Supporting Information

Efficient synthesis of esters through oxone-catalyzed dehydrogenation of carboxylic acids and alcohols

Fei Hou, Xi-Cun Wang,* Zheng-Jun Quan*

Table and Contents

1.General and Experimental details	
2.NMR spectra of the products	S10-S105

General Experimental Details.

1. General

¹H NMR and ¹³C NMR data analyses were performed with a Varian Mercury plus-400 instrument and plus-600 instrument unless otherwise specified. Dual-beam infrared spectrophotometer CDCl₃ as solvent and tetramethylsilane (TMS) as the internal standard were employed. Chemical shifts were reported in units (ppm) by assigning TMS resonance in the 1H NMR spectrum as 0.00 ppm. The data of ¹H NMR was reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constant (J values) in Hz and integration. Chemical shift for ${}^{13}C$ NMR spectra were recorded in ppm from TMS using the central peak of CDCl₃ (77.0 ppm) as the internal standard. Flash chromatography was performed using 200-300 mesh silica gel with the indicated solvent system according to standard techniques. Analytical thin-layer chromatography (TLC) was performed on pre-coated, glass-backed silica gel plates. Melting points were measured with an XT-4 apparatus. High-resolution mass spectra (HRMS) (ESI) were obtained with a Bruker Daltonics APEX II 47e and Orbitrap Elite mass spectrometer. Column chromatography was generally performed on silica gel (200-300 mesh) and TLC analyses were conducted on silica gel GF254 plates.

2. Experimental details.

The mixture of **1a** (0.50 mmol, 68 mg), Methanol (3mL), Oxone (20 mol %, 60 mg) and was stirred at 60 °C for 48 h under air atmosphere. After the reaction completing monitored by TLC analysis, 3.0 mL NaHCO₃ solution were added to the mixture to quench the reaction and extracted with ethyl acetate (3×10 mL). The combined organic layers were dried by MgSO₄, The residue was purified by column chromatography on silica gel (ethyl acetate: petroleum ether = 1:6) to give the corresponding product **3a** as white solid, (66 mg, 88% yield). All of the products were synthesized according to above described procedure; when isopropyl alcohol and tert-butyl alcohol are used as a solvent, the reaction needs to be performed under a condition of 80 °C. Use high-boiling alcohol as a substrate, toluene is used as a solvent, the target product was obtained under the condition of 80 °C.

2.1 General procedure for the synthesis of compound 3a.

The mixture of **1a** (0.50 mmol, 68 mg), methanol (3mL), oxone (20 mol %, 60 mg) and was stirred at 60 °C for 48 h under air atmosphere. After the reaction completing monitored by TLC analysis, 3.0 mL NaHCO₃ solution were added to the mixture to quench the reaction and extracted with ethyl acetate (3×10 mL). The combined organic layers were dried by MgSO₄. The residue was purified by column chromatography on silica gel (ethyl acetate: petroleum ether = 1:6) to give the corresponding product **3a** as white solid (66 mg, 88% yield).

2.2 General procedure for the synthesis of compound 4f.

The mixture of **1c** (0.50 mmol, 76 mg), toluene (3mL), oxone (20 mol %, 60 mg) and was stirred at 80 °C for 48 h under air atmosphere. After the reaction completing monitored by TLC analysis, 3.0 mL NaHCO₃ solution were added to the mixture to quench the reaction and extracted with ethyl acetate (3×10 mL). The combined organic layers were dried by MgSO₄. The residue was purified by column chromatography on silica gel (ethyl acetate: petroleum ether = 1:6) to give the corresponding product **4f** as colorless liquid (71 mg, 60% yield).

Methyl 4-methylbenzoate (3a):^{5b} Colorless oil (66 mg, 88% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm; 7.92 (d, J = 7.8 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 3.88 (s, 3H), 2.39 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 167.12, 143.49, 129.56, 129.03, 127.41, 51.88, 21.59. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₉H₁₀O₂ 151.0754; Found 151.0752.

