Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

For

Electrolysis promoted reductive amination of electron-deficient aldehydes/ketones: green route to the racemic Clopidogrel

Qianyun Zhang, ^{a, b} Wen Zhu,^a Jinzhong Yao,^{*a} Xiaofang Li,^c and Hongwei Zhou^{*,a,b}

^a College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing

314001, People's Republic of China.

E-mail: jzyao@zju.edu.cn, zhouhw@zju.edu.cn

^b Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore.

^c School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China.

Table of contents

General information	S2
General procedure for synthesis of products	S2
The spectroscopic data of compounds	Р3
The references of known compounds	S5
The ¹ H and ¹³ C NMR spectra of compounds	S7

Experimental

General Unless stated otherwise, reactions were conducted in dried glassware. Commercially available reagents and solvents were used as received. Acetonitrile was refluxed with CaH₂ and distilled before use. 300–400 mesh silica gel was used for flash column chromatography. Visualization on TLC was achieved by the use of UV light (254 nm). 400 MHz and 100 MHz spectrometers were used for recording ¹H NMR and ¹³C NMR spectra. Chemical shifts (δ ppm) were reported in parts per million referring to either the internal standard of TMS or the residue of the deuterated solvents.

Nickel net (50 mesh) was activated by treatment of 6 N HCl for 15 min and washed by anhydrous acetonitrile. Electrolysis experiments were performed using a cylindrical glass container with a cap and a magnetic stir bar, a DC power supply, a zinc bar anode (length 15 cm and diameter 0.8 cm) and a nickel net cathode (50 mesh, $15 \times 12 \text{ cm}$).

General procedure for the synthesis of compound 3:

An oven-dried, undivided electrochemical cell was equipped with a magnetic stir bar, a zinc bar anode (length 15 cm and diameter 0.8 cm) and a Nickel net cathode (50 mesh, 15 x 12 cm). To this setup was added a solution of **1** (5 mmol), **2** or its hydrochloride (7.5 mmol) and $Zn(OAc)_2$ (5 mmol) in 50 mL of HOAc-MeCN (1:10, v/v). Electrolysis was initiated at a constant current of 8 mA at room temperature and the reaction was monitored by TLC. After the substrate **1** was completely consumed, the solvent was removed in vacuum. The residue of reaction mixture was quenched with ammonia water and extracted with methyl *tert*-butyl ether (MTBE). The organic layer was washed with water and purified by column chromatography to afford the desired product **3**. For the large scale cases, the organic layer was added MsCl in DCM and stirring for 1 h, then charged anhydrous HCl in MeOH to pH < 2. After removal of the solvent, the solid was washed by DCM and diethyl ether; recrystallization with MeOH gave the racemic Clopidogrel hydrochloride.

Characterization data of the products:

Methyl 2-(2-chlorophenyl)-2-(6,7-dihydrothieno[3,2-c]pyridin-5(4*H*)-yl)acetate (3a): ¹ 1.321 g, 82% yield; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 4.0 Hz, 1H), 7.42-7.40 (m, 1H), 7.32-7.27 (m, 2H), 7.07 (d, *J* = 8.0 Hz, 1H), 6.68 (d, *J* = 4.0 Hz, 1H), 4.96 (s, 1H), 3.80 (d, *J* = 12.0 Hz, 1H), 3.73(s, 3H), 3.68 (d, *J* = 12.0 Hz, 1H), 2.91 (d, *J* = 8.0 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 134.7, 133.8, 133.2, 130.0, 129.8, 129.4, 127.2, 125.2, 122.8, 67.8, 52.2, 50.7, 48.3, 25.5; IR (neat): 2983, 1732 cm⁻¹; HRMS (EI) calcd for C₁₆H₁₆³⁵ClNO₂S 321.0590, found 321.0592.

Methyl 2-(2-chlorophenyl)-2-(diethylamino)acetate (3b): 0.956 g, 75% yield; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (dd, J = 4.0 Hz, 8.0 Hz, 1H), 7.34 (dd, J = 4.0 Hz, 8.0 Hz, 1H), 7.25-7.17 (m, 2H), 4.93 (s, 1H), 3.66 (s, 3H), 2.70-2.59 (m, 4H), 0.99 (t, J = 8.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 135.1, 134.5, 130.0, 129.6, 128.9, 126.7, 65.1, 51.7, 43.9, 12.3; HRMS (EI) calcd for C₁₃H₁₈³⁵CINO₂ 255.1026, found 255.1029.

