Palladium catalyzed carbonylative annulation of $C(sp^2)$ -H bond of N,1-diaryl-1H-tetrazol-5-amines and N,4-diaryl-4H-triazol-3-amines to quinazolinones

Attoor Chandrasekhar, Venkatachalam Ramkumar[‡] and Sethuraman Sankararaman*

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.

Supporting information:

S.No	CONTENT	PAGE No.	
I II	Synthesis of 2-deutero- <i>p</i> -toluidine (<i>p</i> -toluidine-d ₁) & Spectral data Synthesis of <i>N</i> ,1-diaryl-1 <i>H</i> -tetrazol-5-amines (1-28, 5-d ₁ & 20-d ₅)	SI5 SI5	
III	Table S1. Synthesis of <i>N</i> ,1-diaryl-1 <i>H</i> -tetrazol-5-amines	SI6	
IV	Spectral data for N,1-diaryl-1H-tetrazol-5-amines	SI7- SI14	
V	Synthesis of N,4-diaryl-4H-1,2,4-triazol-3-amines	SI15	
VI	Spectral data for N,4-diaryl-4H-1,2,4-triazol-3-amines	SI15-SI16	
VII	Optimization of reaction conditions of scheme 9 and References	SI17	
VIII	NMR Spectra	SI18-SI82	
1	Figure S1. 400 MHz ¹ H NMR spectrum of 1a in CDCl ₃	SI-18	
2	Figure S2. 100 MHz ¹³ C NMR spectrum of 1a in CDCl ₃	SI-18	
3	Figure S3. 500 MHz ¹ H NMR spectrum of 2a in CDCl ₃	SI-19	
4	Figure S4. 125 MHz ¹³ C NMR spectrum of 2a in CDCl ₃	SI-19	
5	Figure S5. 400 MHz ¹ H NMR spectrum of 3a in CDCl ₃	SI-20	
6	Figure S6. 100 MHz 13 C NMR spectrum of 3a in CDCl ₃	SI-20	
7	Figure S7. 400 MHz ¹ H NMR spectrum of compound 4a with and without shift reagent in CDCl3	SI-21	
8	Figure S8 100 MHz 13 C NMR spectrum of 4a in CDCl ₂	SI-22	
9	Figure S9. 400 MHz ¹ H NMR spectrum of 5a in CDCl ₃	SI-23	
10	Figure S10. 100 MHz ¹³ C NMR spectrum of 5a in CDCl ₃	SI-23	
11	Figure S11. 400 MHz ¹ H NMR spectrum of 6a in CDCl ₃	SI-24	
12	Figure S12. 100 MHz ¹³ C NMR spectrum of 6a in CDCl ₃	SI-24	
13	Figure S13. 400 MHz ¹ H NMR spectrum of 7a in CDCl ₃	SI-25	
14	Figure S14. 100 MHz ¹³ C NMR spectrum of 7a in CDCl ₃	SI-25	
15	Figure S15. 400 MHz ¹ H NMR spectrum of 8a in CDCl ₃	SI-26	
16	Figure S16. 100 MHz ¹³ C NMR spectrum of 8a in CDCl ₃	SI-26	
17	Figure S17. 500 MHz ¹ H NMR spectrum of 9a in CDCl ₃	SI-27	
18	Figure S18. 100 MHz ¹³ C NMR spectrum of 9a in CDCl ₃	SI-27	
19	Figure S19. 400 MHz ¹ H NMR spectrum of 11a in CDCl ₃	SI-28	
20	Figure S20. 100 MHz ¹³ C NMR spectrum of 11a in CDCl ₃	SI-28	
21	Figure S21. 400 MHz ¹ H NMR spectrum of 13a in CDCl ₃	SI-29	
22	Figure S22. 125 MHz ¹³ C NMR spectrum of 13a in CDCl ₃	SI-29	
23	Figure S23. 500 MHz ⁻¹ H NMR spectrum of 14a in CDCl ₃	SI-30	
24	Figure S24. 125 MHz ¹³ C NMR spectrum of 14a in CDCl ₃	SI-30	

25	Figure S25. 500 MHz ¹ H NMR spectrum of 15a in CDCl ₃	SI-31
26	Figure S26. 125 MHz ¹³ C NMR spectrum of 15a in CDCl ₃	SI-31
27	Figure S27. 400 MHz ¹ H NMR spectrum of 16a in CDCl ₃	SI-32
28	Figure S28. 100 MHz ¹³ C NMR spectrum of 16a in CDCl ₃	SI-32
29	Figure S29. 400 MHz ¹ H NMR spectrum of 17a in CDCl ₃	SI-33
30	Figure S30. 100 MHz ¹³ C NMR spectrum of 17a in CDCl ₃	SI-33
31	Figure S31. 400 MHz ¹ H NMR spectrum of 18a in CDCl ₃	SI-34
32	Figure S32. 100 MHz ¹³ C NMR spectrum of 18a in CDCl ₃	SI-34
33	Figure S33. 400 MHz ¹ H NMR spectrum of 19a in CDCl ₃	SI-35
34	Figure S34. 100 MHz ¹³ C NMR spectrum of 19a in CDCl ₃	SI-35
35	Figure S35. 400 MHz ¹ H NMR spectrum of 20a in CDCl ₃	SI-36
36	Figure S36. 100 MHz ¹³ C NMR spectrum of 20a in CDCl ₃	SI-36
37	Figure S37. 400 MHz ¹ H NMR spectrum of 21a+22a in CDCl ₃	SI-37
38	Figure S38. 100 MHz ¹³ C NMR spectrum of 21a+22a in CDCl ₃	SI-37
39	Figure S39, 400 MHz ¹ H NMR spectrum of 23a in CDCl ₃	SI-38
40	Figure S40, 100 MHz ¹³ C NMR spectrum of 23a in CDCl ₃	SI-38
41	Figure S41, 400 MHz ¹ H NMR spectrum of 24a in CDCl ₃	SI-39
42	Figure S42, 125 MHz 13 C NMR spectrum of 24a in CDCl ₃	SI-39
43	Figure S43 400 MHz ¹ H NMR spectrum of 25a in CDCl ₃	SI-40
44	Figure S44, 100 MHz ¹³ C NMR spectrum of 25a in CDCl ₃	SI-40
45	Figure S45, 400 MHz ¹ H NMR spectrum of 26a in CDCl ₃	SI-41
46	Figure S46 125 MHz ¹³ C NMR spectrum of 26a in CDCl ₂	SI-41
47	Figure S47 400 MHz ¹ H NMR spectrum of 27a in CDCl ₂	SI-42
48	Figure S48 100 MHz ¹³ C NMR spectrum of 27a in CDCl ₃	SI-42
49	Figure S49, 500 MHz ¹ H NMR spectrum of 29a in DMSO-d ₆	SI-43
50	Figure S50, 125 MHz 13 C NMR spectrum of 29a in DMSO-d ₆	SI-43
51	Figure S51, 500 MHz ¹ H NMR spectrum of 30a in DMSO-d ₆	SI-44
52	Figure S52, 125 MHz 13 C NMR spectrum of 30a in DMSO-d ₆	SI-44
53	Figure S53 500 MHz ¹ H NMR spectrum of 31a in CDCl ₃	SI-45
54	Figure S54, 125 MHz ¹³ C NMR spectrum of 31a in CDCl ₃	SI-45
55	Figure S55 500 MHz ¹ H NMR spectrum of 32a in DMSO-d ₆	SI-46
56	Figure S56 125 MHz 13 C NMR spectrum of 32a in DMSO-d ₆	SI-46
57	Figure S57 500 MHz ¹ H NMR spectrum of 33a in DMSO-d ₄	SI-47
58	Figure S58 125 MHz ¹ H NMR spectrum of 33a in DMSO-d ₆	SI-47
59	Figure S59, 400 MHz ¹ H NMR spectrum of 1b in DMSO-d ₆	SI-48
60	Figure S60 100 MHz ¹³ C NMR spectrum of 1b in DMSO-d ₄	SI-48
61	Figure S61 400 MHz ¹ H NMR spectrum of 1ba in CDCl ₂	SI-49
62	Figure S62 100 MHz ¹³ C NMR spectrum of 1ba in CDCl ₂	SI-49
63	Figure S63, 400 MHz ¹ H NMR spectrum of 1c in CDCl ₂	SI-50
64	Figure S64 100 MHz ¹³ C NMR spectrum of 1c in CDCl ₂	SI-50
65	Figure S65, 400 MHz ¹ H NMR spectrum of 20a+20a-d , in CDCl ₂	SI-51
66	Figure S66, 400 MHz ¹ H NMR spectrum of 5a+5a-d , in CDCl ₂	SI-51
67	Figure S67 500 MHz ¹ H NMR spectrum of 1 in CDCl ₂	SI-52
68	Figure S68, 125 MHz ¹³ C NMR spectrum of 1 in CDCl ₂	SI-52
69	Figure S69, 400 MHz ¹ H NMR spectrum of 2 in CDCl ₂	SI-52
70	Figure S70, 100 MHz ¹³ C NMR spectrum of 2 in CDCl ₂	SI-53
71	Figure S71 400 MHz ¹ H NMR spectrum of 3 in CDCl.	SI_57
72	Figure S72 100 MHz ¹³ C NMR spectrum of 3 in CDCl.	SI_5/
72 73	Figure S72. 100 MHz ¹ H NMR spectrum of <i>A</i> in CDC1.	SI-34
75 74	Figure S74, 100 MHz ¹³ C NMR spectrum of 4 in CDC1.	SI-55
/4	rigure 5/4. 100 Minz ~C INMIK spectrum of 4 in CDCl ₃	51-33