*Methyl benzoate (3b):*³ Colorless liquid (61 mg, 89% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm; 8.02–8.04(m, 2H), 7.56–7.52 (m, 1H), 7.40–7.43 (m, 2H), 3.90 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 167.03, 132.85, 130.14, 129.52, 128.30, 52.02. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₈H₈O₂ 137.0597; Found 137.0595.

Methyl 4-methoxybenzoate (3c):^{5b} White solid (72 mg, 87% yield), mp: 47–48 °C (lit 47–49 °C).^{5b 1}H NMR (600 MHz, CDCl₃) δ ppm; 7.97 (d, J = 9.0Hz, 2H), 6.89 (d, J = 8.4Hz, 2H), 3.86 (s, 3H), 3.83 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 166.80, 163.29, 131.54, 122.58, 113.56, 55.36, 51.80. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₉H₁₀O₃ 167.0703; Found 167.0701.

Methyl 4-nitrobenzoate (3d):^{5b} White solid (75 mg, 82% yield), mp: 95–96 °C (lit 93–95 °C)^{5b}. ¹H NMR (400 MHz, CDCl₃) δ ppm; 8.29–8.21 (m, 2H), 8.21–8.15 (m, 2H), 3.95 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm; 165.06, 150.41, 135.38, 130.61, 123.44, 52.76. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₈H₇NO₄ 182.0448; Found 182.0445.

Methyl 4-chlorobenzoate (3e):^{5c} White solid (73 mg, 86% yield), mp: 37–39 °C (lit $36-38 \text{ °C})^{5c}$. ¹H NMR (600 MHz, CDCl₃) δ ppm; 7.96 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 9.0 Hz, 2H), 3.90 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 166.17, 139.33, 130.93, 128.67, 128.57, 52.23. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₈H₇ClO₂ 171.0207; Found 171.0205.

*Methyl 4-bromobenzoate (3f):*⁷ⁿ White solid (91 mg, 85% yield), mp: 77–80 °C (lit 76–78 °C).^{7n 1}H NMR (400 MHz, CDCl₃) δ ppm; 7.90 (d, J = 8.8 Hz, 2H), 7.58 (d, J = 8.4 Hz, 2H), 3.91 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm; 166.31, 131.67, 131.07, 129.01, 128.00, 52.26. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₈H₇BrO₂ 214.9702; Found 214.9704.

4-Iodobenzoic acid methyl ester (3g):^{4, 7n} White solid (118 mg, 90% yield), mp: 113–115 °C (lit 113.8–114.7 °C).^{7n 1}H NMR (600 MHz, CDCl₃) δ ppm; 7.77 (d, J =

8.4 Hz, 2H), 7.72 (d, J = 8.4 Hz, 2H), 3.89 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 166.51, 137.68, 130.99, 129.58, 100.70, 52.26. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₈H₇IO₂ 262.9563; Found 262.9565.

*Methyl 3-methylbenzoate (3h):*⁶ Colorless liquid (65 mg, 87% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm; 7.83 (t, J = 7.8 Hz, 2H), 7.34 (d, J = 7.2 Hz, 1H), 7.30 (t, J = 7.2 Hz, 1H), 3.89 (s, 3H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm; 167.48, 138.33, 133.88, 130.32, 130.28, 128.46, 126.91, 52.24, 21.47. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₉H₁₀O₂ 151.0754; Found 151.0756.

Methyl 3-methoxybenzoate (3i):^{5c} Colorless liquid (73 mg, 88% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm; 7.61 (d, J = 7.2 Hz, 1H), 7.54 (d, J = 1.8 Hz, 1H), 7.32 (t, J = 7.2 Hz, 1H), 7.08 (dd, J = 8.4, 2.4 Hz, 1H), 3.89 (s, 3H), 3.82 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 166.90, 159.52, 131.41, 129.33, 121.92, 119.42, 113.93, 55.36, 52.10. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₉H₁₀O₃ 167.0703; Found 167.0700.