Methyl 2-(2-chlorophenyl)-2-morpholinoacetate (3c): ² 1.062 g, 79% yield; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 4.0 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.28-7.20 (m, 2H), 4.65 (s, 1H), 3.70 (t, J = 4.0 Hz, 4H), 3.67(s, 3H), 2.58-2.55 (m, 2H), 2.47-2.44 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 134.8, 133.1, 130.0, 129.7, 129.4, 127.1, 68.8, 66.8, 52.1, 51.2; HRMS (EI) calcd for C₁₃H₁₆³⁵CINO₃ 269.0819, found 269.0823.

Methyl 2-(2-chlorophenyl)-2-(dimethylamino)acetate (3d): 0.919 g, 81% yield; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 8.0 Hz, 1H), 7.37 (d, *J* = 8.0 Hz, 1H), 7.28-7.20 (m, 2H), 4.58 (s, 1H), 3.68 (s, 3H), 2.29 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 134.8, 133.1, 130.0, 129.7, 129.4, 127.1, 68.8, 66.8, 52.1, 51.2; IR (neat): 2974, 1738 cm⁻¹; HRMS (EI) calcd for C₁₁H₁₄³⁵ClNO₂ 227.0713, found 227.0718.

Methyl 2-(6,7-dihydrothieno[3,2-c]pyridin-5(4*H*)-yl)-2-phenylacetate (3e): ³ 1.148 g, 80% yield; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.48 (m, 2H), 7.39-7.33 (m, 3H), 7.06 (d, *J* = 4.0 Hz, 1H), 6.66 (d, *J* = 4.0 Hz, 1H), 4.31 (s, 1H), 3.72(s, 3H), 3.63 (d, *J* = 8.0 Hz, 2H), 2.90-2.78 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 135.9, 133.3, 133.2, 128.8, 128.7, 128.5, 125.3, 122.7, 72.9, 52.1, 51.0, 48.3, 25.3; HRMS (EI) calcd for C₁₆H₁₇NO₂S 287.0980, found 287.0983.

Methyl 2-(diethylamino)-2-phenylacetate (3f): ⁴ 0.785 g, 71% yield; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.41 (m, 2H), 7.35-7.26 (m, 3H), 4.49 (s, 1H), 3.69 (s, 3H), 2.66-2.57 (m, 4H), 0.99 (t, J = 8.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 137.0, 128.7, 128.3, 127.9, 69.3, 51.7, 43.6, 11.8; HRMS (EI) calcd for C₁₃H₁₉NO₂ 221.1416, found 221.1418.

Methyl 2-morpholino-2-phenylacetate (3g): ⁵ 0.893 g, 76% yield; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.0 Hz, 2H), 7.36-7.31 (m, 3H), 3.98 (s, 1H), 3.77 (t, J = 4.0 Hz, 4H), 3.67(s, 3H), 2.45 (t, J = 4.0 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 135.2, 128.9, 128.6, 128.5, 74.4, 66.8, 52.1, 51.6; HRMS (EI) calcd for C₁₃H₁₇NO₃ 235.1208, found 235.1211.

Methyl 2-(dimethylamino)-2-phenylacetate (3h): ⁶ 0.676 g, 70% yield; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 8.0 Hz, 2H), 7.31-7.26 (m, 3H), 3.83 (s, 1H), 3.64 (s, 3H), 2.20 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 136.3, 128.6, 128.5, 128.4, 75.2, 52.0, 43.4; HRMS (EI) calcd for C₁₁H₁₅NO₂ 193.1103, found 193.1108.