75	Figure S75. 400 MHz ¹ H NMR spectrum of 5 in CDCl ₃	SI-56
76	Figure S76. 100 MHz ¹³ C NMR spectrum of 5 in CDCl ₃	SI-56
77	Figure S77. 400 MHz ¹ H NMR spectrum of 6 in DMSO-d ₆	SI-57
78	Figure S78. 100 MHz ¹³ C NMR spectrum of 6 in DMSO-d ₆	SI-57
79	Figure S79. 500 MHz ¹ H NMR spectrum of 7 in CDCl ₃	SI-58
80	Figure S80. 125 MHz ¹³ C NMR spectrum of 7 in CDCl ₃	SI-58
81	Figure S81.400 MHz ¹ H NMR spectrum of 8 in CDCl ₃	SI-59
82	Figure S82. 100 MHz ¹³ C NMR spectrum of 8 in CDCl ₃	SI-59
83	Figure S83. 400 MHz ¹ H NMR spectrum of 9 in CDCl ₃	SI-60
84	Figure S84. 100 MHz ¹³ C NMR spectrum of 9 in CDCl ₃	SI-60
85	Figure S85. 400 MHz ¹ H NMR spectrum of 10 in CDCl ₃	SI-61
86	Figure S86. 100 MHz ¹³ C NMR spectrum of 10 in CDCl ₃	SI-61
87	Figure S87. 400 MHz ¹ H NMR spectrum of 11 in CDCl ₃	SI-62
88	Figure S88. 100 MHz ¹³ C NMR spectrum of 11 in CDCl ₃	SI-62
89	Figure S89. 400 MHz ¹ H NMR spectrum of 12 in DMSO-d6	SI-63
90	Figure S90. 100 MHz ¹³ C NMR spectrum of 12 in DMSO-d6	SI-63
91	Figure S91. 400 MHz ¹ H NMR spectrum of 13 in CDCl ₃	SI-64
92	Figure S92. 100 MHz ¹³ C NMR spectrum of 13 in CDCl ₃	SI-64
93	Figure S93. 400 MHz ¹ H NMR spectrum of 14 in CDCl ₃	SI-65
94	Figure S94. 100 MHz ¹³ C NMR spectrum of 14 in CDCl ₃	SI-65
95	Figure S95. 400 MHz ¹ H NMR spectrum of 15 in CDCl ₃	SI-66
96	Figure S96. 100 MHz ¹³ C NMR spectrum of 15 in CDCl ₃	SI-66
97	Figure S97. 400 MHz ¹ H NMR spectrum of 16 in CDCl ₃	SI-67
98	Figure S98. 100 MHz ¹³ C NMR spectrum of 16 in CDCl ₃	SI-67
99	Figure S99. 400 MHz ¹ H NMR spectrum of 17 in CDCl ₃	SI-68
100	Figure S100. 100 MHz ¹³ C NMR spectrum of 17 in CDCl ₃	SI-68
101	Figure S101. 400 MHz ¹ H NMR spectrum of 18 in CDCl ₃	SI-69
102	Figure S102.100 MHz ¹³ C NMR spectrum of 18 in CDCl ₃	SI-69
103	Figure S103. 400 MHz ¹ H NMR spectrum of 19 in CDCl ₃	SI-70
104	Figure S104. 100 MHz ¹³ C NMR spectrum of 19 in CDCl ₃	SI-70
105	Figure S105. 400 MHz ¹ H NMR spectrum of 20 in CDCl ₃	SI-71
106	Figure S106. 100 MHz ¹³ C NMR spectrum of 20 in CDCl ₃	SI-71
107	Figure S107. 400 MHz ¹ H NMR spectrum of 21+22 in CDCl ₃	SI-72
108	Figure S108. 100 MHz ¹³ C NMR spectrum of 21+22 in CDCl ₃	SI-72
109	Figure S109. 400 MHz ¹ H NMR spectrum of 23+24 in CDCl ₃	SI-73
110	Figure S110. 100 MHz ¹³ C NMR spectrum of 23+24 in CDCl ₃	SI-73
111	Figure S111. 400 MHz ¹ H NMR spectrum of 25+26 in CDCl ₃	SI-74
112	Figure S112.100 MHz ¹³ C NMR spectrum of 25+26 in CDCl ₃	SI-74
113	Figure S113. 400 MHz ¹ H NMR spectrum of 27 in CDCl ₃	SI-75
114	Figure S114.100 MHz ¹³ C NMR spectrum of 25+26 in CDCl ₃	SI-75
115	Figure S115. 400 MHz ¹ H NMR spectrum of 28 in DMSO-d ₆	SI-76
116	Figure S116.100 MHz ¹³ C NMR spectrum of 28 in DMSO-d ₆	SI-76
117	Figure S117, 500 MHz ¹ H NMR spectrum of 5-d ₁ in CDCl ₃	SI-77
118	Figure S118, 400 MHz ¹ H NMR spectrum of 20-d ₅ in CDCl ₃	SI-77
119	Figure S119, 400 MHz ¹ H NMR spectrum of 29 in DMSO-d ₆	SI-78
120	Figure S120.100 MHz ¹³ C NMR spectrum of 29 in DMSO-d ₆	SI-78
121	Figure S121, 400 MHz ¹ H NMR spectrum of 30 in DMSO-d ₆	SI-79
122	Figure S122, 100 MHz 13 C NMR spectrum of 30 in DMSO-d ₆	SI-79
123	Figure S123, 400 MHz ¹ H NMR spectrum of 31 in CDCl ₂	SI-80
124	Figure S124, 100 MHz ¹³ C NMR spectrum of 31 in CDCl ₂	SI-80
		21 00

125	Figure S125. 500 MHz ¹ H NMR spectrum of 32 in CDCl ₃	SI-81
126	Figure S126. 125 MHz ¹³ C NMR spectrum of 32 in CDCl ₃	SI-81
127	Figure S127. 400 MHz ¹ H NMR spectrum of 33 in CDCl ₃	SI-82
128	Figure S128. 100 MHz ¹³ C NMR spectrum of 33 in CDCl ₃	SI-82
IX	Table S2. Crystal data and structure refinement for 6a	SI83
Х	Table S3. Crystal data and structure refinement for 24a	SI84
XI	Table S4. Crystal data and structure refinement for 1C	SI85
XII	Table S5. Crystal data and structure refinement for 1ba	SI86

Synthesis of 2-deutero-*p*-toluidine (*p*-toluidine-d₁)¹:

To the suspension of *p*-toluidine (4.7 mmol, 503 mg) in D_2O (5 mL) in 10 mL round bottom flask, was added 11.6 M HCl (1.1 equiv). The reaction mixture was degassed with N_2 for 10 min and stirred at 135°C under inert atmosphere. After 12h, reaction mixture was cooled to room temperature and 3M NaOH solution was added (up to pH 10). It was extracted with EtOAc and washed with brine solution. Organic layer was dried over Na₂SO₄, concentrated under reduced pressure to get 2-deutero-*p*-toluidineas a brownish solid (93%, 472 mg).