Methyl 3-nitrobenzoate (3j):^{1, 7p} White solid (74 mg, 82% yield), mp: 76–78 °C (lit 77–79 °C).^{7p} ¹H NMR (600 MHz, CDCl₃) δ ppm; 8.83 (t, J = 2.4 Hz, 1H), 8.39 – 8.37 (m, 1H), 8.34 (dt, J = 7.2, 1.2 Hz, 1H), 7.64 (t, J = 7.8 Hz, 1H), 3.96 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ ppm;164.89, 148.23, 135.21, 131.83, 129.61, 127.33, 124.53, 52.75. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₈H₇NO₄ 182.0448; Found 182.0450.

Methyl 3-iodobenzoate (3k):^{4, 70} White solid (114 mg, 81% yield), mp: 55–57 °C (lit 50–52 °C).⁷⁰ ¹H NMR (400 MHz, CDCl₃) δ ppm; 8.36 (t, J = 1.2 Hz, 1H), 7.99–7.97 (m, 1H), 7.87–7.85 (m, 1H), 7.17 (t, J = 7.6 Hz, 1H), 3.91 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm; 165.75, 141.94, 138.67, 132.19, 130.27, 128.95, 94.05, 52.64. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₈H₇IO₂ 262.9563; Found 262.9561.

Methyl 3-hydroxybenzoate (31):^{1, 7q} White solid (66 mg, 87% yield), mp: 72–73 °C (lit 67 °C).^{7q 1}H NMR (600 MHz, CDCl₃) δ ppm; 7.61 (t, J = 1.8 Hz 1H), 7.57 (dt, J = 7.8, 1.2 Hz, 1H), 7.28 (t, J = 7.8 Hz, 1H), 7.10 (dd, J = 2.4, 0.6 Hz, 1H), 7.08 (s, 1H), 3.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm; 168.17, 156.38, 131.24, 130.00, 121.97, 120.85, 116.67, 52.77. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₈H₈O₃ 153.0546; Found 153.0543.

*Methyl 2-methoxybenzoate (3m):*⁶ Colorless liquid (74 mg, 97% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm; 8.62 (t, J = 1.8 Hz, 1H), 8.16 (dd, J = 7.8, 1.8 Hz, 2H), 7.47 (t, J = 1.8 Hz, 1H), 3.89 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 166.66, 133.46, 131.59, 120.08, 120.01, 111.98, 55.93, 51.94. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₉H₁₀O₃ 167.0703; Found 167.0705.

*Methyl 2-chlorobenzoate (3n):*¹ Colorless liquid (63 mg, 74% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm; 7.80 (dd, J = 7.8, 1.8 Hz, 1H), 7.43 (dd, J = 7.8, 1.2 Hz, 1H), 7.40–7.37 (m, 1H), 7.29–7.27 (m, 1H), 3.91 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 166.08 , 133.62 , 132.48 , 131.32 , 131.00 , 130.03 , 126.50 , 52.35 . HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₈H₇ClO₂ 171.0207; Found 171.0205.

*Methyl 2-bromobenzoate (30):*⁶ Colorless liquid (86 mg, 81% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm; 7.76 (dd, J = 7.8, 2.4 Hz, 1H), 7.63 (dd, J = 7.8, 1.8 Hz, 1H), 7.34–7.31 (m, 1H), 7.30–7.27 (m, 1H), 3.90 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 166.55, 134.29, 132.51, 131.25, 127.11, 121.60, 52.41. HRMS (ESI) m/z:

([M+H]⁺) Calcd for C₈H₇BrO₂ 214.9702; Found 214.9700.

