mu$ L) and prop-1-yn-1-ylbenzene (0.12 mmol, 15.0  $\mu$ L) as a light yellow solid (31.8 mg) in 84 % yield.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 7.80 - 7.74$  (m, 1H), 7.61 - 7.52 (m, 2H), 7.55 - 7.46 (m, 2H), 7.49 - 7.41 (m, 2H), 7.44 - 7.36 (m, 1H), 7.25 - 7.14 (m, 3H), 7.08 - 7.00 (m, 2H), 5.04 (s, 1H), 3.35 (d, J = 12.5 Hz, 1H), 3.23 (d, J = 12.5 Hz, 1H), 2.33 (d, J = 2.0 Hz, 3H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz): δ = 147.4, 146.3, 145.4, 139.8, 134.9, 134.8, 130.4 (q, J<sub>C-F</sub>= 31.7 Hz), 128.9, 128.7, 128.2, 127.4, 126.9, 125.6, 123.58, 123.52 (q, J<sub>C-F</sub>= 274 Hz), 122.6 (q, J<sub>C-F</sub>= 4.0 Hz), 115.96 (q, J<sub>C-F</sub>= 3.8 Hz), 65.6, 47.4, 11.6.

<sup>19</sup>F NMR (CDCl<sub>3</sub>, 471 MHz):  $\delta = -61.9$ .

**HRMS (ESI)** m/z:  $[M + H]^+$  calculated for C<sub>24</sub>H<sub>21</sub>F<sub>3</sub>N 380.1621, found 380.1626.

**Rf** (Hexane/Et<sub>2</sub>O 4:1): 0.5.



N-benzyl-5-bromo-3-methyl-2-phenyl-1H-inden-1-amine

Use the general procedure described above, compound **4k** was obtained from 4bromobenzaldehyde (0.1 mmol, 18.5 mg), benzylamine (0.12 mmol, 13.1  $\mu$ L) and prop-1-yn-1ylbenzene (0.12 mmol, 15.0  $\mu$ L) as a light yellow solid (32.8 mg) in 84 % yield.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 7.55 - 7.54$  (m, 1H), 7.53 - 7.47 (m, 3H), 7.46 - 7.43 (m, 3H), 7.42 - 7.37 (m, 1H), 7.24 - 7.18 (m, 3H), 7.06 - 7.02 (m, 2H), 4.96 (d, J = 2.0 Hz, 1H), 3.33 (d, J = 12.7 Hz, 1H), 3.25 (d, J = 12.6 Hz, 1H), 2.28 (d, J = 2.0 Hz, 3H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz): δ = 147.8, 145.3, 142.5, 140.1, 135.1, 134.6, 128.9, 128.7, 128.27, 128.24, 128.23, 127.3, 126.9, 124.8, 122.5, 121.9, 65.3, 47.3, 11.6.

**HRMS (ESI)** m/z:  $[M + H]^+$  calculated for C<sub>23</sub>H<sub>21</sub>NBr 390.0851, found 390.0858.

**Rf** (Hexane/Et<sub>2</sub>O 4:1): 0.4.

N H <u>41</u>

*N*-benzyl-5-bromo-2-methyl-3-propyl-1*H*-inden-1-amine

Use the general procedure described above, compound **41** was obtained from 4bromobenzaldehyde (0.1 mmol, 18.5 mg), benzylamine (0.12 mmol, 13.1  $\mu$ L) and 2-hexyne (0.12 mmol, 13.5  $\mu$ L) as a light yellow solid (19.4 mg) in 24 % yield.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz): δ = 7.44 – 7.35 (m, 1H), 7.35 – 7.33 (m, 1H), 7.35 – 7.26 (m, 5H), 7.25 – 7.22 (m, 1H), 4.26 (s, 1H), 3.46 – 3.30 (m, 2H), 2.48 (t, J = 7.4 Hz, 2H), 2.05 (s, 3H), 1.62 (q, J = 7.4 Hz, 2H), 0.99 (t, J = 7.4 Hz, 3H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz): δ = 147.6, 142.8, 142.1, 138.3, 137.6, 128.9, 128.7, 128.4, 128.36, 128.35, 128.32, 127.0, 126.9, 124.2, 121.7, 121.6, 66.4, 47.3, 27.1, 21.5, 14.1, 11.9.

**HRMS (ESI)** m/z:  $[M + H]^+$  calculated for C<sub>20</sub>H<sub>23</sub>NBr 356.1008, found 356.1015.

**Rf** (Hexane/Et<sub>2</sub>O 4:1): 0.4.



#### N-benzyl-5-bromo-3-methyl-2-propyl-1H-inden-1-amine

Use the general procedure described above, compound **4l'** was obtained from 4bromobenzaldehyde (0.1 mmol, 18.5 mg), benzylamine (0.12 mmol, 13.1  $\mu$ L) and 2-hexyne (0.12 mmol, 13.5  $\mu$ L) as a light yellow solid (19.4 mg) in 44 % yield.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz): δ = 7.41 – 7,39 (m, 1H), 7.38 – 7.31 (m, 2H), 7.32 – 7.30 (m, 4H), 7.26 – 7.22 (m, 1H), 4.38 (s, 1H), 3.50 – 3.34 (m, 2H), 2.50 – 2.38 (m, 2H), 2.03 (d, J = 1.9 Hz, 3H), 1.69 – 1.62 (m, 1H), 1.54 – 1.47 (m, 1H), 0.98 (t, J = 7.3 Hz, 3H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz): δ = 148.2, 142.9, 142.5, 140.4, 139.9, 128.4, 128.35, 128.32, 128.2, 127.9, 127.3, 127.15, 127.10, 124.2, 124.1, 121.6, 64.2, 47.6, 27.9, 22.9, 14.1, 10.3.

HRMS (ESI) m/z:  $[M + H]^+$  calculated for C<sub>20</sub>H<sub>23</sub>NBr 356.1008, found 356.1014. Rf (Hexane/Et<sub>2</sub>O 4:1): 0.5.



#### N-benzyl-2,3-diphenyl-1H-inden-1-amine

Use the general procedure described above, compound **4m** was obtained from benzaldehyde (0.1 mmol, 11.0  $\mu$ L), benzylamine (0.12 mmol, 13.1  $\mu$ L) and 1,2-diphenylethyne (0.12 mmol, 17.9 mg) as a light yellow solid (14.9 mg) in 40 % yield.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 7.78 - 7.74$  (m, 1H), 7.45 - 7.37 (m, 5H), 7.37 - 7.33 (m, 2H), 7.33 - 7.24 (m, 6H), 7.24 - 7.16 (m, 3H), 7.09 - 7.04 (m, 2H), 5.15 (s, 1H), 3.42 (m, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz):  $\delta = 144.8$ , 144.6, 144.1, 140.3, 140.2, 135.00, 134.9, 129.4, 129.2, 128.6, 128.39, 128.33, 128.2, 127.8, 127.5, 127.1, 126.8, 125.7, 123.8, 120.5, 65.8, 47.5. HRMS (ESI) m/z: [M + H]<sup>+</sup> calculated for C<sub>28</sub>H<sub>24</sub>N 374.1909, found 374.1900. Rf (Hexane/Et<sub>2</sub>O 4:1): 0.4.



#### N-benzyl-3-butyl-2-phenyl-1H-inden-1-amine

Use the general procedure described above, compound **4n** was obtained from benzaldehyde (0.1 mmol, 11.0  $\mu$ L), benzylamine (0.12 mmol, 11.8  $\mu$ L) and hex-1-yn-1-ylbenzene (0.12 mmol, 21.0  $\mu$ L) as a light yellow solid (23.0 mg) in 82 % yield.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 7.73 - 7.68$  (m, 1H), 7.53 - 7.48 (m, 2H), 7.46 - 7.35 (m, 5H), 7.34 - 7.28 (m, 1H), 7.24 - 7.15 (m, 3H), 7.09 - 7.04 (m, 2H), 4.99 (br, 1H), 3.38 (d, J = 12.7 Hz, 1H), 3.30 (d, J = 12.7 Hz, 1H), 2.73 (t, J = 7.8 Hz, 2H), 1.82 - 1.71 (m, 1H), 1.71 - 1.61 (m, 1H), 1.52 - 1.40 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz): δ = 144.9, 144.1, 143.5, 140.4, 140.3, 135.9, 128.8, 128.6, 128.3, 128.3, 128.1, 127.7, 127.0, 126.8, 125.4, 123.6, 119.6, 65.9, 47.29, 31.29, 25.90, 23.08, 13.95. HRMS (ESI) m/z: [M + H]<sup>+</sup> calculated for C<sub>26</sub>H<sub>28</sub>N 354.2222, found 354.2216.