Spectral data:

p-toluidine-d₁: Yellow solid, Mp: 110 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.00-6.98 (m, 2H), 6.62 (d, *J* = 8.4 Hz, 1H), 3.54 (s, 2H), 2.26 (s, 3H);

Synthesis of *N*,1-diaryl-1*H*-tetrazol-5-amines (1-28, 5-d₁& 20-d₅):

N,1-diaryl-1*H*-tetrazol-5-amines were synthesized as follows according to reported procedure² with minor changes. To a solution of aryl isothiocyanate (2.2 mmol) in DMF (10 mL) was added aniline (1 equiv.) and stirred for 5h at room temperature. Formation of thiourea was confirmed by TLC. NaN₃ (3 eqiv.) was added to the reaction mixture followed by I₂ (1.1 equiv.) in two portions in 15 min. Then Et₃N (3 eqiv.) was added drop wise and stirred at room temperature for 7h and 7h at 70°C for complete conversion. Reaction was monitored by TLC. Reaction mixture was cooled to r.t and treated with sodium thiosulfate solution followed by extraction with EtOAc. The combined organic layer was washed with brine and dried over Na₂SO₄. The crude product was obtained upon concentration under reduced pressure and was purified by flash column chromatography.

 Table SI.1. Synthesis of N,1-diaryl-1H-tetrazol-5-amines:

Note: Green colored part comes from arylisothiocyanate, ^a16 was isolated in 52% yield, ^bratio(by NMR) of 21&22, ^cratio (by NMR) of 23&24, ,^dratio (by NMR) of 25&26, ^e28 was isolated in 65% yield.

Spectral data for *N*,1-diaryl-1*H*-tetrazol-5-amines :

N,1-Diphenyl-1*H*-tetrazol-5-amine (1)²:

1: White solid, Mp: 156-158 °C, ¹H NMR (500 MHz, CDCl₃): δ 7.65-7.60 (m, 3H), 7.55-7.52 (m, 4H), 7.36-7.33 (m, 2H), 7.10-7.08 (m, 1H), 6.47 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 151.7, 138.1, 132.7, 130.7, 129.5, 124.9, 123.6, 118.2; HRMS (ESI, m/z) Calcd for C₁₃H₁₁N₅Na 260.0912 (M+Na), found 260.0913.

N-Phenyl-1-*o*-tolyl-1*H*-tetrazol-5-amine (2):

2: White solid, Mp: 179-181 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.56-7.53 (m, 3H), 7.49-7.43 (m, 2H), 7.37-7.33 (m, 3H), 7.10-7.06 (m, 1H), 6.09 (s, 1H), 2.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 152.3, 138.1, 136.5, 132.4, 131.6, 131.0, 129.4, 127.9, 127.4, 123.5, 118.0, 17.5; HRMS (ESI, m/z) Calcd for C₁₄H₁₃N₅Na 274.1069 (M+Na), found 274.1053.

1-o-Tolyl-N-p-tolyl -1H-tetrazol-5-amine (3):

3: White solid, Mp: 154-156 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.55-7.50 (m, 1H), 7.47-7.41 (m, 4H), 7.34-7.32 (m, 1H), 7.13 (d, *J* = 8.4 Hz, 2H), 6.08 (s, 1H), 2.31 (s, 3H), 2.16 (s, 3H);¹³C NMR (100 MHz, CDCl₃): δ 152.5, 136.5, 135.6, 133.1, 132.3, 131.5, 129.9, 127.9, 127.4, 124.4, 118.2, 20.8, 17.5; HRMS (ESI, m/z) Calcd for C₁₅H₁₅N₅Na 288.1225 (M+Na), found 288.1225.

N,1-Bis(*p*-tolyl) -1*H*-tetrazol-5-amine (4)³:

4: White solid, Mp: 156-158 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.37 (m, 6H), 7.13 (d, J = 8.4 Hz, 2H), 6.32 (s, 1H), 2.47 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 151.9, 141.1, 135.6, 133.1, 131.2, 130.1, 129.9, 124.9, 118.3, 21.4, 20.8; HRMS (ESI, m/z) Calcd for C₁₅H₁₅N₅Na 288.1225 (M+Na), found 288.1222.

1-(2,6-Dimethylphenyl)-*N-p*-tolyl -1*H*-tetrazol-5-amine (5)¹:

5: White solid, Mp: 182-184 °C, ¹H NMR (400 MHz, CDCl₃): δ 744-7.39 (m, 3H), 7.27 (d, J = 7.6 Hz, 2H), 7.14 (d, J = 8.4 Hz, 2H), 5.89 (s, 1H), 2.31 (s, 3H), 2.06 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 152.4, 137.2, 135.6, 133.2, 131.5, 129.99, 129.95, 129.4, 118.2, 20.8, 17.6; HRMS (ESI, m/z) Calcd for C₁₆H₁₈N₅ 280.1562 (M+H), found 280.1570.

N-(4-Fluorophenyl)-1-*o*-tolyl- 1*H*-tetrazol-5-amine (6):

6: White solid, Mp: 149-151 °C: 110 °C, ¹H NMR (400 MHz, DMSO-d₆): δ 9.27 (s, 1H), 7.68-7.64 (m, 2H), 7.59-7.44 (m, 4H), 7.19-7.13(m, 2H), 2.06 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 158.7, 156.3, 152.9, 136.1, 135.6, 131.6, 131.4, 130.9, 128.0, 127.4, 120.0, 119.9, 115.4, 115.2, 16.9; HRMS (ESI, m/z) Calcd for C₁₄H₁₂N₅FNa 292.0974 (M+Na), found 292.0997.

N-(4-Chlorophenyl)-1-*o*-tolyl- 1*H*-tetrazol-5-amine (7):

7: White solid, Mp: 166-168 °C, ¹H NMR (500 MHz, CDCl₃): δ 7.56-7.50 (m, 3H), 7.49-7.43(m, 2H), 7.35-7.33 (m, 1H), 7.30 (AA¹BB¹ pattern *J* = 9.0 Hz, 2H), 6.17 (s, 1H), 2.16 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 152.1, 136.7, 136.5, 132.4, 131.7, 130.9, 129.4, 128.5, 128.0, 127.4, 119.3, 17.5; HRMS (ESI, m/z) Calcd for C₁₄H₁₃N₅Cl 286.0859 (M+H), found 286.0870.

N-(4-Bromophenyl)-1-*o*-tolyl- 1*H*-tetrazol-5-amine (8):

8: White solid, Mp: 174-176 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.57-7.52 (m, 1H),7.48-7.43 (m, 6H), 7.34-7.32 (m, 1H), 6.20 (s, 1H), 2.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 152.0, 137.2, 136.6, 132.4, 132.3, 131.8. 130.8, 128.0, 127.4, 119.6, 116.0, 17.5; HRMS (ESI, m/z) Calcd for C₁₄H₁₃N₅Br 330.0354 (M+H), found 330.0367.