*Methyl 2-iodobenzoate (3p):*¹ Colorless liquid (94 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm; 7.99 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.40 (t, J = 7.6 Hz, 1H), 7.15 (t, J = 7.6 Hz, 1H), 3.93 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm; 166.91, 141.28, 135.08, 132.61, 130.90, 127.86, 94.04, 52.46. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₈H₇IO₂ 262.9563; Found 262.9561.

Methyl [1,1'-biphenyl]-2-carboxylate (3q):^{7m} Colorless liquid (82 mg, 77% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm; 7.82 (dd, J = 7.6, 0.8 Hz, 1H), 7.51 (td, J = 1.6, 1.2, 1.2 Hz, 1H), 7.42–7.34 (m, 5H), 7.31–7.29 (m, 2H), 3.62 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm; 169.39, 142.71, 141.55, 131.51, 131.10, 130.95, 130.02, 128.55, 128.29, 127.48, 127.41, 52.19. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₁₄H₁₂O₂ 213.0910; Found 213.0913.

Methyl 3,5-dinitrobenzoate (3r):^{1, 7r} White solid (110 mg, 98% yield), mp: 107–109 °C (lit 104–106 °C).^{7r} ¹H NMR (600 MHz, CDCl₃) δ ppm; 9.19 (t, J = 2.4 Hz, 1H), 9.14 (d, J = 1.8 Hz, 2H), 4.05 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 162.94 (d, J = 6.0 Hz), 148.62, 133.68 (d, J = 5.3 Hz), 129.38 (d, J = 5.6 Hz), 122.32 (d, J = 5.7 Hz), 53.51 (d, J = 6.1 Hz). HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₈H₆N₂O₆ 227.0299; Found 227.0296.

*Methyl 3-chloro-4-methoxybenzoate (3s):*⁸ White solid (75 mg, 75% yield), mp: 92–94 °C (lit 93–97 °C).^{22g 1}H NMR (600 MHz, CDCl₃) δ ppm;8.05 (d, J = 2.4 Hz, 1H), 7.93 (dd, J = 8.4, 1.8 Hz, 1H), 6.94 (d, J = 8.4 Hz, 1H), 3.95 (s, 3H), 3.89 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 165.81, 158.60, 131.63, 129.83, 123.32, 122.47, 111.16, 56.30, 52.10. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₉H₉ClO₃ 201.0313; Found 201.0315.

Methyl cinnamate (3t):^{2, 3} White solid (70 mg, 86% yield), mp: 31–34 °C (lit 34–38 °C).³ ¹H NMR (600 MHz, CDCl₃) δ ppm; 7.69 (d, J = 15.6 Hz, 1H), 7.51 (dd, J = 7.2, 3.6 Hz, 2H), 7.39–7.35 (m, 3H), 6.44 (d, J = 15.6 Hz, 1H), 3.80 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 167.37, 144.83, 134.37, 130.26, 128.86, 128.04, 117.79, 51.65. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₁₀H₁₀O₂ 163.0754; Found 163.0751.

Methyl 1-naphthoate (3u):^{5c} Colorless liquid (83 mg, 89% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm; 8.96 (d, J = 9.0 Hz, 1H), 8.20 (dd, J = 7.2, 1.2 Hz, 1H), 8.01 (d, J = 7.8 Hz, 1H), 7.88 (d, J = 8.4 Hz, 1H), 7.64–7.61 (m,1H), 7.55–7.52 (m, 1H), 7.48 (t, J = 7.8 Hz,1H), 4.01 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 167.99, 133.84, 133.36, 131.35, 130.23, 128.54, 127.75, 127.07, 126.20, 125.83, 124.47, 52.12. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₁₂H₁₀O₂ 187.0754; Found 187.0751.

Methyl thiophene-2-carboxylate (3v):^{5a} Colorless liquid (19 mg, 27% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm; 7.80 (dd, J = 3.6, 1.2 Hz, 1H), 7.55 (dd, J = 3.6, 1.2 Hz, 1H), 7.11–7.08 (m, 1H), 3.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm; 162.93, 133.69, 133.77, 132.58, 127.97, 52.38. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₆H₆O₂S 143.0161; Found 143.0163.

