Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting information

Iron(III) Chloride-Catalyzed Activation of Glycosyl Chlorides

Scott A. Geringer and Alexei V. Demchenko*

Department of Chemistry and Biochemistry, University of Missouri – St. Louis One University Boulevard, St. Louis, Missouri 63121, USA Fax: (+) 1-314-516-5342;E-mail: <u>demchenkoa@umsl.edu</u>

Contents:

General experimental	S1
Synthesis of glycosyl donors	S2
Synthesis of disaccharides	S3
References	S6
NMR spectra of known glycosyl chlorides	S7
NMR spectra of known disaccharides	S11

General Experimental

Column chromatography was performed on silica gel 60 (70-230 mesh), reactions were monitored by TLC on Kieselgel 60 F254. The compounds were detected by examination under UV light and by charring with 10% sulfuric acid in methanol. Solvents were removed under reduced pressure at <40 °C. CH₂Cl₂ and ClCH₂CH₂Cl (1,2-DCE) were distilled from CaH₂ directly prior to application. Anhydrous DMF was used as it is. Molecular sieves (4 Å), used for reactions, were crushed and activated *in vacuo* at 390 °C during 8 h in the first instance and then for 2-3 h at 390 °C directly prior to application. Optical rotations were measured at 'Jasco P-2000' polarimeter. ¹H NMR spectra were recorded in CDCl₃ at 300 or 600 MHz.

Synthesis of Glycosyl Chloride Donors

2,3,4,6-Tetra-O-benzyl- α -D-glucopyranosyl chloride (1). A solution of oxalyl chroride (621.1

mg, 4.89 mmol) in dichloromethane (2.0 mL) was added dropwise to a stirring solution of 2,3,4,5-tetra-*O*-benzyl-D-glucopyranose (881.8 mg, 1.63 mmol) in dichloromethane (6.0 mL) and DMF (2.0 mL) and the resulting mixture was stirred under argon for 30 min at 0 °C. The external cooling was then removed and the reaction mixture was allowed to slowly warm to rt and

stirred for additional 1 h at rt. After that, the resulting mixture was concentrated *in vacuo*. The residue was dissolved in a mixture of ethyl acetate and hexane (10 mL, 1/1, v/v) and passed through a pad of silica gel (10 g). The pad of silica gel was washed with a mixture of ethyl acetate and hexane (100 mL, 1/1, v/v) and the combined eluate was concentrated *in vacuo* to afford the title compound as a clear oil in 98% yield (899.1 mg, 1.59 mmol). Analytical data for **1** was essentially the same as reported previously.¹

2,3,4,6-Tetra-*O*-benzyl- α -D-galactopyranosyl chloride (10). Thionyl chloride (302.8 mg, 2.54 BnO OBn BnO OBn BnO OBn BnO OCl OBn OCl OBn OBn OCl OCl OBn OCl OCl OBn OCl OCl OBn OCl O

acetate and hexane (75 mL, 1/1, v/v) and the combined eluate was concentrated *in vacuo* to afford the title compound as a clear oil in 95% yield (451.0 mg, 0.81 mmol). Analytical data for **10** was essentially the same as reported previously.¹

2,3,4,6-Tetra-O-benzyl-α-D-mannopyranosyl chloride (15). A solution of oxalyl chroride (322.6 mg, 2.54 mmol) in dichloromethane (6.5 mL) was added dropwise to a stirring solution of 2,3,4,5-tetra-O-benzyl-D-mannopyranose (458.1 mg, 0.847 mmol) in 1,2-dichloroethane (5.0 mL) and DMF (0.1 mL) and the resulting mixture was stirred under argon for 30 min at 0 °C. The external cooling was then removed and the reaction mixture was allowed to slowly warm to rt and

stirred for additional 1 h at rt. After that, the resulting mixture was concentrated *in vacuo*. The residue was dissolved in a mixture of ethyl acetate and hexane (5 mL, 1/1, v/v) and passed through a pad of silica gel (5 g). The pad of silica gel was washed with a mixture of ethyl acetate and hexane (100 mL, 1/1, v/v) and the combined eluate was concentrated *in vacuo* to afford the title compound as a clear oil in 95% yield (452mg, 0.81 mmol). Analytical data for **15** was essentially the same as reported previously.²

2,3,4,6-Tetra-*O***-benzoyl-** β **-D-glucopyranosyl chloride (20).** Thionyl chloride (106.85 mg, 0.898 mmol) was added dropwise to a stirring solution of 2,3,4,5-tetra-*O*-benzoyl-D-glucopyranose (242.8 mg, 0.45 mmol) in 1,2-dichloroethane (5.0 mL) and DMF (0.1 mL) and the resulting mixture was stirred under argon for 1 h at 0 °C. The reaction mixture was then concentrated *in vacuo*. The residue was dissolved in a mixture of ethyl acetate and hexane (5 mL, 1/1, v/v) and passed

through a pad of silica gel (3.5 g). The pad of silica gel was washed with a

mixture of ethyl acetate and hexane (50 mL, 1/1, v/v) and the combined eluate was concentrated *in vacuo* to afford the title compound as a white foam in 98% yield (276.8 mg, 0.44 mmol). Analytical data for **20** was essentially the same as reported previously.³