1-(2,3-Dimethylphenyl)-*N*--(4-methoxyphenyl)-1*H*-tetrazol-5-amine (9):

9: Pale yellow solid, Mp: 164-166 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.44-7.39 (m, 3H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.17 (d, *J* = 7.6 Hz, 1H), 6.86 (d, *J* = 9.2 Hz, 2H), 5.97 (s, 1H), 3.78 (s, 3H), 2.39 (s, 3H), 2.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ156.0, 153.0, 140.0, 135.1, 132.8, 131.4, 131.1, 127.2, 125.1, 120.3, 114.6, 55.7, 20.5, 14.2; HRMS (ESI, m/z) Calcd for C₁₆H₁₈N₅O 296.1511 (M+H), found 296.1517.

1-(2,3-Dimethylphenyl)-*N*--(4-fluorophenyl)-1*H*-tetrazol-5-amine (10):

10: White solid, Mp: 144-146 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.52-7.49 (m, 2H), 7.41 (d, *J* = 7.6 Hz, 1H), 7.34-7.30 (m, 1H), 7.16 (d, *J* = 8.0 Hz, 1H), 7.04-7.00 (m, 2H), 6.14 (s, 1H), 2.39 (s,3H), 2.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 152.6, 140.1, 135.1, 134.2, 133.0, 130.9, 127.3, 125.0, 119.98,119.90, 116.2, 115.9, 20.5, 14.2; HRMS (ESI, m/z) Calcd for C₁₅H₁₄N₅FNa 306.1131 (M+Na), found 306.1114.

N,1-Bis(4-methoxyphenyl)-1*H*-tetrazol-5-amine (11)⁴:

11: White solid, Mp: 156-158 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.40 (m, 4H), 7.09 (AA¹BB¹ pattern, J = 8.8 Hz, 2H), 6.87 (AA¹BB¹ pattern, J = 8.8 Hz, 2H), 6.18 (s, 1H), 3.89 (s, 3H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.2, 156.1, 152.5, 131.4, 126.8, 125.2, 120.4, 115.7, 114.6, 55.8, 55.7; HRMS (ESI, m/z) Calcd for C₁₅H₁₅N₅O₂Na 320.1123 (M+Na), found 320.1110.

N,1-Bis(4-fluorophenyl)-1*H*-tetrazol-5-amine (12)⁴:

12: White solid, Mp: 176-178 °C, ¹H NMR (400 MHz, DMSO-d₆): δ 9.32 (s, 1H), 7.77-7.73 (m, 2H), 7.66-7.62 (m, 2H), 7.51 (t, *J* = 8.8 Hz, 2H), 7.17 (t, *J* = 8.8 Hz, 2H), ¹³C NMR (100 MHz, DMSO-d₆): δ 164.0, 161.5, 158.8, 156.4, 152.6, 136.1, 129.34, 129.31, 128.7, 128.6, 120.2, 120.1, 117.0, 116.8, 115.5, 115.3; HRMS (ESI, m/z) Calcd for C₁₃H₉N₅F₂Na 296.0724 (M+Na), found 296.0728.

N,1-Bis(4-bromophenyl)-1*H*-tetrazol-5-amine (13):

13: White solid, Mp: 189-191 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, *J* = 8.0 Hz, 2H), 7.45-7.41 (m, 6H), 6.47 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 151.4, 137.0, 134.0, 132.4, 131.5, 126.5, 125.1, 120.0, 116.4; ; HRMS (ESI, m/z) Calcd for C₁₃H₁₀N₅Br₂ 393.9303 (M+H), found 393.9301.

N,1-Bis(4-chlorophenyl)-1*H*-tetrazol-5-amine (14)⁴:

14: White solid, Mp: 156-158 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, J = 8.4 Hz, 2H), 7.51-7.47 (m, 4H), 7.31 (d, J = 8.8 Hz, 2H), 6.52 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 151.5, 137.0, 136.5, 131.0, 129.5, 128.9, 126.3, 119.7; HRMS (ESI, m/z) Calcd for C₁₃H₁₀N₅Cl₂ 306.0313 (M+H), found 306.0311.

1-(1-Naphthyl)-N--phenyl-1H-tetrazol-5-amine (15)³:

15: Pale grey solid, Mp: 199-202 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.15 (d, *J* = 8.4 Hz, 1H), 8.04(d, *J* = 8.8 Hz, 1H), 7.70-7.58 (m, 4H), 7.50 (d, *J* = 7.6 Hz, 2H), 7.42 (d, *J* = 8.4Hz, 1H), 7.34-7.30 (m, 2H), 7.08-7.04 (m, 1H), 6.10 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 152.9, 138.0, 134.7, 132.1, 129.46, 129.42, 129.1, 128.8, 128.3, 127.9, 125.9, 125.6, 123.5, 121.9, 118.1; HRMS (ESI, m/z) Calcd for C₁₇H₁₃N₅Na310.1069 (M+ Na), found 310.1057.

N,1-bis(1-naphthyl)-1*H*-tetrazol-5-amine (16):

16: Grey solid, Mp: 161-163 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.13-8.09 (m, 2H), 8.04-8.02 (m, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.68-7.59 (m, 5H), 7.56-7.54 (m, 1H), 7.45-7.41 (m, 2H), 7.34-7.32 (m, 2H), 6.61 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 154.0, 134.6, 134.1, 132.8, 131.9, 128.9, 128.8, 128.7, 128.5, 127.8, 126.4, 126.2, 126.0, 125.9, 125.6, 125.5, 125.2, 121.9, 119.7, 117.9; HRMS (ESI, m/z) Calcd for C₂₁H₁₅N₅Na360.1225(M+ Na), found 360.1211.

N-(4-Fluorophenyl)-1-(1-naphthyl)-1*H*-tetrazol-5-amine (17):

17: Pale grey solid, Mp: 151-153 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.14 (d, *J* = 8.4 Hz, 1H), 8.02 (d, *J* = 8.0 Hz, 1H), 7.69-7.58 (m, 4H), 7.47-7.39 (m, 3H), 7.02-6.97 (m, 2H), 6.15 (s, 1H);¹³C NMR (100 MHz, CDCl₃): δ 160.2, 157.8, 153.1, 134.6, 134.1, 132.0, 129.1, 128.83, 128.80, 128.2, 127.8, 125.8, 125.6, 121.8, 120.18, 120.10, 116.1, 115.9; HRMS (ESI, m/z) Calcd for C₁₇H₁₃N₅F 306.1155(M+ H), found 306.1154.

N-(4-Chlorophenyl)-1-(1-naphthyl)-1*H*-tetrazol-5-amine (18):

18: Pale yellow, Mp: 204-206 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.16 (d, J = 8.4 Hz, 1H), 8.04 (d, J = 8.0 Hz, 1H), 7.71-7.58 (m, 4H), 7.47 (AA¹BB¹ pattern, J = 9.2 Hz, 2H), 7.41-7.39 (m, 1H), 7.27 (AA¹BB¹ pattern, J = 9.2 Hz, 2H), 6.15 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 152.7, 136.6, 134.7, 132.2, 129.4, 129.1, 128.94, 128.90, 128.5, 128.1, 127.9, 125.9, 125.6, 121.8, 119.4; HRMS (ESI, m/z) Calcd for C₁₇H₁₂N₅ClNa 344.0679(M+ Na), found 344.0667.

N-(4-Bromophenyl)-1-(1-naphthyl)-1*H*-tetrazol-5-amine (19):

19: Half white solid, Mp: 211-213 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.15 (d, *J* = 8.0 Hz, 1H), 8.03 (d, *J* = 8.0 Hz, 1H), 7.70-7.58 (m, 4H), 7.45-7.38 (m, 5H), 6.14 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 152.6, 137.1,134.7, 132.3, 132.2, 129.1, 128.9, 128.8, 128.1, 127.9, 125.9, 125.6, 121.8, 119.7, 116.0; HRMS (ESI, m/z) Calcd for C₁₇H₁₃N₅Br 366.0354(M+H), found 366.0366.