#### **Rf** (Hexane/Et<sub>2</sub>O 4:1): 0.5.



#### 4-(1-(benzylamino)-2-phenyl-1*H*-inden-3-yl)butan-2-one

Use the general procedure described above, compound **40** was obtained from benzaldehyde (0.1 mmol, 11  $\mu$ L), benzylamine (0.12 mmol, 13.1  $\mu$ L) and 7-phenylhept-6-yn-3-one (0.12 mmol, 22.3  $\mu$ L) as a light yellow solid (26.7 mg) in 70 % yield.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 7.74 - 7.69$  (m, 1H), 7.52 - 7.44 (m, 2H), 7.43 - 7.36 (m, 4H), 7.37 - 7.33 (m, 1H), 7.34 - 7.30 (m, 1H), 7.26 - 7.14 (m, 3H), 7.08 - 7.02 (m, 2H), 4.98 (s, 1H), 3.37 (d, J = 12.7 Hz, 1H), 3.30 (d, J = 12.7 Hz, 1H), 3.11 - 2.93 (m, 2H), 2.81 - 2.70 (m, 2H), 2.44 (q, J = 7.3 Hz, 2H), 1.08 (t, J = 7.3 Hz, 3H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz): δ = 210.4, 144.5, 144.1, 143.9, 140.0, 138.6, 135.3, 128.8, 128.7, 128.3, 128.2, 127.9, 127.3, 126.9, 125.7, 123.8, 119.3, 66.0, 47.3, 41.1, 35.9, 20.1, 7.8.

HRMS (ESI) m/z:  $[M + Na]^+$  calculated for C<sub>27</sub>H<sub>27</sub>NONa 404.1985, found 404.2003. Rf (Hexane/Et<sub>2</sub>O 4:1): 0.3.



#### N-benzyl-3-(3-bromopropyl)-2-phenyl-1H-inden-1-amine

Use the general procedure described above, compound **4p** was obtained from benzaldehyde (0.1 mmol, 11  $\mu$ L), benzylamine (0.12 mmol, 13.1  $\mu$ L) and (5-bromopent-1-yn-1-yl)benzene (0.12 mmol, 20.4  $\mu$ L) as a light white solid (25.1 mg) in 60 % yield.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 7.75 - 7.71$  (m, 1H), 7.51 - 7.47 (m, 2H), 7.45 - 7.35 (m, 6H), 7.34 - 7.30 (m, 1H), 7.26 - 7.14 (m, 3H), 7.09 - 7.01 (m, 2H), 5.00 (s, 1H), 3.52 - 3.40 (m, 2H), 3.37 (d, J = 12.7 Hz, 1H), 3.31 (d, J = 12.7 Hz, 1H), 2.95 - 2.83 (m, 2H), 2.32 - 2.13 (m, 2H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz):  $\delta = 144.6$ , 144.3, 143.7, 139.8, 138.5, 135.3, 128.82, 128.80, 128.3, 128.2, 128.0, 127.4, 126.9, 125.7, 123.8, 119.5, 65.9, 47.3, 33.5, 31.9, 24.7. HRMS (ESI) m/z:  $[M + H]^+$  calculated for C<sub>25</sub>H<sub>25</sub>BrN 418.1165, found 418.1163. Rf (Hexane/Et<sub>2</sub>O 4:1): 0.3.



#### 3-(1-(benzylamino)-2-phenyl-1H-inden-3-yl)propan-1-ol

Use the general procedure described above, compound **4q** was obtained from benzaldehyde (0.1 mmol, 11  $\mu$ L), benzylamine (0.12 mmol, 13.1  $\mu$ L) and 5-phenylpent-4-yn-1-ol (0.12 mmol, 18.5  $\mu$ L) as a light yellow solid (30.2 mg) in 85 % yield.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, **500** MHz):  $\delta = 7.74 - 7.69$  (m, 1H), 7.51 - 7.46 (m, 2H), 7.46 - 7.40 (m, 3H), 7.40 - 7.35 (m, 2H), 7.32 - 7.29 (m, 1H), 7.24 - 7.15 (m, 3H), 7.08 - 7.02 (m, 2H), 4.99 (s, 1H), 3.75 - 3.63 (m, 2H), 3.37 (d, J = 12.7 Hz, 1H), 3.31 (d, J = 12.7 Hz, 1H), 2.90 - 2.73 (m, 2H), 1.99 - 1.88 (m, 2H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz): δ = 144.5, 144.1, 143.8, 140.0, 139.5, 135.6, 128.8, 128.7, 128.3, 128.2, 127.9, 127.3, 126.9, 125.6, 123.7, 119.6, 65.9, 62.4, 47.3, 31.7, 22.1.

HRMS (ESI) m/z:  $[M + H]^+$  calculated for C<sub>25</sub>H<sub>26</sub>NO 356.2009, found 356.2007. Rf (Hexane/Et<sub>2</sub>O 4:1): 0.1.



#### 3-(1-(benzylamino)-2-phenyl-1H-inden-3-yl)propyl acetate

Use the general procedure described above, compound **4r** was obtained from benzaldehyde (0.1 mmol, 11  $\mu$ L), benzylamine (0.12 mmol, 13.1  $\mu$ L) and 5-phenylpent-4-yn-1-yl acetate (0.12 mmol, 23.1  $\mu$ L) as a light yellow solid (32.6 mg) in 82 % yield.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, **500** MHz):  $\delta = 7.73 - 7.69$  (m, 1H), 7.53 - 7.47 (m, 2H), 7.46 - 7.37 (m, 6H), 7.35 - 7.32 (m, 1H), 7.25 - 7.17 (m, 3H), 7.10 - 7.05 (m, 2H), 5.00 (s, 1H), 4.17 - 4.05 (m, 2H), 3.39 (d, J = 12.6 Hz, 1H), 3.31 (d, J = 12.6 Hz, 1H), 2.93 - 2.77 (m, 2H), 2.13 - 2.01 (m, 2H), 2.00 (s, 3H).

<sup>13</sup>**C NMR (CDCl<sub>3</sub>, 126 MHz):** δ = 171.1, 144.9, 144.3, 144.2, 140.3, 138.6, 135.6, 128.8, 128.7, 128.29, 128.22, 127.8, 127.2, 126.8, 125.6, 123.7, 119.4, 66.1, 63.9, 47.4, 27.7, 22.3, 20.8.

HRMS (ESI) m/z: [M + Na]<sup>+</sup> calculated for C<sub>27</sub>H<sub>27</sub>NO<sub>2</sub>Na 420.1934, found 420.1942. Rf (Hexane/Et<sub>2</sub>O 4:1): 0.4.

## 4) Computational studies

## a) Computational details

The theoretical calculations<sup>2</sup> were carried out by using Gaussian 09 program. Geometry optimizations were performed using the B3LYP functional with a standard 6-31G(d) basis set (lanl2DZ basis set for Rh) using CPCM solvation model (solvent = toluene). Throughout the paper, the energies presented are the calculated Gibbs free energies in toluene as solvent with B3LYP-calculated thermodynamic corrections.