Methyl furan-2-carboxylate (3w):^{5c} Colorless liquid (18 mg, 28% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm; 7.57 (dd, J = 1.8, 0.6 Hz, 1H), 7.17 (dd, J = 3.6, 1.2 Hz, 1H), 6.50 (q, J = 1.8 Hz, 1H), 3.89 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ ppm;

159.09, 146.23, 144.58, 117.88, 111.80, 51.88. HRMS (ESI) m/z: ($[M+H]^+$) Calcd for C₆H₆O₃ 127.0390; Found 127.0392.

Methyl adamantane-1-carboxylate (3x):^{7f} White solid (80 mg, 82% yield), mp: 34–36 °C(lit 38–39 °C).^{7f 1}H NMR (600 MHz, CDCl₃) δ ppm; 3.63 (s, 3H), 1.99 (s, 3H), 1.87 (d, *J* = 3.0 Hz, 6H), 1.65–1.72 (m, 7H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 178.15, 51.48, 40.67, 38.82, 36.47, 27.91. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₁₂H₁₈O₂ 195.1380; Found 195.1383.

Dimethyl isophthalate (3y):⁴ Colorless liquid (76 mg, 78% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm; 7.76 (dd, J = 7.8, 1.8 Hz, 1H), 7.45–7.41 (m, 1H), 6.96–6.92 (m, 2H), 3.86 (d, J = 4.8 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 166.64, 159.05, 133.45, 131.57, 120.06, 111.97, 55.91, 51.92. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₁₀H₁₀O₄ 195.0652; Found 195.0650.

Dimethyl malonate (3z):^{7b} Colorless liquid (53 mg, 81% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm; 3.74 (s, 6H), 3.38 (s, 2H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 166.88, 52.51, 41.09. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₅H₈O₄ 133.0495; Found 133.0493.

Dimethyl cyclopropane-1,1-dicarboxylate (3aa):^{7c} Colorless liquid (67 mg, 85% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm; 3.65 (t, J = 4.2 Hz, 6H), 1.37 (t, J = 4.8 Hz, 4H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 169.99, 52.41, 27.75, 16.49. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₇H₁₀O₄ 159.0652; Found 159.0654.

Methyl stearate (3ab):^{2,9} White solid (143 mg, 96% yield), mp: 39–41 °C (lit 38–40 °C).⁹ ¹H NMR (400 MHz, CDCl₃) δ ppm; 3.66 (s, 3H), 2.30 (t, *J* = 7.6 Hz, 2H), 1.65–1.58(m, 2H), 1.26 (s, 28H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm; 51.29, 34.03, 31.89, 29.66, 29.64, 29.62, 29.61, 29.56, 29.42, 29.33, 29.22, 29.12, 24.91, 22.64, 14.03. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₁₉H₃₈O₂ 299.2945; Found 299.2948.

Ethyl 4-hydroxybenzoate (4a):^{1, 7s} White solid (60 mg, 72% yield), mp: 113–115 °C (lit 117–117 °C).^{7s} ¹H NMR (600 MHz, CDCl₃) δ ppm; 7.95 (d, J = 9.0 Hz, 2H), 6.87 (d, J = 9.0 Hz, 2H), 6.16 (s, 1H), 4.35 (q, J = 7.2 Hz, 2H), 1.38 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 166.93, 160.17, 131.87, 122.60, 115.20, 60.92, 14.30. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₉H₁₀O₃ 167.0703; Found 167.0705.