1-(2,6-Dimethylphenyl)-*N*-phenyl-1*H*-tetrazol-5-amine (20)⁵:

20: White solid, Mp: 196-200 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, *J* = 7.6 Hz, 2H), 7.42 (t, *J* = 7.6 Hz, 1H), 7.36-7.32 (m, 2H), 7.28 (d, *J* = 7.6 Hz, 2H), 7.09-7.06 (m, 1H), 6.02 (s, 1H), 2.06 (s, 6H);¹³C NMR (100 MHz, CDCl₃): δ 152.2, 135.1, 137.2, 131.5, 129.9, 129.5, 129.4, 123.5, 118.1, 17.6; HRMS (ESI, m/z) Calcd for C₁₅H₁₅N₅Na 288.1225 (M+Na), found 288.1230.

1-Phenyl-*N-p*-tolyl-1*H*-tetrazol-5-amine (21) &*N*-phenyl-1-*p*-tolyl-1*H*-tetrazol-5-amine(22)²:

21 and 22 (in the ratio 1 : 0.83): White solid, Mp: 156-158 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.64-7.58 (m, 2.48H), 7.55-7.51 (m, 3.89H), 7.43-7.38 (m, 5.75H), 7.36-7.32 (m, 2.16H), 7.14 (d, J = 8.4 Hz, 1.68H), 7.09-7.05 (m, 1H), 6.40 (s, 1.74H), 2.47 (s, 3H), 2.31 (s, 2.49H); ¹³C NMR (100 MHz, CDCl₃): δ 151.9, 151.7, 141.2, 138.1, 135.6, 133.3, 132.8, 131.2, 130.6, 130.5, 130.0, 129.9, 129.4, 124.9, 123.4, 118.5, 118.1, 21.4, 20.8; HRMS (ESI, m/z) Calcd for C₁₄H₁₃N₅Na 274.1069(M+ Na), found 274.1062.

1-(2,3-Dimethylphenyl)-*N-p*-tolyl -1*H*-tetrazol-5-amine (23) & N-(2,3-dimethylphenyl)-1-*p*-tolyl -1*H*-tetrazol-5-amine (24):

23 and 24 (in the ratio 1 : 0.2): White solid, Mp: 184-186 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, J = 8.0 Hz, 0.23H), 7.44-7.40 (m, 4.03H), 7.31(t, J = 7.6 Hz, 1H), 7.17-7.10 (m, 3.42H), 6.97-6.95 (m, 0.39H), 6.23 (s, 0.25H), 6.06 (s, 0.77H), 2.47 (s, 0.73H), 2.39 (s, 3.04H), 2.30 (s, 3.18H), 2.28 (s, 0.74H), 2.08 (s, 0.61H), 2.00 (s, 3.00H); ¹³C NMR (100 MHz, CDCl₃): δ 152.6, 140.0, 135.7, 135.1, 133.0, 132.9, 131.1, 131.0, 129.95, 129.91, 129.88, 129.85, 127.2, 126.5, 125.0, 124.4, 118.6, 118.24, 118.20, 118.1, 21.4, 20.8, 20.7, 20.5, 14.2, 13.5; HRMS (ESI, m/z) Calcd for C₁₆H₁₈N₅280.1562(M+H), found 280.1555.

1-(2,3-Dimethylphenyl)-*N*-phenyl-1*H*-tetrazol-5-amine (25)&N-(2,3-dimethylphenyl)-1-phenyl-1*H*-tetrazol-5-amine (26):

25 and 26 (1:0.18): White solid, Mp: 172-174 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.66-7.60 (m, 0.71H), 7.56-7.54 (m, 2.49H), 7.41 (d, *J* = 7.6 Hz, 1.03H), 7.35-7.30 (m, 3.16H), 7.18-7.16 (m, 1.26H), 7.08-7.05 (m, 1.08H), 6.96 (d, *J* = 7.2 Hz, 0.23H), 6.29 (s, 0.20H), 6.15 (s, 0.88H), 2.39 (s, 3.00H), 2.28 (s, 0.56H), 2.091 (s, 0.50H), 2.00 (s, 2.99H);¹³C NMR (100 MHz, CDCl₃): δ 152.4, 140.1, 138.2, 135.1, 132.9, 130.9, 130.6, 130.4, 129.48, 129.45, 129.41, 129.35, 127.30, 126.7, 126.5, 125.0, 124.4, 123.4, 118.9, 118.06, 118.02, 117.9, 20.7, 20.5, 14.2, 13.5;

N-(4-Methoxyphenyl)-1-o-tolyl-1H-tetrazol-5-amine (27):

27: Pale yellow solid, Mp: 146-148 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.53-7.49 (m, 1H), 7.46-7.40 (m, 4H), 7.33 (d, *J* = 8.4 Hz, 1H), 6.86 (AA¹BB¹ pattern, *J* = 9.2 Hz, 2H), 6.03 (s, 1H), 3.78, (s, 3H), 2.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 156.1, 152.8, 136.5, 132.3, 131.5, 131.3, 131.1, 127.9,

127.4, 120.4, 114.6, 55.6, 17.6; HRMS (ESI, m/z) Calcd for C₁₅H₁₅N₅ONa 304.1174 (M+ Na), found 304.1201.

N-(4-Nitrophenyl)-1-o-tolyl-1H-tetrazol-5-amine (28):

28: Brownish orange solid, Mp: 194196-158 °C, ¹H NMR (500 MHz, DMSO-d₆): δ 10.09 (s, 1H), 8.24 (AA¹BB¹ pattern, J = 9.0 Hz, 2H), 7.89 (AA¹BB¹ pattern, J = 9.0 Hz, 2H), 7.61-7.58 (m, 1H), 7.56-7.54 (m, 2H), 7.49-7.46 (m, 1H), 2.06 (s, 3H); ¹³C NMR (125 MHz, DMSO-d₆): δ 152.0, 146.0, 141.2, 135.6, 131.5, 131.4, 131.2, 128.0, 127.5, 125.2, 117.5, 16.9, HRMS (ESI, m/z) Calcd for C₁₄H₁₃N₆O₂ 297.1100 (M+ H), found 297.1088.

1-(2,6-Dimethylphenyl)-*N*-(*o*-deutero-*p*-tolyl)-1*H*-tetrazol-5-amine (5-d₁)¹:

5-d₁: White solid, Mp: 187-190 °C, ¹H NMR (500 MHz, CDCl₃): δ 7.44-7.41 (m, 2H), 7.28 (d, *J* = 7.5 Hz, 2H), 7.15-7.14 (m, 2H), 5.85 (s, 1H), 2.31 (s, 3H), 2.06(s, 6H);¹³C NMR (125 MHz, CDCl₃): δ 152.4, 137.2, 135.62 (t, 135.68, 135.62, 135.5), 133.2, 131.5, 129.9, 129.8, 129.4, 118.2, 20.8, 17.6; HRMS (ESI, m/z) Calcd for C₁₆H₁₇DN₅ 281.1619(M+ H), found 281.1615;

1-(2,6-Dimethylphenyl)-*N*-(phenyl-d₅)-1*H*-tetrazol-5-amine (20-d₅):

5-d₁: White solid, Mp: 197-200 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.42 (t, *J* = 7.2 Hz, 1H), 7.28 (d, *J* = 7.6 Hz, 2H), 6.00 (s, 1H), 2.06 (s, 6H);¹³C NMR (100 MHz, CDCl₃): δ 152.2, 138.0, 137.1, 131.5, 129.9, 129.4, 128.9 (t, 129.1, 128.9, 128.6), 122.9 (t, 123.1, 122.9, 122.7), 117.7 (t, 117.9, 117.7, 117.4), 17.6; HRMS (ESI, m/z) Calcd for C₁₅H₁₁D₅N₅ 270.1641(M+H), found 270.1645;

Synthesis of *N*,4-diaryl-4*H*-1,2,4-triazol-3-amines⁴:

N,N'-diphenylmethanediimine (1.6 mmol) and formichydrazide (1.2 equiv, 1.9 mmol) were suspended in DMF (8 mL) and stirred at 80°C for 5-7 h. Reaction was monitored by TLC. After complete consumption of starting material, reaction mixture was cooled to room temperature and diluted with EtOAc (15 mL). Resulted Organic mixture was extracted with water for two times. Organic layer was concentrated and crude product was purified by column chromatography.