## b) Summary of calculation results.

#### i) Scheme S1. DFT computed mechanism pathway.



ii) Scheme S2. List of intermediates and transition states



### c) Various energy values for all the relevant intermediates and transition states

#### Int1

| Zero-point correction= 0.4                 | 35668 (Hartree/Particle) |
|--------------------------------------------|--------------------------|
| Thermal correction to Energy=              | 0.467175                 |
| Thermal correction to Enthalpy=            | 0.468119                 |
| Thermal correction to Gibbs Free Energy=   | 0.370065                 |
| Sum of electronic and zero-point Energies= | -1429.250365             |
| Sum of electronic and thermal Energies=    | -1429.218858             |
| Sum of electronic and thermal Enthalpies=  | -1429.217914             |

Sum of electronic and thermal Free Energies= -1429.315967

| Т | S | 1  |
|---|---|----|
|   | D | T. |

| Zero-point correction=                  | 0.430904 (Hartree/Particle) |
|-----------------------------------------|-----------------------------|
| Thermal correction to Energy=           | 0.461238                    |
| Thermal correction to Enthalpy=         | 0.462182                    |
| Thermal correction to Gibbs Free Energy | gy= 0.369462                |
| Sum of electronic and zero-point Energ  | ies= -1429.226534           |
| Sum of electronic and thermal Energies  | -1429.196200                |
| Sum of electronic and thermal Enthalpie | es= -1429.195256            |
| Sum of electronic and thermal Free Ene  | rgies= -1429.287976         |

## TFA

| Zero-point correction=                  | 0.037675 (Hartree/Particle) |
|-----------------------------------------|-----------------------------|
| Thermal correction to Energy=           | 0.044018                    |
| Thermal correction to Enthalpy=         | 0.044963                    |
| Thermal correction to Gibbs Free Energy | gy= 0.006301                |
| Sum of electronic and zero-point Energ  | ies= -526.597762            |
| Sum of electronic and thermal Energies  | -526.591419                 |
| Sum of electronic and thermal Enthalpi  | es= -526.590475             |
| Sum of electronic and thermal Free Ene  | ergies= -526.629136         |

## III

| Zero-point correction=                  | 0.435116 (Hartree/Particle) |
|-----------------------------------------|-----------------------------|
| Thermal correction to Energy=           | 0.465566                    |
| Thermal correction to Enthalpy=         | 0.466510                    |
| Thermal correction to Gibbs Free Ener   | gy= 0.372004                |
| Sum of electronic and zero-point Energy | gies= -1429.232856          |
| Sum of electronic and thermal Energies  | s= -1429.202406             |
| Sum of electronic and thermal Enthalp   | ies= -1429.201462           |
| Sum of electronic and thermal Free End  | ergies= -1429.295967        |

## Alkyne

| Zero-point correction=                  | 0.139600 (Hartree/Particle) |
|-----------------------------------------|-----------------------------|
| Thermal correction to Energy=           | 0.147816                    |
| Thermal correction to Enthalpy=         | 0.148760                    |
| Thermal correction to Gibbs Free Energy | gy= 0.105145                |
| Sum of electronic and zero-point Energ  | gies= -347.506531           |
| Sum of electronic and thermal Energies  | s= -347.498316              |
| Sum of electronic and thermal Enthalpi  | ies= -347.497371            |
| Sum of electronic and thermal Free End  | ergies= -347.540986         |

## IV

| Zero-point correction=          | 0.538434 (Hartree/Particle) |
|---------------------------------|-----------------------------|
| Thermal correction to Energy=   | 0.570848                    |
| Thermal correction to Enthalpy= | 0.571792                    |

| Thermal correction to Gibbs Free Energy=     | 0.476249     |
|----------------------------------------------|--------------|
| Sum of electronic and zero-point Energies=   | -1250.132982 |
| Sum of electronic and thermal Energies=      | -1250.100568 |
| Sum of electronic and thermal Enthalpies=    | -1250.099624 |
| Sum of electronic and thermal Free Energies= | -1250.195167 |

## TS2

| 0.537599 (Hartree/Particle) |
|-----------------------------|
| 0.569138                    |
| 0.570082                    |
| v= 0.476347                 |
| es= -1250.108614            |
| -1250.077076                |
| s= -1250.076132             |
| gies= -1250.169866          |
|                             |

## V

| Zero-point correction=                  | 0.539640 (Hartree/Particle) |
|-----------------------------------------|-----------------------------|
| Thermal correction to Energy=           | 0.571385                    |
| Thermal correction to Enthalpy=         | 0.572329                    |
| Thermal correction to Gibbs Free Energy | gy= 0.476691                |
| Sum of electronic and zero-point Energy | gies= -1250.149867          |
| Sum of electronic and thermal Energies  | s= -1250.118122             |
| Sum of electronic and thermal Enthalpi  | ies= -1250.117177           |
| Sum of electronic and thermal Free Ene  | ergies= -1250.212816        |

## TS3

| Zero-point correction= 0                  | .537375 (Hartree/Particle) |
|-------------------------------------------|----------------------------|
| Thermal correction to Energy=             | 0.568696                   |
| Thermal correction to Enthalpy=           | 0.569641                   |
| Thermal correction to Gibbs Free Energy   | v= 0.475319                |
| Sum of electronic and zero-point Energie  | es= -1250.131803           |
| Sum of electronic and thermal Energies=   | -1250.100482               |
| Sum of electronic and thermal Enthalpies  | s= -1250.099537            |
| Sum of electronic and thermal Free Energy | gies= -1250.193859         |

## Int3

| Zero-point correction=                  | 0.541150 (Hartree/Particle) |
|-----------------------------------------|-----------------------------|
| Thermal correction to Energy=           | 0.571260                    |
| Thermal correction to Enthalpy=         | 0.572204                    |
| Thermal correction to Gibbs Free Energy | gy= 0.481260                |
| Sum of electronic and zero-point Energ  | gies= -1250.160252          |
| Sum of electronic and thermal Energies  | s= -1250.130142             |
| Sum of electronic and thermal Enthalpi  | ies= -1250.129198           |
| Sum of electronic and thermal Free End  | ergies= -1250.220142        |

## d) <u>Cartesian coordinates for all the relevant intermediates and transition states</u>

## Int1

| Symbolic Z-matrix:     |                            |  |  |
|------------------------|----------------------------|--|--|
| Charge = $1 \text{ N}$ | Iultiplicity = 1           |  |  |
| С                      | -4.32514 2.82062 -0.44076  |  |  |
| С                      | -3.43721 3.11292 0.60345   |  |  |
| С                      | -2.33626 2.27897 0.84117   |  |  |
| С                      | -2.12363 1.15253 0.03499   |  |  |
| С                      | -3.01159 0.86017 -1.00904  |  |  |
| С                      | -4.11226 1.69428 -1.24702  |  |  |
| Н                      | -5.16561 3.45743 -0.62243  |  |  |
| Н                      | -3.59984 3.97281 1.21914   |  |  |
| Н                      | -2.84917 0.00008 -1.62449  |  |  |
| Н                      | -4.79009 1.47114 -2.04432  |  |  |
| C                      | -1.35981 2.60009 1.9881    |  |  |
| H                      | -1.52163 3.46005 2.60383   |  |  |
| N                      | -0.34383 1.82972 2.20663   |  |  |
| Rh                     | 0.72634 -0.58011 0.55091   |  |  |
| C                      | 2.00666 -3.19184 0.31246   |  |  |
| C                      | 1.01184 -3.26149 1.64589   |  |  |
| C                      | -0.42956 -3.40205 1.15045  |  |  |
| C                      | 1.09246 -3.05945 -0.95379  |  |  |
| C                      | -0.49041 -3.05987 -0.4502  |  |  |
| H                      | -1.28322 0.51566 0.21659   |  |  |
| C                      | 2.90527 1.79812 -0.06954   |  |  |
| 0                      | 2.8035 1.21371 -1.17932    |  |  |
| Č                      | 3.98523 2.87656 0.1366     |  |  |
| F                      | 5.11704 2.29864 0.59219    |  |  |
| F                      | 3.54952 3.78369 1.03646    |  |  |
| F                      | 4.23596 3.49263 -1.03816   |  |  |
| 0                      | 2.09803 1.49106 0.90386    |  |  |
| Č                      | 3.38693 -3.87312 0.26539   |  |  |
| H                      | 3.9226 -3.65622 1.16588    |  |  |
| Н                      | 3.25939 -4.9314 0.17235    |  |  |
| Н                      | 3.93785 -3.50504 -0.5748   |  |  |
| C                      | 1.51724 -3.59512 -2.33369  |  |  |
| H                      | 0.86438 -3.20255 -3.08509  |  |  |
| Н                      | 2.52219 -3.29133 -2.54024  |  |  |
| Н                      | 1.46028 -4.66358 -2.33452  |  |  |
| C                      | -1.69053 -3.50198 -1.308   |  |  |
| Н                      | -1.62858 -3.04188 -2.27205 |  |  |
| Н                      | -1.67682 -4.5661 -1.41911  |  |  |
| Н                      | -2.60006 -3.20509 -0.82888 |  |  |
| С                      | -1.6267 -3.16654 2.0901    |  |  |