Ethyl 4-methoxybenzoate (4b):^{7d} Colorless liquid (66 mg, 72% yied), ¹H NMR (600 MHz, CDCl₃) δ ppm; 7.98 (d, J = 9.0 Hz, 2H), 6.89 (d, J = 9.0 Hz, 2H), 6.15 (s, 1H), 4.33 (q, J = 8.4 Hz, 2H), 3.83 (s, 3H), 1.36 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 166.33, 163.21, 131.48, 122.93, 113.50, 60.57, 55.35, 14.34. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₁₀H₁₂O₃ 181.0859; Found 181.0857.

Propyl 4-methoxybenzoate (4c):^{7e} Colorless liquid (73 mg, 76% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm; 7.99 (d, J = 8.4 Hz, 2H), 6.91 (d, J = 9.0 Hz, 2H), 4.24 (t, J = 6.6 Hz, 2H), 3.85 (s, 3H), 1.79–1.74 (m, 2H), 1.01 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 166.41, 163.21, 131.49, 122.96, 113.52, 66.20, 55.38, 22.14, 10.50. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₁₁H₁₄O₃ 195.1016; Found 195.1018.

Butyl 4-methoxybenzoate (4d):^{7f} Colorless liquid (68 mg, 66% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm; 7.99 (d, J = 9.0 Hz, 2H), 6.91 (d, J = 9.0 Hz, 2H), 4.28 (t, J = 6.6 Hz, 2H), 3.85 (s, 3H), 1.75–1.70 (m, 2H), 1.49–1.43 (m, 2H), 0.97 (t, J = 7.2 Hz,

3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm; 163.45, 131.75, 123.20, 113.76, 64.75, 55.63, 31.06, 19.52, 14.01. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₁₂H₁₆O₃ 209.1172; Found 209.1170.

Isopentyl 4-methoxybenzoate (4e):^{7g} Colorless liquid (38 mg, 34% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm; 7.98 (d, J = 9.0 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 4.31 (t, J = 6.6 Hz, 2H), 3.85 (s, 3H), 1.81–1.75 (m, 1H), 1.64 (q, J = 6.6 Hz, 2H), 0.96 (d, J = 7.8 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 163.21, 131.49, 122.97, 113.52, 63.30, 55.38, 37.47, 25.22, 22.51. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₁₃H₁₈O₃ 223.1329; Found 223.1327.

Hexyl 4-methoxybenzoate (4f):^{7g} Colorless liquid (71 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm; 7.97 (d, J = 6.0 Hz, 2H), 6.88 (d, J = 6.0 Hz, 2H), 4.25 (t, J = 4.4 Hz, 2H), 3.81 (s, 3H), 1.74–1.69 (m, 2H), 1.43–1.38 (m, 2H), 1.32–1.29 (m, 4H), 0.89 (t, J = 4.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm; 166.41, 163.20, 131.49 , 122.98, 113.52, 64.81, 55.37, 31.46, 28.72, 25.70, 22.53, 13.98. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₁₄H₂₀O₃ 237.1485; Found 237.1487.

*Isopropyl benzoate (4g):*¹⁰ Colorless liquid (52 mg, 63% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm; 8.02–8.04(m, 2H), 7.54–7.51 (m, 1H), 7.42 (t, *J* = 7.8 Hz, 2H), 5.28–5.22 (m,1H), 1.36 (d, *J* = 6.0 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 166.06, 132.63, 130.90, 129.46, 128.21, 68.28, 21.92. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₁₀H₁₂O₂ 165.0910; Found 165.0912.

Isopropyl 4-methoxybenzoate (4h): ^{5b} Colorless liquid (66 mg, 68% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm; 7.98 (d, J = 9.0 Hz, 2H), 6.89 (d, J = 9.0 Hz, 2H), 5.24–5.17 (m, 1H), 3.84 (s, 3H), 1.34 (d, J = 6.0 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 165.82, 163.13, 131.44, 123.35, 113.44, 67.88, 55.35, 21.96. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₁₁H₁₄O₃ 195.1016; Found 195.1018.