Synthesis of Disaccharides

General procedure for glycosidation of glycosyl chlorides in the presence of FeCl₃. A mixture of glycosyl chloride donor (0.05 mmol), glycosyl acceptor (0.025 mmol) and molecular sieves (4 Å, 60 mg) in dichloromethane (1.0 mL) was stirred under argon for 1 h at rt. The mixture was then cooled to 0 °C, FeCl₃ (0.01 mmol) was added, and the reaction mixture was stirred for the time specified in Table 1 of the article. If the reaction was incomplete after 3 h at 0 °C, the external cooling was removed, the reaction mixture was allowed to slowly warm to rt, and stirred for additional 13 h at rt. After that, the solid was filtered off through a pad of Celite and rinsed successively with dichloromethane. The combined filtrate (~30 mL) was washed with sat. aq. NaHCO₃ (10 mL) and water (2 x 10 mL). The organic phase was separated, dried over magnesium sulfate, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (ethyl acetate/toluene gradient elution). If necessary, further purification was accomplished by size-exclusion column chromatography on Sephadex LH20 (methanol/ dichloromethane, 1/1, v/v, isocratic elution). Anomeric ratios were determined by comparison of integral intensities of their respective signals in the ¹H NMR spectra of anomeric mixtures.

Methyl 2,3,4-tri-O-benzyl-6-O-(2,3,4,6-tetra-O-benzyl- α/β -D-glucopyranosyl)- α -D-glucopyranoside (3). The title compound was obtained from donor 1 and acceptor 2⁴ under the general glycosylation method as a colorless foam in 67% yield ($\alpha/\beta = 1.1/1$). Analytical data for 3 was in accordance with that previously reported.⁵

Methyl 2,4,6-tri-*O*-benzyl-4-*O*-(2,3,4,6-tetra-*O*-benzyl- α/β -D-glucopyranosyl)- α -D-glucopyranoside (5). The title compound was obtained from donor 1 and acceptor 4⁴ under the general glycosylation method as an oil in 47% yield of 5 ($\alpha/\beta = 1.2/1$). Analytical data for 5 was in accordance with previously reported values.⁶

Methyl 2,4,6-tri-O-benzyl-3-O-(2,3,4,6-tetra-O-benzyl- α/β -D-glucopyranosyl)- α -D-glucopyranoside (7). The title compound was obtained from donor 1 and acceptor 6⁴ under the general glycosylation method as an oil in 60% yield of 7($\alpha/\beta = 1.5/1$). Analytical data for 7 was in accordance with previously reported values.⁷

Methyl 2,3,4-tri-*O*-benzyl-6-*O*-(2,3,4,6-tetra-*O*-benzyl- α/β -D-galactopyranosyl)- α -D-glucopyranoside (11). The title compound was obtained from donor 10 and acceptor 2 under the general glycosylation method as an oil in 88% yield of 11 ($\alpha/\beta = 1/1.4$). Analytical data for 11 was in accordance with previously reported values.⁹

Methyl 2,3,6-tri-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl- α/β -D-galactopyranosyl)- α -D-glucopyranoside (12). The title compound was obtained from donor 10 and acceptor 4 under the general glycosylation method as an oil in 57% yield of 12 ($\alpha/\beta = 1.6/1$). Analytical data for 12 was in accordance with previously reported values.¹⁰

Methyl 2,4,6-tri-*O*-benzyl-3-*O*-(2,3,4,6-tetra-*O*-benzyl- α/β -D-galactopyranosyl)- α -D-glucopyranoside (13). The title compound was obtained from donor 10 and acceptor 6 under the general glycosylation method as an oil in 80% yield of 13 ($\alpha/\beta = 1.3/1$). Analytical data for 13 was in accordance with previously reported values.¹¹

Methyl 3,4,6-tri-O-benzyl-2-O-(2,3,4,6-tetra-O-benzyl- α/β -D-galactopyranosyl)- α -D-glucopyranoside (14). The title compound was obtained from donor 10 and acceptor 8 under the general glycosylation method as an oil in 90% yield of 14 ($\alpha/\beta = 1/2.7$). Analytical data for 14 was in accordance with previously reported values.¹²

Methyl 2,3,4-tri-*O*-benzyl-6-*O*-(2,3,4,6-tetra-*O*-benzyl- α/β -D-mannopyranosyl)- α -D-glucopyranoside(16). The title compound was obtained from donor 15 and acceptor 5 under the general glycosylation method as an oil in 80% yield of 16 (α/β = 4.5/1). Analytical data for 16 was in accordance with previously reported values.¹³