| Н | -1.95411 | -2.15159 | 2.00305 |
|---|----------|----------|---------|
| Н | -2.42672 | -3.8238  | 1.82019 |
| Н | -1.331   | -3.36055 | 3.09998 |
| С | 1.39375  | -3.91628 | 2.98641 |
| Н | 2.36853  | -3.58646 | 3.27953 |
| Н | 0.68247  | -3.63678 | 3.7353  |
| Н | 1.39562  | -4.98056 | 2.87579 |
| С | 0.58967  | 2.13558  | 3.30009 |
| Н | 0.06568  | 2.63761  | 4.08638 |
| С | 1.19416  | 0.82624  | 3.84038 |
| Н | 0.41067  | 0.1959   | 4.20602 |
| Н | 1.71821  | 0.3242   | 3.05411 |
| Н | 1.87361  | 1.04889  | 4.63642 |
| Н | 1.37313  | 2.76584  | 2.93436 |

## TS1

Symbolic Z-matrix:

| Charge = | 1 Multiplicit | y = 1    |          |
|----------|---------------|----------|----------|
| С        | -2.41903      | 4.03271  | -0.30654 |
| С        | -1.965        | 3.48808  | 0.90443  |
| С        | -1.15148      | 2.35035  | 0.8799   |
| С        | -0.73458      | 1.74301  | -0.36418 |
| С        | -1.22424      | 2.32361  | -1.55115 |
| С        | -2.05824      | 3.44965  | -1.52816 |
| Н        | -3.0429       | 4.91871  | -0.28879 |
| Н        | -2.24845      | 3.94119  | 1.84879  |
| Н        | -0.90156      | 1.90824  | -2.49908 |
| Н        | -2.40997      | 3.88603  | -2.45685 |
| С        | -0.66768      | 1.70776  | 2.09342  |
| Н        | -0.69752      | 2.22707  | 3.0556   |
| Ν        | -0.16964      | 0.51104  | 1.99374  |
| С        | 0.45469       | -0.14675 | 3.16427  |
| Н        | 0.10248       | -1.1794  | 3.21006  |
| Rh       | -0.4159       | -0.39635 | 0.06764  |
| С        | -2.46796      | -1.19345 | -0.04917 |
| С        | -1.99499      | -1.15773 | -1.42887 |
| С        | -0.83217      | -1.98614 | -1.51993 |
| С        | -1.67887      | -2.20833 | 0.65451  |
| С        | -0.64987      | -2.66097 | -0.22867 |
| Н        | 0.6409        | 1.74638  | -0.48178 |
| С        | 2.39406       | 0.58078  | -0.4674  |
| 0        | 1.9026        | 1.74947  | -0.58965 |
| С        | 3.91008       | 0.43822  | -0.61514 |
| F        | 4.46159       | 1.46239  | -1.35617 |
| F        | 4.23392       | -0.75908 | -1.22046 |
| F        | 4.4987        | 0.46119  | 0.64645  |

| 0 | 1.74927  | -0.48009 | -0.16444 |
|---|----------|----------|----------|
| С | -2.69039 | -0.47987 | -2.5662  |
| Н | -3.20611 | 0.4374   | -2.27384 |
| Н | -2.02098 | -0.25846 | -3.40008 |
| Н | -3.44998 | -1.17549 | -2.95143 |
| С | -3.74017 | -0.57302 | 0.43636  |
| Н | -3.91848 | 0.40154  | -0.02867 |
| Н | -4.60373 | -1.21304 | 0.19145  |
| Н | -3.73151 | -0.43895 | 1.51909  |
| С | -1.96423 | -2.70287 | 2.03591  |
| Н | -2.33265 | -1.90919 | 2.69246  |
| Н | -2.75643 | -3.46621 | 1.98582  |
| Н | -1.09247 | -3.17114 | 2.50305  |
| С | 0.42493  | -3.65941 | 0.05417  |
| Н | 0.35133  | -4.06261 | 1.06479  |
| Η | 0.37399  | -4.49751 | -0.65536 |
| Η | 1.42076  | -3.20723 | -0.07339 |
| С | -0.00315 | -2.25547 | -2.73467 |
| Η | 1.05156  | -2.38499 | -2.47252 |
| Η | -0.34306 | -3.1794  | -3.22709 |
| Η | -0.07402 | -1.4447  | -3.46438 |
| С | 1.9884 · | -0.1293  | 3.04551  |
| Η | 2.4278   | -0.50667 | 3.97667  |
| Η | 2.33188  | -0.76764 | 2.22406  |
| Н | 2.36658  | 0.88816  | 2.87772  |
| Н | 0.12184  | 0.36561  | 4.07784  |

## TFA

Symbolic Z-matrix: Charge = 0 Multiplicity = 1 1.17953 1.6448 -0.8628 Η С 2.27594 0.06499 -0.43411 0 2.02334 1.28174 -1.14166 С 3.72378 -0.36214 -0.12929 F 3.79628 -1.70956 -0.08826 F 4.10102 0.14534 1.06346 F 4.54325 0.10338 -1.09586 0 1.31513 -0.65672 -0.06054

## III

Symbolic Z-matrix:Charge = 1 Multiplicity = 1C0.30694C0.066243.981071.07408C-0.199782.602091.04533C-0.250981.87591-0.18116

| С  | 0.02271 2.58014 -1.36631   |
|----|----------------------------|
| С  | 0.29418 3.96507 -1.33381   |
| Н  | 0.5121 5.72923 -0.10963    |
| Н  | 0.09384 4.50969 2.02239    |
| Н  | 0.00559 2.07564 -2.32692   |
| Н  | 0.49178 4.48927 -2.2634    |
| С  | -0.39851 1.8067 2.23706    |
| Н  | -0.34648 2.25372 3.23049   |
| Ν  | -0.61741 0.5334 2.09035    |
| C  | -0.77976 -0.34158 3.27043  |
| H  | -1.76369 -0.81587 3.19965  |
| Rh | -0.67706 -0.11913 0.05304  |
| C  | -2.79846 -0.56772 -0.30138 |
| Ċ  | -2.22144 -0.22165 -1.59448 |
| C  | -1 20221 -1 18685 -1 8724  |
| C  | -2.29269 -1.90679 0.07388  |
| C  | -1 29852 -2 25904 -0 85312 |
| H  | 1 89791 1 60653 -0 70287   |
| C  | 2 56403 -0 17073 -0 2119   |
| 0  | 2 73814 1 06964 -0 64866   |
| C  | 3 87807 -0 95022 -0 17277  |
| F  | 3 635 -2 28184 0 07298     |
| F  | 4 69148 -0 45687 0 83068   |
| F  | 4 54968 -0 83887 -1 37261  |
| 0  | 1 49933 -0 69677 0 15233   |
| Č  | -3.96851 0.11222 0.33939   |
| H  | -3.97538 1.18503 0.13076   |
| Н  | -4.90843 -0.30721 -0.04604 |
| Н  | -3.96969 -0.02184 1.42459  |
| C  | -2.68774 0.88553 -2.48594  |
| Н  | -3.57926 0.55409 -3.03548  |
| Н  | -2.96017 1.78222 -1.92405  |
| Н  | -1.93469 1.16373 -3.22655  |
| С  | -0.36471 -1.28374 -3.11124 |
| Н  | -0.86346 -1.91291 -3.86135 |
| Н  | -0.19247 -0.30535 -3.56768 |
| Н  | 0.60885 -1.73734 -2.9034   |
| С  | -0.44647 -3.48911 -0.85444 |
| Н  | -0.59638 -4.0635 -1.77714  |
| Н  | 0.61915 -3.23551 -0.79981  |
| Н  | -0.67682 -4.13972 -0.008   |
| С  | -2.81049 -2.74363 1.20851  |
| Н  | -2.73579 -3.80786 0.96622  |
| Н  | -2.26556 -2.58944 2.14544  |
| Н  | -3.86412 -2.52202 1.40271  |
| Н  | -0.78101 0.27946 4.17578   |
|    |                            |