Spectral data for *N*,4-diaryl-4*H*-1,2,4-triazol-3-amines:

N,4-Diphenyl-4*H*-1,2,4-triazol-3-amine (29)⁴:

29: White solid, yield 73% (275 mg), Mp: 156-158 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.00 (s, 1H), 7.61-7.53 (m, 3H), 7.49 (d, *J* = 7.6 Hz, 2H), 7.41-7.39 (m, 2H), 7.31-7.27 (m, 2H), 6.98 (t, *J* = 7.6 Hz, 1H), 6.07 (s, 1H);¹³C NMR (100 MHz, CDCl₃): δ 150.1, 140.0, 139.5, 132.7, 130.7, 130.0, 129.2, 125.7, 122.2, 117.4; HRMS (ESI, m/z) Calcd for C₁₄H₁₃N₄ 237.1140(M+H), found 237.1167;

N-Phenyl-4-*o*-tolyl-4*H*-1,2,4-triazol-3-amine (30):

30: White solid, yield 45% (180 mg), Mp: 250-252 °C, ¹H NMR (400 MHz, DMSO-d₆): δ 8.35 (s, 1H), 8.32 (s, 1H), 7.52 (d, *J* = 8.0 Hz, 2H), 7.45 (s, 2H), 7.39-7.35 (m, 2H), 7.23-7.19 (m, 2H), 6.84 (t, *J* = 7.6 Hz, 1H), 2.05 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 150.6, 141.5, 141.1, 135.4, 132.0, 131.3, 129.7, 128.6, 128.1, 127.2, 120.3, 116.7, 17.1; HRMS (ESI, m/z) Calcd for C₁₅H₁₄N₄Na 273.1116(M+Na), found 273.1102;

4-(2,3-Dimethylphenyl)-*N*-phenyl-4*H*-1,2,4-triazol-3-amine (31):

31: White solid, yield 61% (257 mg), Mp: 220-223 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.89 (s, 1H), 7.54-7.51 (m, 2H), 7.37 (d, J = 7.6 Hz, 1H), 7.30-7.26 (m, 3H), 7.12 (d, J = 8.0 Hz, 1H), 6.97 (t, J = 7.6 Hz, 1H), 5.78 (s, 1H), 2.38 (s, 3H), 2.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 150.6, 140.0, 139.9, 139.3, 134.9, 132.2, 131.0, 129.2, 127.3, 125.5, 122.1, 117.3, 20.5, 14.2; HRMS (ESI, m/z) Calcd for C₁₆H₁₆N₄Na 287.1273(M+ Na), found 287.1263;

N,4-Bis(4-methoxyphenyl)-4H-1,2,4-triazol-3-amine (32)⁴:

32: White solid, yield 52% (246 mg), Mp: 156-158 °C, ¹H NMR (500 MHz, CDCl₃): δ 7.91 (s, 1H), 7.41 (AA¹BB¹ pattern, J = 7.2 Hz, 2H), 7.29 (AA¹BB¹ pattern, J = 7.2 Hz, 2H), 7.05 (AA¹BB¹ pattern, J = 7.2 Hz, 2H), 6.83 (AA¹BB¹ pattern, J = 7.2 Hz, 2H), 5.86 (s, 1H), 3.87 (s, 3H), 3.76 (s, 3H);¹³C NMR (125 MHz, CDCl₃): δ 160.6, 155.1, 151.1, 140.2, 132.8, 127.4, 125.0, 119.3, 115.7, 114.5, 55.8, 55.6; HRMS (ESI, m/z) Calcd for C₁₆H₁₇N₄O₂ 297.1352(M+H), found 297.1980;

N-(4-Chlorophenyl)-4-*o*-tolyl-4*H*-1,2,4-triazol-3-amine (33):

33: White solid, yield 70% (318 mg), Mp: 210-213 °C,¹H NMR (400 MHz, CDCl₃): δ 7.91 (s, 1H), 7.52-7.48 (m, 3H), 7.45-7.39 (m, 2H), 7.29-7.27(m, 1H), 7.24 (d, *J* = 8.8 Hz, 2H), 5.84 (s, 1H), 2.15 (s, 3H);¹³C NMR (100 MHz, CDCl₃): δ 150.2, 139.8, 137.9, 136.3, 132.3, 131.0, 130.9, 129.1, 128.1, 127.9, 127.0, 118.6, 17.6; HRMS (ESI, m/z) Calcd for C₁₅H₁₄N₄Cl285.0907(M+H), found 285.0910.

Optimizatio of reaction conditions of scheme 9

$ \begin{array}{c} & & \\ & & $								
Entry	Metal cat.	Solvent	Additive	Oxidant	Yield (%)ª			
1	$Pd(OAc)_2$	1,4 Dioxane	-	Cu(OAc) ₂	Trace			
2	$Pd(OAc)_2$	1,4 Dioxane	TFA	Cu(OAc) ₂	15			
3	$Pd(OCOCF_3)_2$	1,4 Dioxane	"	$Cu(OAc)_2$	22			
4	Pd(OCOCF ₃) ₂	CH ₃ CN	"	Cu(OAc) ₂	25			
5	Pd(OCOCF ₃) ₂	Toluene	"	Cu(OAc) ₂	36			
6	Pd(OCOCF ₃) ₂	CH ₃ CN	"	$K_2S_2O_8$	11			
7	Pd(OCOCF ₃) ₂	Toluene	"	$K_2S_2O_8$	17			
8 ^b	$Pd(OCOCF_3)_2$	CH ₃ CN	دد	$K_2S_2O_8$	15			
9 ^b	$Pd(OCOCF_3)_2$	Toluene	"	$K_2S_2O_8$	17			
10°	Pd(OCOCF ₃) ₂	Toluene	"	$Cu(OAc)_2 + O_2$	47			
11 ^d	$Pd(OCOCF_3)_2$	Toluene	"	Cu(OAc) ₂	44			
12 ^d	Pd(OCOCF ₃) ₂	Toluene	"	AgOAc	67			

Reaction conditions: Pd cat. (10 mol%), Oxidant (1 equiv.), additive (1 equiv), solvent (4 mL),^a = isolated yields, ^b = PPh₃ used as ligand, ^c = CO/O₂ (1:1), ^d = 3 equiv. of oxidant used.

References:

- 1. P. Sadhu, S. K. Alla, T. Punniyamurthy, J. Org. Chem. 2013, 78, 6104.
- 2. R. Yella, N. Khatun, S. K. Rout, B. K. Patel, Org. Biomol. Chem. 2011, 9, 3235.
- 3. Y. Xie, D. Guo, X. Jiang, X. Pan, W. Wang, T. Jin, Z. Mi, *Tetrahedron Letters*. 2015, 56, 2533.
- S. Guin, S. K. Rout, A. Gogoi, S. Nandi, K. K. Ghara, B. K. Patel, *Adv. Synth. Catal.*2012, 354, 2757.
- 5. P. Sadhu, S.K. Alla, T. Punniyamurthy, J. Org. Chem. 2015, 80, 8245.