2-(6,7-Dihydrothieno[3,2-c]pyridin-5(4*H***)-yl)-1-phenylethanone (3i):** 0.925 g, 72% yield; amorphous solid; ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.0 Hz, 2H), 7.57 (t, *J* = 8.0 Hz, 1H), 7.46 (t, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 4.0 Hz, 1H), 6.72 (d, *J* = 4.0 Hz, 1H), 4.06 (s, 2H), 3.80 (s, 2H), 3.02-2.99 (m, 2H), 2.96-2.93 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 196.5, 135.9, 133.4, 133.1, 133.1, 128.6, 128.2, 125.2, 122.7, 63.1, 52.9, 50.8, 24.9; IR (neat): 2948, 1693 cm⁻¹; HRMS (EI) calcd for C₁₅H₁₅NOS 257.0874, found 257.0879.

tert-Butyl 2-(6,7-dihydrothieno[3,2-c]pyridin-5(4*H*)-yl)acetate (3j): 1.113 g, 88% yield; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.00 (d, *J* = 4.0 Hz, 1H), 6.65 (d, *J* = 8.0 Hz, 1H), 3.67 (s, 2H), 3.29 (s, 2H), 2.89 (d, *J* = 4.0 Hz, 2H), 2.86 (d, *J* = 4.0 Hz, 2H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 133.4, 133.0, 125.1, 122.5, 81.0, 59.0, 52.3, 50.4, 28.2, 25.3; IR (neat): 2956, 1746 cm⁻¹; HRMS (EI) calcd for C₁₃H₁₉NO₂S 253.1136, found 253.1132.

Methyl 2-(2-chlorophenyl)-2-hydroxyacetate (4a): ⁷ 0.824 g, 82% yield; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.36 (m, 2H), 7.28-7.24 (m, 2H), 5.56 (s, 1H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 136.0, 129.9, 129.9, 129.8, 128.8, 127.2, 70.3, 53.2; HRMS (EI) calcd for C₉H₉³⁵ClO₃ 200.0240, found 200.0245.

Methyl 2-hydroxy-2-phenylacetate (4b): ⁸ 0.647 g, 78% yield; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.41 (m, 2H), 7.39-7.33 (m, 3H), 5.18 (s, 1H), 3.76 (d, *J* = 4.0 Hz, 3H), 2.82 (br, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.1, 138.3, 128.6, 128.5, 126.6, 72.9, 53.0; HRMS (EI) calcd for C₉H₁₀O₃ 166.0630, found 166.0633. **methyl 2-(methylamino)-2-phenylacetate (5)**: ⁹ 36 mg, 4% yield, colorless oil; ¹H

NMR (400 MHz, CDCl₃) δ 7.32-7.21 (m, 5H), 4.22 (s, 1H), 3.62(s, 3H), 2.39 (s, 1H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.3, 137.9, 128.6, 128.1, 127.4, 67.2, 52.1, 34.2; HRMS (EI) calcd for C₁₀H₁₃NO₂ 179.0946, found 179.0948.

References

- C. Kalinski, H. Lemoine, J. Schmidt, C. Burdack, J. Kolb, M. Umkehrer and G. Ross, *Synthesis*, 2008, 24, 4007.
- T. V. Tran, H. T. N. Le, H. Q. Ha, X. N. T. Duong, L. H. T. Nguyen, T. L. H. Doan, H. L. Nguyen and T. Truong, *Catal. Sci. Technol.*, 2017, 7, 3453.
- V. Arredondo, S. C. Hiew, E. S. Gutman, I. D. U. A. Premachandra and D. L. Van Vranken, *Angew. Chem., Int. Ed.*, 2017, 56, 4156.
- N. Sakai, H. Hori, Y. Yoshida, T. Konakahara and Y. Ogiwara, *Tetrahedron*, 2015, **71**, 4722.
- R. W. Evans, J. R. Zbieg, S. Zhu, W. Li and D. W. C. MacMillan, J. Am. Chem. Soc., 2013, 135, 16074.
- E. Tayama, R. Sato, K. Takedachi, H. Iwamoto and E. Hasegawa, *Tetrahedron*, 2012, 68, 4710.
- M. Sreenivasulu, K. Arun Kumar, K. Sateesh Reddy, K. Siva Kumar, P. Rajender Kumar, K. B. Chandrasekhar and M. Pal, *Tetrahedron Lett.*, 2011, 52, 727.

 M. Selva and P. Tundo, J. Org. Chem., 2006, 71, 1464. 17. F. Nique, S. Hebbe, N. Triballeau, C. Peixoto, J. Lefrançois, H. Jary, L. Alvey, M. Manioc, C. Housseman, H. Klaassen, K. V. Beeck, D. Guédin, F. Namour, D. Minet, E. V. der Aar, J. Feyen, S. Fletcher, R. Blanqué, C. Robin-Jagerschmidt and Pierre Deprez, J. Med. Chem., 2012, 55, 8236.

S8

S13

S15