| С | 0.32109 | -1.40448 | 3.35713 |
|---|---------|----------|---------|
| Н | 0.33525 | -2.04013 | 2.46655 |
| Н | 1.30563 | -0.93713 | 3.4599  |
| Н | 0.14986 | -2.03934 | 4.23252 |

#### Alkyne

Symbolic Z-matrix: Charge = 0 Multiplicity = 1-0.91877 -0.07236 2.6331 С С -0.10189 -0.94958 2.55504 С 0.94535 -2.07424 2.45495 Η 0.98721 -2.43404 1.44813 Η 1.90475 -1.69447 2.73817 Η 0.67171 -2.87563 3.10901 С -1.96604 1.05227 2.73317 С -3.32603 0.74098 2.73308 С -1.55502 2.38207 2.824 С -4.27472 1.75936 2.82313 Η -3.64977 -0.30745 2.66068 С -2.50385 3.40081 2.91507 Η -0.48317 2.62758 2.82426 С -3.86354 3.0897 2.91452 Η -5.3467 1.51412 2.82244 Η -2.17947 4.44917 2.98709 Η -4.61172 3.89248 2.98557

### IV

Symbolic Z-matrix:

| Charge = | 1 Multiplicity $= 1$      |
|----------|---------------------------|
| С        | 3.08512 -2.11612 -1.89687 |
| С        | 3.08052 -0.71819 -1.95789 |
| С        | 1.98532 0.01332 -1.47718  |
| С        | 0.84764 -0.69564 -0.90867 |
| С        | 0.88583 -2.09774 -0.86476 |
| С        | 1.99364 -2.8018 -1.35371  |
| Н        | 3.92709 -2.66285 -2.26739 |
| Н        | 3.92024 -0.20293 -2.37537 |
| Н        | 0.0581 -2.63588 -0.45232  |
| Н        | 2.00499 -3.87083 -1.31136 |
| С        | 2.04757 1.56702 -1.58144  |
| Rh       | -0.84057 0.21013 -0.15435 |
| С        | -3.65155 1.00273 -0.24303 |
| С        | -3.18498 0.62096 -1.81918 |
| С        | -2.9146 -0.91614 -1.86723 |
| С        | -3.77177 -0.32137 0.48025 |

| С | -3.32129 -1.512 -0.52383   |
|---|----------------------------|
| С | 0.7575 1.06453 2.28481     |
| С | 1.55657 0.03137 1.70494    |
| С | 0.72559 2.04972 3.46823    |
| Н | 1.20228 2.96447 3.18355    |
| Н | -0.29013 2.24679 3.74122   |
| Н | 1.24251 1.62254 4.30203    |
| С | 2.87766 -0.73369 1.90816   |
| С | 3.70159 -0.42959 3.00029   |
| С | 3.25618 -1.73351 1.00197   |
| С | 4.90379 -1.12528 3.18646   |
| Н | 3.4127 0.33385 3.69213     |
| С | 4.45859 -2.42919 1.18816   |
| Н | 2.62729 -1.96579 0.16804   |
| С | 5.28236 -2.12506 2.2804    |
| Н | 5.53267 -0.89305 4.02044   |
| Н | 4.7477 -3.1926 0.49636     |
| Н | 6.20038 -2.65622 2.42259   |
| С | -3.86273 -0.45899 2.01139  |
| Н | -4.88154 -0.62167 2.2951   |
| Н | -3.26678 -1.28825 2.33088  |
| Н | -3.50296 0.43728 2.47204   |
| С | -2.93613 -2.92681 -0.05358 |
| Н | -2.66769 -2.89768 0.98183  |
| Н | -3.768 -3.5862 -0.18796    |
| Н | -2.10504 -3.27954 -0.62779 |
| С | -3.02869 -1.76198 -3.14923 |
| Н | -2.58157 -2.72019 -2.9853  |
| Н | -4.06059 -1.88848 -3.40231 |
| Н | -2.52324 -1.26502 -3.95075 |
| С | -4.54159 2.18915 0.17124   |
| Н | -5.55259 1.99595 -0.12107  |
| Н | -4.49525 2.31605 1.23264   |
| Н | -4.19521 3.07987 -0.30996  |
| С | -3.67159 1.40874 -3.04967  |
| Н | -4.69729 1.17241 -3.24176  |
| Н | -3.57634 2.45782 -2.86192  |
| Н | -3.07914 1.14341 -3.90027  |
| Ν | 1.03652 2.1599 -1.13047    |
| С | 0.84329 3.6169 -1.10398    |
| Н | 1.79355 4.10126 -1.01856   |
| Н | 2.88334 2.08594 -2.00215   |
| Н | 0.23212 3.8805 -0.2662     |
| С | 0.1526 4.06669 -2.40478    |
| Н | -0.79791 3.58261 -2.48964  |
| Н | 0.01228 5.12724 -2.38576   |

TS2

| Symbolic Z-matrix: |                |          |          |
|--------------------|----------------|----------|----------|
| Charge =           | 1 Multiplicity | y = 1    |          |
| С                  | 2.71784        | 3.82704  | 0.21872  |
| С                  | 2.12958        | 3.29271  | 1.34843  |
| С                  | 1.4481         | 2.06962  | 1.27372  |
| С                  | 1.42446        | 1.22925  | 0.12615  |
| С                  | 1.99109        | 1.8706   | -1.0075  |
| С                  | 2.61422        | 3.12791  | -0.97041 |
| Н                  | 3.23808        | 4.7626   | 0.26176  |
| Н                  | 2.18537        | 3.81927  | 2.27879  |
| Н                  | 1.95015        | 1.35886  | -1.94529 |
| Н                  | 3.01954        | 3.54694  | -1.86746 |
| С                  | 0.65004        | 1.5917   | 2.52174  |
| Н                  | 0.89672        | 1.97124  | 3.49008  |
| Ν                  | -0.34464       | 0.74485  | 2.39103  |
| С                  | -0.99415       | 0.17738  | 3.5798   |
| Н                  | -1.78498       | 0.82587  | 3.89483  |
| Rh                 | -1.28883       | 0.05794  | -0.2977  |
| С                  | -4.09995       | -0.54059 | -0.75924 |
| С                  | -3.85533       | 1.08278  | -1.17783 |
| С                  | -2.95734       | 1.11671  | -2.43356 |
| С                  | -3.47134       | -1.39512 | -1.8649  |
| С                  | -2.76059       | -0.46278 | -2.87023 |
| С                  | 1.18784        | -1.6055  | 0.50089  |
| С                  | 2.33868        | -0.79143 | 0.52448  |
| С                  | 1.16908        | -3.10711 | 0.83968  |
| Н                  | 1.94173        | -3.32175 | 1.54685  |
| Н                  | 0.21971        | -3.36556 | 1.25924  |
| Н                  | 1.33285        | -3.67776 | -0.05208 |
| С                  | 3.81088        | -1.17778 | 0.75966  |
| С                  | 4.15685        | -2.51522 | 1.00343  |
| С                  | 4.80698        | -0.19384 | 0.71703  |
| С                  | 5.50207        | -2.87089 | 1.17612  |
| Н                  | 3.39485        | -3.26456 | 1.05656  |
| С                  | 6.15176        | -0.55015 | 0.8883   |
| Н                  | 4.54102        | 0.82924  | 0.55082  |
| С                  | 6.50086        | -1.88957 | 1.11028  |
| Н                  | 5.76669        | -3.89111 | 1.35762  |
| Н                  | 6.91245        | 0.20122  | 0.84994  |
| Н                  | 7.52947        | -2.16239 | 1.23041  |
| С                  | -1.67869       | -0.93054 | -3.86618 |

