Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Synthesis and DNA polymerase recognition of 2'-deoxyribonucleoside triphosphates bearing 4-phenyl and 4-pyrimidinyl imidazoles as nucleobases

Sophie Vichier-Guerre, Laurence Dugué and Sylvie Pochet*

Unité de Chimie et Biocatalyse, Institut Pasteur, CNRS, UMR3523, 28, rue du Dr Roux, 75724 Paris Cedex 15

Table S1	p 2
Figure S1	p 2
Figure S2	р 3
Figure S3	р 3
Figure S4	р 4
NMR spectra	р 5

Temperature	POCl₃ (equiv)	% 9	% 10	% 11	% 9	% 10	% 11
		after 30 min			after 60 min		
2°C (ice bath)	1.20	1	65	34	ND	ND	ND
–5°C	1.15	ND	ND	ND	0	78	22
–5°C	1.05	12	82	6	9	84	7
-10°C	1.15	1	86	12	0	82	18
-10°C	1.05	15	80	5	8	85	7

Table S1. % Conversion of 9 into phosphorylated products 10 and 11 as a function oftemperature/time

Reaction conditions: (9) (0.1 mmol) and proton sponge (1.2 equiv) in $PO(OMe)_3$ (0.9 mL) was stirred for 10 min at the indicated temperature, then $POCl_3$ (as indicated) in $PO(OMe)_3$ (0.1 mL) was added dropwise. Aliquots of the reaction mixture were hydrolysed after 30 and 60 min and analysed by HPLC (detection at 230 nm).

Figure S1. HPLC monitoring at 230 nm of phosphorylation reaction

Reaction conditions: 1.05 equiv POCl₃ at -5° C (Table S1); Analytical C18 column, 0-20% linear gradient of acetonitrile in 40 mM TEAA buffer over 20 min. Retention times ($t_{\rm R}$): 7.37 min for **11**, 9.24 min for **10**, 13.20 min for **9**.

Sequence
5'-ATTGGTAGCACGGTCAGTTCGGAGT-3'
3'-TAACCATCGTGCCAGTCAAGCCTCAAAAAA-5'
5'-CAGGAAACAGCTATGAC-3'
3'-GTCCTTTGTCGATACTG TTTTT -5'

Oligodeoxynucleotide sequences used in PEX experiments

Figure S2. PAGE analysis of primer extension experiments with KF (exo-) using template T5 after incorporation of an analogue (0, 10, 25, 100, 250 μ M as indicated by the arrow) or dTTP (10 μ M) in the absence or presence of Mn²⁺ ions (0.25 mM) (Panel a or b, respectively).

Figure S3. PAGE analysis of primer extension experiments with KF (exo-) using template T6 after incorporation of an analogue (0, 10, 25, 100, 250 μ M μ M as indicated by the arrow) or dATP (10 μ M) in the absence or presence of Mn⁺ ions (0.25 mM) (Panel a or b, respectively).

3

Figure S4. PAGE analysis of primer extension experiments with Vent (exo-) using template T5 after incorporation of an analogue (0, 10, 25, 100, 250 μΜ μΜ as indicated by the arrow) or dTTP (10 μ M, noted T)

in the absence or presence of Mn²⁺ ions (0.25 mM) (Panel a or b, respectively).

Compound 1 (I)

Compound 2 (Ph)

Compound 3 (3MPh)

Compound 4 (3APh)