Figure S1. 400 MHz ¹H NMR spectrum of 1a in CDCl₃

Figure S2. 100 MHz ¹³C NMR spectrum of 1a in CDCl₃

Figure S3. 500 MHz ¹H NMR spectrum of 2a in CDCl₃

Figure S4. 125 MHz ¹³C NMR spectrum of 2a in CDCl₃

Figure S5. 400 MHz ¹H NMR spectrum of 3a in CDCl₃

Figure S6. 100 MHz ¹³C NMR spectrum of 3a in CDCl₃

¹H NMR Spectrum of compound 4a in CDCl₃

Figure S7. 400 MHz ¹H NMR spectrum of compound 4a with and without shift reagent in

CDCl3

Figure S8. 100 MHz ¹³C NMR spectrum of 4a in CDCl₃

Figure S9. 400 MHz ¹H NMR spectrum of 5a in CDCl₃

Figure S10. 100 MHz ¹³C NMR spectrum of 5a in CDCl₃

Figure S11. 400 MHz ¹H NMR spectrum of 6a in CDCl₃

Figure S12. 100 MHz ¹³C NMR spectrum of 6a in CDCl₃

Figure S13. 400 MHz ¹H NMR spectrum of 7a in CDCl₃

Figure S14. 100 MHz ¹³C NMR spectrum of 7a in CDCl₃

Figure S15. 400 MHz ¹H NMR spectrum of 8a in CDCl₃

Figure S16. 100 MHz ¹³C NMR spectrum of 8a in CDCl₃

Figure S17. 500 MHz ¹H NMR spectrum of 9a in CDCl₃

Figure S18. 100 MHz ¹³C NMR spectrum of 9a in CDCl₃

Figure S19. 400 MHz ¹H NMR spectrum of 11a in CDCl₃

Figure S20. 100 MHz ¹³C NMR spectrum of 11a in CDCl₃

Figure S21. 400 MHz ¹H NMR spectrum of 13a in CDCl₃

Figure S22. 125 MHz ¹³C NMR spectrum of 13a in CDCl₃

Figure S23. 500 MHz ¹H NMR spectrum of 14a in CDCl₃

Figure S25. 500 MHz ¹H NMR spectrum of 15a in CDCl₃

Figure S26. 125 MHz ¹³C NMR spectrum of 15a in CDCl₃

Figure S27. 400 MHz ¹H NMR spectrum of 16a in CDCl₃

Figure S28. 100 MHz ¹³C NMR spectrum of 16a in CDCl₃

Figure S29. 400 MHz ¹H NMR spectrum of 17a in CDCl₃

Figure S30. 100 MHz ¹³C NMR spectrum of 17a in CDCl₃

Figure S31. 400 MHz ¹H NMR spectrum of 18a in CDCl₃

Figure S32. 100 MHz ¹³C NMR spectrum of 18a in CDCl₃

Figure S33. 400 MHz ¹H NMR spectrum of 19a in CDCl₃

Figure S34. 100 MHz 13 C NMR spectrum of 19a in CDCl₃

Figure S35. 400 MHz ¹H NMR spectrum of 20a in CDCl₃

Figure S36. 100 MHz ¹³C NMR spectrum of 20a in CDCl₃

Figure S37. 400 MHz ¹H NMR spectrum of 21a+22a in CDCl₃

Figure S38. 100 MHz ¹³C NMR spectrum of 21a+22a in CDCl₃

Figure S39. 400 MHz ¹H NMR spectrum of 23a in CDCl₃

Figure S40. 100 MHz ¹³C NMR spectrum of 23a in CDCl₃

Figure S41. 400 MHz ¹H NMR spectrum of 24a in CDCl₃

Figure S42. 125 MHz ¹³C NMR spectrum of 24a in CDCl₃

Figure S43. 400 MHz ¹H NMR spectrum of 25a in CDCl₃

Figure S45. 400 MHz ¹H NMR spectrum of 26a in CDCl₃

Figure S46. 125 MHz ¹³C NMR spectrum of 26a in CDCl₃

Figure S47. 400 MHz ¹H NMR spectrum of 27a in CDCl₃

Figure S48. 100 MHz ¹³C NMR spectrum of 27a in CDCl₃

Figure S49. 500 MHz ¹H NMR spectrum of 29a in DMSO-d₆

Figure S50. 125 MHz ¹³C NMR spectrum of 29a in DMSO-d₆

Figure S51. 500 MHz ¹H NMR spectrum of 30a in DMSO-d₆

Figure S52. 125 MHz ¹³C NMR spectrum of **30a** in DMSO-d₆

Figure S53. 500 MHz ¹H NMR spectrum of 31a in CDCl₃

Figure S54. 125 MHz 13 C NMR spectrum of 31a in CDCl₃

Figure S55. 500 MHz ¹H NMR spectrum of 32a in DMSO-d₆

Figure S56. 125 MHz ¹³C NMR spectrum of **32a** in DMSO-d₆

Figure S57. 500 MHz ¹H NMR spectrum of 33a in DMSO-d₆

Figure S58. 125 MHz ¹H NMR spectrum of 33a in DMSO-d₆

Figure S59. 400 MHz ¹H NMR spectrum of 1b in DMSO-d₆

Figure S60. 100 MHz ¹³C NMR spectrum of 1b in DMSO-d₆

Figure S61. 400 MHz ¹H NMR spectrum of 1ba in CDCl₃

Figure S62. 100 MHz ¹³C NMR spectrum of 1ba in CDCl₃

Figure S64. 100 MHz ¹³C NMR spectrum of 1c in CDCl₃

A. Intermolecular isotope experiment:

B. Intramolecular isotope experiment:

Figure S66. 400 MHz ¹H NMR spectrum of 5a+5a-d₁ in CDCl₃

Figure S67. 500 MHz ¹H NMR spectrum of 1 in CDCl₃

Figure S68. 125 MHz ¹³C NMR spectrum of 1 in CDCl₃

Figure S69. 400 MHz ¹H NMR spectrum of 2 in CDCl₃

Figure S70. 100 MHz ¹³C NMR spectrum of 2 in CDCl₃

Figure S71. 400 MHz ¹H NMR spectrum of 3 in CDCl₃

Figure S72. 100 MHz ¹³C NMR spectrum of 3 in CDCl₃

Figure S74. 100 MHz ¹³C NMR spectrum of 4 in CDCl₃

Figure S76. 100 MHz ¹³C NMR spectrum of 5 in CDCl₃

Figure S77. 400 MHz ¹H NMR spectrum of 6 in DMSO-d₆

Figure S78. 100 MHz ¹³C NMR spectrum of 6 in DMSO-d₆

Figure S79. 500 MHz ¹H NMR spectrum of 7 in CDCl₃

Figure S80. 125 MHz ¹³C NMR spectrum of 7 in CDCl₃

Figure S81. 400 MHz ¹H NMR spectrum of 8 in CDCl₃

Figure S82. 100 MHz ¹³C NMR spectrum of 8 in CDCl₃

Figure S83. 400 MHz ¹H NMR spectrum of 9 in CDCl₃

Figure S84. 100 MHz ¹³C NMR spectrum of 9 in CDCl₃

Figure S85. 400 MHz ¹H NMR spectrum of 10 in CDCl₃

Figure S86. 100 MHz ¹³C NMR spectrum of 10 in CDCl₃

Figure S88. 100 MHz ¹³C NMR spectrum of 11 in CDCl₃

Figure S89. 400 MHz ¹H NMR spectrum of **12** in DMSO-d6

Figure S90. 100 MHz ¹³C NMR spectrum of **12** in DMSO-d6

Figure S91. 400 MHz ¹H NMR spectrum of 13 in CDCl₃

Figure S92. 100 MHz ¹³C NMR spectrum of 13 in CDCl₃

Figure S94. 100 MHz ¹³C NMR spectrum of 14 in CDCl₃

Figure S96. 100 MHz ¹³C NMR spectrum of 15 in CDCl₃

Figure S97. 400 MHz ¹H NMR spectrum of 16 in CDCl₃

Figure S98. 100 MHz ¹³C NMR spectrum of 16 in CDCl₃

Figure S100. 100 MHz ¹³C NMR spectrum of 17 in CDCl₃

Figure S101. 400 MHz ¹H NMR spectrum of 18 in CDCl₃

Figure S102. 100 MHz ¹³C NMR spectrum of 18 in CDCl₃

Figure S103. 400 MHz ¹H NMR spectrum of 19 in CDCl₃

Figure S104. 100 MHz ¹³C NMR spectrum of 19 in CDCl₃

Figure S105. 400 MHz ¹H NMR spectrum of 20 in CDCl₃

Figure S106. 100 MHz ¹³C NMR spectrum of 20 in CDCl₃

Figure S107. 400 MHz ¹H NMR spectrum of 21+22 in CDCl₃

Figure S108. 100 MHz ¹³C NMR spectrum of 21+22 in CDCl₃