| Н | -2.12337 -1.09223 -4.82537 |
|---|----------------------------|
| Н | -0.92124 -0.17914 -3.94594 |
| Н | -1.23989 -1.84458 -3.51983 |
| С | -2.94734 2.25224 -3.4725   |
| Н | -2.10488 2.13413 -4.11887  |
| Н | -3.8478 2.21582 -4.04965   |
| Н | -2.88398 3.19517 -2.97001  |
| С | -4.89323 2.17736 -0.87424  |
| Н | -4.44467 3.14026 -0.99903  |
| Н | -5.72094 2.07942 -1.54514  |
| Н | -5.23666 2.07244 0.13379   |
| С | -5.3206 -1.07347 0.01942   |
| Н | -5.5045 -0.44459 0.8661    |
| Н | -6.18172 -1.07319 -0.61672 |
| Н | -5.12326 -2.07091 0.3514   |
| С | -3.07712 -2.86793 -1.64294 |
| Н | -2.42335 -2.93878 -0.79947 |
| Н | -3.95735 -3.44809 -1.46182 |
| Н | -2.5772 -3.23991 -2.51381  |
| С | -1.57766 -1.20869 3.24577  |
| Н | -2.29745 -1.11343 2.46011  |
| Н | -0.79113 -1.86209 2.93124  |
| Н | -2.05091 -1.61315 4.11608  |
| Н | -0.27384 0.08253 4.36447   |
|   |                            |

### V

Symbolic Z-matrix: Charge = 1 Multiplicity = 1

| Charge = | 1 Multiplicity | r = 1    |          |
|----------|----------------|----------|----------|
| С        | -1.99582       | 4.44318  | 0.27381  |
| С        | -1.27592       | 3.96552  | -0.82571 |
| С        | -1.26859       | 2.59715  | -1.13781 |
| С        | -1.98541       | 1.69126  | -0.31371 |
| С        | -2.74548       | 2.19679  | 0.75389  |
| С        | -2.74012       | 3.5594   | 1.05699  |
| Н        | -1.97733       | 5.48586  | 0.51432  |
| Н        | -0.72685       | 4.65155  | -1.43538 |
| Н        | -3.33281       | 1.52653  | 1.34631  |
| Н        | -3.3057        | 3.92515  | 1.88627  |
| С        | -0.52565       | 2.16948  | -2.4222  |
| Н        | -0.46145       | 2.87062  | -3.22688 |
| Ν        | 0.03212        | 1.02775  | -2.57283 |
| С        | 0.29433        | 0.4967   | -3.92126 |
| Н        | 0.2881 -       | -0.57326 | -3.89239 |
| Rh       | 0.87904        | -0.41886 | -0.19984 |
| С        | 3.45295        | -1.75051 | 0.48911  |
|          |                |          |          |

| С | 3.68183 -0.15706 0.76893   |
|---|----------------------------|
| С | 2.81648 0.23582 1.95858    |
| С | 2.36898 -2.27494 1.58908   |
| С | 1.9928 -1.09207 2.47339    |
| С | -1.03536 -0.69822 -0.8143  |
| С | -2.05787 0.15889 -0.52262  |
| С | -1.36525 -1.98653 -1.59239 |
| Н | -2.37197 -2.28155 -1.37928 |
| Н | -1.25947 -1.80763 -2.64088 |
| Н | -0.69493 -2.7661 -1.29324  |
| С | -3.4638 -0.45363 -0.3581   |
| С | -3.65383 -1.84218 -0.40643 |
| С | -4.56092 0.3951 -0.15976   |
| С | -4.94285 -2.37703 -0.25548 |
| Н | -2.81836 -2.49307 -0.5572  |
| С | -5.84783 -0.13887 -0.02049 |
| Н | -4.41555 1.45414 -0.11813  |
| С | -6.03943 -1.5242 -0.06608  |
| Н | -5.09002 -3.4364 -0.28447  |
| Н | -6.68613 0.51328 0.12017   |
| Н | -7.02331 -1.93254 0.04491  |
| С | 2.36023 -3.71997 2.11894   |
| Н | 3.1904 -3.86311 2.77865    |
| Н | 1.44813 -3.90084 2.64957   |
| Н | 2.43542 -4.39986 1.297     |
| С | 1.58402 -1.3023 3.9445     |
| Н | 0.87501 -2.10122 4.00728   |
| Н | 2.44957 -1.54721 4.52413   |
| Н | 1.14296 -0.40434 4.32566   |
| С | 3.2358 1.36879 2.91191     |
| Н | 2.40722 1.63873 3.53087    |
| Н | 4.04796 1.03853 3.5243     |
| Н | 3.54468 2.21849 2.33827    |
| С | 4.54342 -2.66987 -0.09066  |
| Н | 5.29221 -2.8461 0.65269    |
| Н | 4.10453 -3.59972 -0.38436  |
| Н | 4.99032 -2.20085 -0.94269  |
| С | 5.01168 0.55429 0.45719    |
| Н | 5.74828 0.26051 1.1748     |
| Н | 5.34184 0.27988 -0.52412   |
| H | 4.86871 1.61235 0.50216    |
| C | 1.67145 0.99663 -4.39829   |
| H | 2.42689 0.659 -3.72055     |
| H | 1.8705 0.61339 -5.37599    |
| H | 1.67053 2.06706 -4.42746   |
| Н | -0.46379 0.83666 -4.59679  |

| TS3                    |                            |
|------------------------|----------------------------|
| Symbolic Z-m           | atrix:                     |
| Charge = $1 \text{ N}$ | Aultiplicity = 1           |
| С                      | 3.03305 1.99811 1.60759    |
| С                      | 1.66955 1.83438 1.33314    |
| С                      | 1.20319 0.56911 0.96207    |
| С                      | 2.10333 -0.50915 0.78923   |
| С                      | 3.46535 -0.34092 1.08691   |
| С                      | 3.92148 0.91477 1.49584    |
| Н                      | 3.40303 2.96493 1.9309     |
| Н                      | 0.98028 2.66383 1.44728    |
| Н                      | 4.16265 -1.16432 0.97606   |
| Н                      | 4.97243 1.05786 1.72183    |
| С                      | -0.23336 0.22611 0.76367   |
| Н                      | -0.73131 -0.23724 1.62698  |
| Rh                     | -0.26632 -0.03889 -1.83206 |
| С                      | -1.13833 0.64049 -4.33574  |
| С                      | 0.02352 1.32966 -3.9768    |
| С                      | 1.11615 0.34939 -3.92837   |
| С                      | -0.78652 -0.76533 -4.59592 |
| С                      | 0.60617 -0.91304 -4.44235  |
| Ċ                      | 0.24794 -1.47305 -0.36784  |
| Ċ                      | 1.43925 -1.70669 0.27032   |
| Ċ                      | -0.85765 -2.46084 -0.66494 |
| Н                      | -1.25529 -2.9203 0.24938   |
| Н                      | -1.72176 -1.98379 -1.16576 |
| Н                      | -0.5186 -3.2558 -1.33912   |
| C                      | -2.45475 1.05483 0.13487   |
| H                      | -2.65097 0.91359 1.1772    |
| N                      | -1.00196 0.88438 -0.13604  |
| C                      | 2.00068 -3.11104 0.5605    |
| Č                      | 1,79983 -3,69881 1,80976   |
| Č                      | 2.71035 -3.79538 -0.42621  |
| Č                      | 2.30914 -4.97036 2.07239   |
| Н                      | 1 23888 -3 16069 2 58758   |
| C                      | 3 21903 -5 06774 -0 16399  |
| н                      | 2 86859 -3 33235 -1 41094  |
| C                      | 3 01868 -5 65523 1 08511   |
| н                      | 2 15126 -5 4321 3 05787    |
| Н                      | 3 77818 -5 60724 -0 9423   |
| Н                      | 3 42011 -6 65782 1 20230   |
| C                      | -2 82402 2 40120 -0 27062  |
| с<br>Н                 | -3 88856 2 50016 _0 28258  |
| H                      | -2.39727 3 18392 0 41539   |

