Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Cobalt-Catalyzed Regioselective Syntheses of Indeno[2,1-*c*]pyridines from Nitriles and Diynes Bearing Propargyl Fragments

Murong Xu, Zhong Zheng, Mengdan Wang, Lingkai Kong, Yujuan Ao and Yanzhong Li*

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China

Fax: (+86) 021-54340106, E-mail: yzli@chem.ecnu.edu.cn

Table of Contents

1. Experimental Section	2
2. References	3
3. NMR spectra of all new compounds	3
4. X-ray Crystallography of Compounds 3ab.	
5. NOESY of Compounds 3ma and 3ra.	

1. Experimental Section

A typical procedure for the synthesis of 1:

Synthesis of the intermediate B: 1

Under an atmosphere of N₂ the 2-bromo-benzaldehyde (1.0 eq) was dissolved in trimethylamine (50 mL). After stirring for 10 minutes, the terminal alkyne (1.2 eq) were added. 5 mol% of copper(I) iodide and 2.5 mol% of PdCl₂(PPh₃)₂ were dissolved in freshly degassed triethylamine under an atmosphere of nitrogen then stirred at 50 °C under nitrogen for 24 h. After full conversion of **A** monitored by thin-layer chromatography, the solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel with petroleum ether/ethyl acetate = 200:1 as the eluent afforded the intermediate **B** with 72-95% yields.

Synthesis of the intermediate C:²

To a solution of the corresponding terminal alkyne (1.3 eq.) in THF (40 mL) in Schlenk tube was added *n*-BuLi (2.5 M, 1.2 eq.) at -78 °C and then stirred at -78 °C under nitrogen for 30 min. Then, a solution of **B** in THF (5 mL) was added dropwise and stirred at rt for 1-2 h. After full conversion of **B** monitored by thin-layer chromatography, the resulting mixture was quenched with saturated solution of ammonium chloride, and extracted with ethyl acetate (50 mL \times 3). The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure.

Purification by flash chromatography on silica gel with petroleum ether/ethyl acetate = 20:1-5:1 as the eluent afforded the intermediate **C** with 71-93% yields.

Synthesis of the intermediate 1a-1p:³

To a solution of the above intermediate C in DCM (15.0 mL) were added imidazole (2.0 equiv) and TBSCl (1.2 equiv). The reaction mixture was then stirred at room temperature for 2-5 h, and saturated NH₄Cl (10 mL) solution was added. Then the mixture was extracted with dichloromethane (20 mL \times 3), washed with water and brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate = 200:1 to afford 1a-1n with 68-99 % yields.

2. References

- 1 T. Lauterbach, S. Arndt, M. Rudolph, F. Rominger, A. Hashmi, *Adv. Synth. Catal.* 2013, **355**, 1755.
- 2 Y. L. Zhao, M. R. Xu, Z. Zheng, Y. Yuan, Y. Z. Li, Chem. Commun. 2017, 53, 3721.
- 3 X. Zhang, X. Xie, Y. H. Liu, Chem. Sci. 2016, 7, 5815.

3. NMR spectra of all new compounds

¹H NMR (400 MHz, CDCl₃)

9-((tert-butyldimethylsilyl)oxy)-1,3,4-triphenyl-9H-indeno[2,1-c]pyridine (3ab, CCDC: 1830393) (Ortep ellipsoids are depicted at the 50% level)

1 11		
3ab		
Table 1. Crystal data and structure refir	nement for 3ab	
Identification code	3ab	
Empirical formula	C ₃₆ H ₃₅ NOSi	
Formula weight	525.74	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C 2/c	
Unit cell dimensions	$a = 20.052(4) \text{ Å}$ $\alpha = 90^{\circ}.$	
	$b = 6.3001(12) \text{ Å}$ $\beta = 96.918(9)^{\circ}.$	
	$c = 48.442(9) \text{ Å}$ $\gamma = 90^{\circ}$	
Volume	6075(2) Å ³	
Ζ	8	
Density (calculated)	1.150 Mg/m ³	
Absorption coefficient	0.105 mm ⁻¹	
F(000)	2240	-
Crystal size	0.200 x 0.170 x 0.110 mm ³	
Theta range for data collection	1.694 to 24.995°	
Index ranges	-23<=h<=18, -7<=k<=7, -55<=l<=57	
Reflections collected	16029	
Independent reflections	5375 [R(int) = 0.0787]	-
Completeness to theta = 26.000°	97.3 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7456 and 0.6034	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	5375 / 0 / 356	
Goodness-of-fit on F ²	1.117	
Final R indices [I>2sigma(I)]	R1 = 0.0890, wR2 = 0.1895	
R indices (all data)	R1 = 0.1410, $wR2 = 0.2157$	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.258 and -0.216 e.Å ⁻³	

5. NOESY of Compounds 3ma and 3ra.