Methyl 2,3,6-tri-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl- α -D-mannopyranosyl)- α -D-glucopyranoside (17). The title compound was obtained from donor 15 and acceptor 6 under the general glycosylation method as an oil in 66% yield of 17. Analytical data for 17 was in accordance with previously reported values.¹⁴

Methyl 2,4,6-tri-*O*-benzyl-3-*O*-(2,3,4,6-tetra-*O*-benzyl- α -D-mannopyranosyl)- α -D-glucopyranoside (18). The title compound was obtained from donor 15 and acceptor under the general glycosylation method as an oil in 56% yield of 18. Analytical data for 18 was in accordance with previously reported values.¹⁵

Methyl 3,4,6-tri-O-benzyl-2-O-(2,3,4,6-tetra-O-benzyl- α/β -D-mannopyranosyl)- α -D-glucopyranoside (19). The title compound was obtained from donor 15 and acceptor 8 under the general glycosylation method as an oil in 95% yield of 19 ($\alpha/\beta = 2.6/1$). Analytical data for 19 was in accordance with previously reported values.⁸

Methyl 6-O-(2,3,4,6-tetra-O-benzoyl- β -D-glucopyranosyl)-2,3,4-tri-O-benzyl- α -D-glucopyranoside (21). The title compound was obtained from donor 20 and acceptor 5 under the general glycosylation method as an oil in 98% yield of 21. Analytical data for 21 was in accordance with previously reported values.¹⁶

Methyl 4-O-(2,3,4,6-tetra-O-benzoyl- β -D-glucopyranosyl)-2,3,6-tri-O-benzyl- α -D-glucopyranoside (22). The title compound was obtained from donor 20 and acceptor 6 under the general glycosylation method as an oil in 80% yield of 22. Analytical data for 22 was in accordance with previously reported values.¹⁶

Methyl 3-O-(2,3,4,6-tetra-O-benzoyl- β -D-glucopyranosyl)-2,4,6-tri-O-benzyl- α -D-glucopyranoside (23). The title compound was obtained from donor 20 and acceptor 7 under the general glycosylation method as an oil in 52% yield of 23. Analytical data for 23 was in accordance with previously reported values.⁴

OBn

19

Methyl 2-*O*-(2,3,4,6-tetra-*O*-benzoyl-β-D-glucopyranosyl)-3,4,6-tri-*O*-benzyl-α-D-glucopyranoside (24).

The title compound was obtained from donor **20** and acceptor **8** under the general glycosylation method as an oil in 73% yield of **24**. Analytical data for **24** was in accordance with previously reported values.¹⁷

References

- (1) Gómez, A. M.; Pedregosa, A.; Casillas, M.; Uriel, C.; López, J. C. *Eur. J. Org. Chem.* **2009**, *2009*, 3579.
- (2) Matsuoka, K.; Terabatake, M.; Umino, A.; Esumi, Y.; Hatano, K.; Terunuma, D.; Kuzuhara, H. *Biomacromol.* **2006**, *7*, 2274.
- (3) Encinas, L.; Chiara, J. L. J. Comb. Chem. 2008, 10, 361.
- (4) Ranade, S. C.; Kaeothip, S.; Demchenko, A. V. Org. Lett. 2010, 12, 5628.
- (5) Eby, R.; Schuerch, C. Carbohydr. Res. 1975, 39, 33.
- (6) Pougny, J. R.; Nassr, M. A. M.; Naulet, N.; Sinay, P. Nouveau J. Chem. 1978, 2, 389.
- (7) Chiba, H.; Funasaka, S.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 2003, 76, 1629.
- (8) Ito, Y.; Ogawa, T.; Numata, M.; Sugimoto, M. Carbohydr. Res. 1990, 202, 165.
- (9) Vankar, Y. D.; Vankar, P. S.; Behrendt, M.; Schmidt, R. R. Tetrahedron 1991, 47, 9985.
- (10) Wegmann, B.; Schmidt, R. R. J. Carbohydr. Chem. 1987, 6, 357.
- (11) Kobashi, Y.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 2005, 78, 910.
- (12) Premathilake, H. D.; Demchenko, A. V. Beilstein J. Org. Chem. 2012, 8, 597.
- (13) Hotha, S.; Kashyap, S. J. Am. Chem. Soc. 2006, 128, 9620.
- (14) Nguyen, H. M.; Chen, Y. N.; Duron, S. G.; Gin, D. Y. J. Am. Chem. Soc. 2001, 123, 8766.
- (15) Jayakanthan, K.; Vankar, Y. D. Carbohydr. Res. 2005, 340, 2688.
- (16) Garcia, B. A.; Gin, D. Y. J. Am. Chem. Soc. 2000, 122, 4269.
- (17) Pornsuriyasak, P.; Demchenko, A. V. Chem. Eur. J. 2006, 12, 6630.

NMR Spectra of known disaccharides