| Н | -2.44279 2.68887 -1.2597   |
|---|----------------------------|
| Н | -3.01878 0.35185 -0.44184  |
| С | 0.1417 2.81753 -3.59748    |
| Н | 0.13466 2.91561 -2.53201   |
| Н | 1.05684 3.21306 -3.98603   |
| Н | -0.68429 3.35768 -4.01085  |
| С | 2.59116 0.67042 -3.6236    |
| Н | 2.9703 1.3428 -4.36458     |
| Н | 2.66499 1.12537 -2.65795   |
| Н | 3.16302 -0.23385 -3.6365   |
| С | -2.55839 1.22797 -4.43516  |
| Н | -2.83979 1.6427 -3.48979   |
| Н | -2.57552 1.99537 -5.18061  |
| Н | -3.24653 0.45401 -4.70414  |
| С | -1.77517 -1.85289 -5.0557  |
| Н | -2.54341 -1.97048 -4.32025 |
| Н | -2.2147 -1.5644 -5.98762   |
| Н | -1.25431 -2.77944 -5.17866 |
| С | 1.42866 -2.19821 -4.65078  |
| Н | 2.41663 -1.94132 -4.97144  |
| Н | 1.48226 -2.74063 -3.73002  |
| Н | 0.95855 -2.80564 -5.39572  |

Int3 Symbolic Z-matrix:

| Charge = | 1 Multiplicity $= 1$      |
|----------|---------------------------|
| С        | 0.48112 1.50244 3.70341   |
| С        | 1.54939 1.35597 2.79287   |
| С        | 1.546 0.23652 1.96664     |
| С        | 0.49079 -0.64625 1.95132  |
| С        | -0.55388 -0.56123 2.86562 |
| С        | -0.55477 0.53177 3.75755  |
| Н        | 0.45317 2.34749 4.35912   |
| Н        | 2.33879 2.07675 2.74515   |
| Н        | -1.33328 -1.29402 2.88636 |
| Н        | -1.34174 0.63242 4.47549  |
| С        | 2.62263 -0.23028 0.96959  |
| Н        | 3.04129 0.57173 0.39824   |
| Rh       | 2.80428 -3.12291 3.32654  |
| С        | 4.15079 -3.62857 5.997    |
| С        | 2.68746 -4.24117 5.95746  |
| С        | 2.71976 -5.46676 4.9205   |
| С        | 5.02685 -4.29216 4.68431  |
| С        | 4.22014 -5.59924 4.32193  |
| С        | 1.85284 -1.2559 0.10687   |