Figure S109. 400 MHz ¹H NMR spectrum of 23+24 in CDCl₃

Figure S110. 100 MHz ¹³C NMR spectrum of 23+24 in CDCl₃

Figure S111. 400 MHz ¹H NMR spectrum of 25+26 in CDCl₃

Figure S112. 100 MHz ¹³C NMR spectrum of 25+26 in CDCl₃

Figure S113. 400 MHz ¹H NMR spectrum of 27 in CDCl₃

Figure S114. 100 MHz ¹³C NMR spectrum of 25+26 in CDCl₃

Figure S115. 400 MHz ¹H NMR spectrum of 28 in DMSO-d₆

Figure S116. 100 MHz 13 C NMR spectrum of 28in DMSO-d₆

Figure S118. 400 MHz ¹H NMR spectrum of 20-d₅ in CDCl₃

Figure S119. 400 MHz ¹H NMR spectrum of 29 in DMSO-d₆

Figure S120. 100 MHz ¹³C NMR spectrum of 29 in DMSO-d₆

Figure S121. 400 MHz ¹H NMR spectrum of 30 in DMSO-d₆

Figure S122. 100 MHz ¹³C NMR spectrum of **30** in DMSO-d₆

Figure S123. 400 MHz ¹H NMR spectrum of 31 in CDCl₃

Figure S124. 100 MHz ¹³C NMR spectrum of 31 in CDCl₃

Figure S125. 500 MHz ¹H NMR spectrum of 32 in CDCl₃

Figure S126. 125 MHz ¹³C NMR spectrum of 32 in CDCl₃

Figure S127. 400 MHz ¹H NMR spectrum of 33 in CDCl₃

Figure S128. 100 MHz ¹³C NMR spectrum of 33 in CDCl₃

Table S2. Crystal data and structure refinement for '6a'.

Identification code Compound **6a** Empirical formula C15 H10 F N5 O Formula weight 295.28 CCDC No. 1834322 Temperature 296(2) K Wavelength 0.71073 Å Triclinic, P-1 Crystal system, space group Unit cell dimensions a = 6.7614(3) Å alpha = 77.8244(14) deg. b = 8.5686(4) Å beta = 77.638(2) deg. c = 11.9894(4) Å gamma = 85.281(2) deg. Volume 662.75(5) Å³ Z, Calculated density 2, 1.480 Mg/m³ 0.109 mm⁻¹ Absorption coefficient F(000) 304 Crystal size 0.250 x 0.220 x 0.100 mm Theta range for data collection 1.774 to 24.993 deg. Limiting indices -8<=h<=8, -10<=k<=9, -14<=l<=14 Reflections collected / unique 9042 / 2276 [R(int) = 0.0227]Completeness to theta = 24.99397.8 % Absorption correction None Refinement method Full-matrix least-squares on F² Data / restraints / parameters 2276 / 0 / 200 Goodness-of-fit on F² 1.049 Final R indices [I>2sigma(I)] R1 = 0.0373, wR2 = 0.0873R indices (all data) R1 = 0.0557, wR2 = 0.1018Extinction coefficient n/a Largest diff. peak and hole 0.127 and -0.188 e.Å⁻³

Table S3. Crystal data and structure refinement for '24a'.

Identification code	Compound 24a	30 · · · · · · · ·	
Empirical formula	$C_{17}H_{15}N_5O$		
Formula weight	305.34	- the second	
Temperature	296(2) K	24a CCDC No. 1834321	
Wavelength	0.71073 Å		
Crystal system, space group	Monoclinic, P2(1)/c		
Unit cell dimensions	a = 8.7446(4) Å alpha	a = 8.7446(4) Å alpha = 90 deg.	
	b = 11.5290(7) Å be	ta = 105.140(3) deg.	
	c = 15.2091(8) Å gar	nma = 90 deg.	
Volume	1480.11(14) Å ³	1480.11(14) Å ³	
Z, Calculated density	4, 1.370 Mg/m ³		
Absorption coefficient	0.091 mm ⁻¹		
F(000)	640		
Crystal size	0.250 x 0.220 x 0.130 mm		
Theta range for data collection	2.246 to 24.019 deg.		
Limiting indices	-9<=h<=9, -12<=k<=13, -17<=l<=17		
Reflections collected / unique	7469 / 2323 [R(int) = 0.0397]		
Completeness to theta = 24.019	99.9 %		
Absorption correction	None		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	2323 / 0 / 211		
Goodness-of-fit on F^2	1.055		
Final R indices [I>2sigma(I)]	R1 = 0.0478, $wR2 = 0.1156$		
R indices (all data)	R1 = 0.0901, $wR2 = 0.1397$		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.180 and -0.184 e.A ⁻³		

.

Table S4. Crystal data and structure refinement for '1C'.

Identification code Compound **1**C Empirical formula C₂₆ H₂₀ N₁₀ Pd Formula weight 578.92 Temperature 296(2) K Wavelength 0.71073 Å Monoclinic, P2(1)/n Crystal system, space group a = 14.0025(17) Å alpha = 90 deg. Unit cell dimensions b = 13.5967(18) Å beta = 116.114(5) deg. c = 15.1462(14) Å gamma = 90 deg. Volume 2589.3(5) Å³ Z, Calculated density 4, 1.485 Mg/m³ 0.752 mm⁻¹ Absorption coefficient F(000) 1168 Crystal size 0.180 x 0.120 x 0.100 mm Theta range for data collection 1.652 to 24.997 deg. Limiting indices -16<=h<=16, -15<=k<=16, -18<=l<=12 Reflections collected / unique 16326 / 4545 [R(int) = 0.0884]Completeness to theta = 24.99799.7 % Absorption correction None Refinement method Full-matrix least-squares on F² Data / restraints / parameters 4545 / 0 / 334 Goodness-of-fit on F² 1.000 Final R indices [I>2sigma(I)] R1 = 0.0480, wR2 = 0.0889R indices (all data) R1 = 0.1008, wR2 = 0.1127Extinction coefficient n/a Largest diff. peak and hole 0.451 and -0.584 e.Å⁻³

Table S5. Crystal data and structure refinement for 1ba.

nement for 1ba.	N2 N4
Compound 1ba	AS BOARD
$C_{53}H_{45}C_{16}N_5O_2P_2Pd$	Pri Poli Prz
1164.98	
296(2) K	1ba
0.71073 Å	CCDC No.1832713
Triclinic	
P-1	
a = 12.2631(4) Å	a= 71.606(2)°.
b = 13.7670(4) Å	b= 87.408(3)°.
c = 19.0767(6) Å	$g = 63.9440(10)^{\circ}$.
2728.97(15) Å ³	
2	
1.418 Mg/m ³	
0.736 mm ⁻¹	
1184	
0.200 x 0.150 x 0.100 mm ³	
2.068 to 25.000°.	
-14<=h<=14, -16<=k<=16	5, -22<=l<=22
49975	
9643 [R(int) = 0.0704]	
99.9 %	
Full-matrix least-squares on F ²	
9643 / 680 / 763	
1.013	
R1 = 0.0548, wR2 = 0.1275	
R1 = 0.1193, wR2 = 0.164	18
0.0019(4)	
0.535 and -0.504 e.Å ⁻³	
	The ment for 1ba. Compound 1ba $C_{53} H_{45} C_{16} N_5 O_2 P_2 Pd$ 1164.98 296(2) K 0.71073 Å Triclinic P-1 a = 12.2631(4) Å b = 13.7670(4) Å c = 19.0767(6) Å 2728.97(15) Å ³ 2 1.418 Mg/m ³ 0.736 mm ⁻¹ 1184 0.200 x 0.150 x 0.100 mm 2.068 to 25.000°. -14<=h<=14, -16<=k<=16 49975 9643 [R(int) = 0.0704] 99.9 % Full-matrix least-squares of 9643 / 680 / 763 1.013 R1 = 0.0548, wR2 = 0.127 R1 = 0.1193, wR2 = 0.164 0.0019(4) 0.535 and -0.504 e.Å ⁻³