| C 2.29144 -1.77421 -1.27   H 1.89032 -1.13976 -2.03   H 3.35988 -1.77166 -1.33   H 1.92891 -2.77131 -1.41   C 4.38033 0.05625 2.579   N 3.7131 -0.90447 1.688   H 5.17485 -0.43409 3.10   C 1.78991 -4.17751 7.207   H 0.79267 -4.46342 6.944                                                                                                                                                                                                                                                  | 539<br>786<br>48<br>392<br>915<br>84                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| H1.89032-1.13976-2.03H3.35988-1.77166-1.33H1.92891-2.77131-1.41C4.380330.056252.579N3.7131-0.904471.688H5.17485-0.434093.10C1.78991-4.177517.207H0.79267-4.463426.944                                                                                                                                                                                                                                                                                                                          | 786<br>48<br>392<br>915<br>84                                                                                               |
| H3.35988-1.77166-1.33H1.92891-2.77131-1.41C4.380330.056252.579N3.7131-0.904471.688H5.17485-0.434093.10C1.78991-4.177517.207H0.79267-4.463426.94                                                                                                                                                                                                                                                                                                                                                | 48<br>392<br>915<br>84                                                                                                      |
| H1.92891-2.77131-1.41C4.380330.056252.579N3.7131-0.904471.688H5.17485-0.434093.10C1.78991-4.177517.207H0.79267-4.463426.949                                                                                                                                                                                                                                                                                                                                                                    | 392<br>915<br>84                                                                                                            |
| C 4.38033 0.05625 2.579   N 3.7131 -0.90447 1.688   H 5.17485 -0.43409 3.10   C 1.78991 -4.17751 7.207   H 0.79267 -4.46342 6.944                                                                                                                                                                                                                                                                                                                                                              | 915<br>84                                                                                                                   |
| N 3.7131 -0.90447 1.688   H 5.17485 -0.43409 3.10   C 1.78991 -4.17751 7.207   H 0.79267 -4.46342 6.944                                                                                                                                                                                                                                                                                                                                                                                        | 84                                                                                                                          |
| H5.17485-0.434093.10C1.78991-4.177517.20'H0.79267-4.463426.94                                                                                                                                                                                                                                                                                                                                                                                                                                  | 170                                                                                                                         |
| C 1.78991 -4.17751 7.20<br>H 0.79267 -4.46342 6.94                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/0                                                                                                                         |
| Н 0.79267 -4.46342 6.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 724                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 513                                                                                                                         |
| Н 2.16826 -4.8456 7.952                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47                                                                                                                          |
| Н 1.78515 -3.17928 7.592                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 245                                                                                                                         |
| C 4.45975 -2.23367 6.572                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 204                                                                                                                         |
| Н 3.83435 -1.506 6.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36                                                                                                                          |
| Н 4.27298 -2.23281 7.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 559                                                                                                                         |
| Н 5.48661 -1.99302 6.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 167                                                                                                                         |
| C 6.55831 -4.19585 4.554                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 145                                                                                                                         |
| Н 6.86512 -3.18063 4.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62                                                                                                                          |
| Н 7.01872 -4.8145 5.296                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16                                                                                                                          |
| Н 6.85514 -4.52552 3.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 073                                                                                                                         |
| C 4.51646 -6.43445 3.062                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 236                                                                                                                         |
| Н 4.48535 -5.80224 2.199                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97                                                                                                                          |
| Н 5.48795 -6.87492 3.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 593                                                                                                                         |
| Н 3 78202 _7 20653 2 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             |
| 11 J./6202 -/.20033 2.70.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 542                                                                                                                         |
| C 1.84378 -6.72407 5.073                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 542<br>367                                                                                                                  |
| C 1.84378 -6.72407 5.073<br>H 1.86352 -7.28562 4.163                                                                                                                                                                                                                                                                                                                                                                                                                                           | 542<br>367<br>31                                                                                                            |
| III 3.78202 7.20033 2.900   C 1.84378 -6.72407 5.073   H 1.86352 -7.28562 4.163   H 2.22179 -7.32693 5.873                                                                                                                                                                                                                                                                                                                                                                                     | 542<br>367<br>31<br>275                                                                                                     |
| II 3.78262 7.26033 2.760   C 1.84378 -6.72407 5.073   H 1.86352 -7.28562 4.163   H 2.22179 -7.32693 5.873   H 0.8374 -6.43322 5.291                                                                                                                                                                                                                                                                                                                                                            | 542<br>367<br>31<br>275<br>62                                                                                               |
| II 3.78202 7.20033 2.900   C 1.84378 -6.72407 5.073   H 1.86352 -7.28562 4.163   H 2.22179 -7.32693 5.873   H 0.8374 -6.43322 5.291   H 3.67287 0.4398 3.284                                                                                                                                                                                                                                                                                                                                   | 542<br>367<br>31<br>275<br>62<br>36                                                                                         |
| II 3.78202 7.20033 2.700   C 1.84378 -6.72407 5.073   H 1.86352 -7.28562 4.163   H 2.22179 -7.32693 5.873   H 0.8374 -6.43322 5.291   H 3.67287 0.4398 3.284   C 4.95397 1.21643 1.744                                                                                                                                                                                                                                                                                                         | 542<br>367<br>31<br>275<br>62<br>36<br>461                                                                                  |
| II 5.78262 7.26053 2.760   C 1.84378 -6.72407 5.073   H 1.86352 -7.28562 4.163   H 2.22179 -7.32693 5.873   H 0.8374 -6.43322 5.291   H 3.67287 0.4398 3.284   C 4.95397 1.21643 1.744   H 5.43997 1.91555 2.392                                                                                                                                                                                                                                                                               | 542<br>367<br>31<br>275<br>62<br>36<br>61<br>255                                                                            |
| II 3.78202 7.20033 2.700   C 1.84378 -6.72407 5.073   H 1.86352 -7.28562 4.163   H 2.22179 -7.32693 5.873   H 0.8374 -6.43322 5.291   H 3.67287 0.4398 3.284   C 4.95397 1.21643 1.744   H 5.43997 1.91555 2.392   H 5.66113 0.83278 1.039                                                                                                                                                                                                                                                     | 542<br>367<br>31<br>275<br>62<br>36<br>461<br>255<br>918                                                                    |
| II 3.78202 7.20033 2.700   C 1.84378 -6.72407 5.073   H 1.86352 -7.28562 4.163   H 2.22179 -7.32693 5.873   H 0.8374 -6.43322 5.291   H 3.67287 0.4398 3.284   C 4.95397 1.21643 1.744   H 5.43997 1.91555 2.392   H 5.66113 0.83278 1.039   H 4.15936 1.70704 1.222                                                                                                                                                                                                                           | 542<br>367<br>31<br>275<br>62<br>36<br>61<br>255<br>918<br>226                                                              |
| II 5.78262 7.26033 2.760   C 1.84378 -6.72407 5.073   H 1.86352 -7.28562 4.163   H 2.22179 -7.32693 5.873   H 0.8374 -6.43322 5.291   H 3.67287 0.4398 3.284   C 4.95397 1.21643 1.744   H 5.43997 1.91555 2.392   H 5.66113 0.83278 1.039   H 4.15936 1.70704 1.222   C -0.25514 -2.79569 0.416                                                                                                                                                                                               | 542<br>367<br>31<br>275<br>62<br>36<br>461<br>255<br>918<br>226<br>566                                                      |
| II 3.78202 7.20033 2.903   C 1.84378 -6.72407 5.073   H 1.86352 -7.28562 4.163   H 2.22179 -7.32693 5.873   H 0.8374 -6.43322 5.291   H 3.67287 0.4398 3.284   C 4.95397 1.21643 1.744   H 5.43997 1.91555 2.392   H 5.66113 0.83278 1.039   H 4.15936 1.70704 1.222   C -0.25514 -2.79569 0.416   C -0.1268 -4.03196 1.063                                                                                                                                                                    | 542<br>367<br>31<br>275<br>62<br>36<br>461<br>255<br>918<br>226<br>566<br>94                                                |
| II 3.78202 7.20033 2.700   C 1.84378 -6.72407 5.073   H 1.86352 -7.28562 4.160   H 2.22179 -7.32693 5.873   H 0.8374 -6.43322 5.291   H 3.67287 0.4398 3.284   C 4.95397 1.21643 1.744   H 5.43997 1.91555 2.392   H 5.66113 0.83278 1.039   H 5.66113 0.83278 1.039   H 4.15936 1.70704 1.222   C -0.25514 -2.79569 0.410   C -0.1268 -4.03196 1.063   C -1.23605 -2.61897 -0.56                                                                                                              | 542<br>367<br>31<br>275<br>62<br>36<br>61<br>255<br>918<br>226<br>566<br>94<br>844                                          |
| II 5.78262 7.26033 2.760   C 1.84378 -6.72407 5.073   H 1.86352 -7.28562 4.163   H 2.22179 -7.32693 5.873   H 0.8374 -6.43322 5.291   H 3.67287 0.4398 3.284   C 4.95397 1.21643 1.744   H 5.66113 0.83278 1.039   H 5.66113 0.83278 1.039   H 4.15936 1.70704 1.222   C -0.25514 -2.79569 0.414   C -0.1268 -4.03196 1.063   C -0.1268 -4.03196 1.063   C -0.25614 -2.61897 -0.56   C -0.97996 -5.09132 0.72                                                                                  | 542<br>367<br>31<br>275<br>62<br>36<br>461<br>255<br>918<br>226<br>566<br>94<br>844<br>564                                  |
| II 3.78202 7.20033 2.700   C 1.84378 -6.72407 5.073   H 1.86352 -7.28562 4.160   H 2.22179 -7.32693 5.873   H 0.8374 -6.43322 5.291   H 3.67287 0.4398 3.284   C 4.95397 1.21643 1.744   H 5.66113 0.83278 1.039   H 5.66113 0.83278 1.039   H 4.15936 1.70704 1.222   C -0.25514 -2.79569 0.410   C -0.1268 -4.03196 1.063   C -0.1268 -4.03196 1.063   C -0.1268 -4.03196 1.063   C -0.97996 -5.09132 0.72   H 0.62251 -4.16701 1.813                                                        | 542<br>367<br>31<br>275<br>62<br>36<br>461<br>255<br>918<br>226<br>5666<br>94<br>844<br>5664<br>576                         |
| II 3.78202 7.20033 2.700   C 1.84378 -6.72407 5.073   H 1.86352 -7.28562 4.160   H 2.22179 -7.32693 5.873   H 0.8374 -6.43322 5.291   H 3.67287 0.4398 3.284   C 4.95397 1.21643 1.744   H 5.43997 1.91555 2.392   H 5.66113 0.83278 1.039   H 5.66113 0.83278 1.039   H 4.15936 1.70704 1.222   C -0.25514 -2.79569 0.410   C -0.1268 -4.03196 1.063   C -0.1268 -4.03196 1.063   C -0.1268 -4.03196 1.063   C -0.97996 -5.09132 0.720   H 0.62251 -4.16701 1.813   C -2.08901 -3.67836 -0.90 | 542<br>367<br>31<br>275<br>62<br>36<br>461<br>255<br>918<br>226<br>566<br>94<br>844<br>576<br>593                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                           | 542<br>367<br>31<br>275<br>62<br>36<br>461<br>255<br>918<br>226<br>566<br>94<br>844<br>566<br>593<br>287                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                           | 542<br>367<br>31<br>275<br>62<br>36<br>461<br>255<br>918<br>226<br>5666<br>.94<br>844<br>5664<br>576<br>593<br>287<br>831   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                           | 542<br>367<br>31<br>275<br>62<br>36<br>461<br>255<br>918<br>226<br>566<br>94<br>844<br>576<br>593<br>287<br>831<br>112      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                           | 542<br>367<br>31<br>275<br>62<br>36<br>461<br>255<br>918<br>226<br>566<br>94<br>844<br>566<br>593<br>287<br>831<br>112<br>8 |

e) <u>X-ray structure of compound 4i.</u>





4i, 56% rs 92:8

Scheme S3. X-ray structure of 4i

## 5) <u>NMR spectra</u>















































## 6) <u>References</u>

<sup>2</sup> Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.

<sup>&</sup>lt;sup>1</sup> Cp\*Rh(SbF<sub>6</sub>)<sub>2</sub>(MeCN)<sub>3</sub> was synthesized following the literature procedure: Li, Y.; Li, B.-J.; Wang, W.-H.; Huang, W.-P.; Zhang, X.-S.; Chen, K.; Shi, Z.-J., *Angew. Chem. Int. Ed.* 2011, **50**, 2115.