Isopropyl 3-nitrobenzoate (4i):^{5c} Colorless liquid (83 mg, 80% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm; 8.78 (t, J = 1.8 Hz 1H), 8.36–8.34 (m, 1H), 8.32 (dt, J = 7.2, 1.2 Hz, 1H), 7.61 (t, J = 7.8 Hz, 1H), 5.28–5.22 (m, 1H), 1.37 (d, J = 6.6 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 163.84, 148.18, 135.18, 132.59, 129.47, 127.09, 124.37, 76.95 (d, J = 31.9 Hz), 21.79. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₁₀H₁₁NO₄ 210.0761; Found 210.0763.

Isopropyl 2-methoxybenzoate (4j):^{7t} Colorless liquid (65 mg, 67% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm; 7.72 (dd, J = 7.8, 1.8 Hz, 1H), 7.42–7.38 (m, 1H), 6.94–6.91 (m, 2H), 5.24–5.18 (m, 1H), 3.85 (s, 3H), 1.32 (d, J = 6.6 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 165.63, 159.01, 133.07, 131.20, 120.95, 120.00, 112.03, 67.99, 55.91, 21.87. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₁₁H₁₄O₃ 195.1016; Found 195.1014.

Isopropyl 2-nitrobenzoate (4k):^{7u} Colorless liquid (52 mg, 45% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm; 7.89 (dd, J = 7.8, 1.2 Hz, 1H), 7.73 (dd, J = 7.2, 1.2 Hz, 1H), 7.67–7.64 (m, 1H), 7.61–7.58 (m, 1H), 5.28–5.22 (m, 1H), 1.34 (d, J = 6.3 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ ppm; 1645.11, 148.42, 133.04, 131.72, 130.03, 128.43, 124.00, 70.65, 21.59. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₁₀H₁₁NO₄ 210.0761; Found 210.0764.

Isopropyl 2-bromobenzoate (41):7h Colorless liquid (62 mg, 51% yield). ¹H NMR

(600 MHz, CDCl₃) δ ppm; 7.72 (dd, J = 7.8, 1.8 Hz, 1H), 7.63 (dd, J = 7.8, 1.2 Hz, 1H), 7.35–7.32 (m, 1H), 7.30–7.27 (m, 1H), 5.29–5.23 (m, 1H), 1.38 (d, J = 6.3 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ ppm; 129.64, 128.56, 127.69, 126.46, 122.59, 116.81, 64.94, 17.32. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₁₀H₁₁BrO₂ 243.0015; Found 243.0012.

Isopropyl 3-methoxybenzoate (4m):^{7v} Colorless liquid (62 mg, 65% yield). ¹H NMR (600 MHz, CDCl₃) δ =7.62 (dt, *J* = 7.8, 1.2Hz, 1H), 7.55 (dd, *J* = 3.0, 1.8 Hz, 1H), 7.32 (t, *J* = 7.8 Hz, 1H), 7.08–7.06 (m, 1H), 5.26–5.20 (m, 1H), 3.84 (s, 3H), 1.36 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ = 165.92, 159.48, 132.22, 129.23, 121.85, 119.05, 114.04, 68.41, 55.37, 21.89. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₁₁H₁₄O₃ 195.1016; Found 195.1013.

Tert-butyl 4-methoxybenzoate (4n):^{5d} Colorless liquid (26 mg, 25% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm; 7.93 (d, J = 9.0 Hz, 2H), 6.89 (d, J = 9.0 Hz, 2H), 3.84 (s, 3H), 1.57 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 165.57, 162.91, 131.33, 124.49, 113.34, 80.47, 55.36, 28.23. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₁₂H₁₆O₃ 209.1172; Found 209.1170.

*Tert-butyl 2-bromobenzoate(4o):*⁷ⁱ Colorless liquid (31 mg, 24% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm; 7.67 (dd, J = 7.8, 1.8 Hz, 1H), 7.61 (dd, J = 7.8, 1.2 Hz, 1H), 7.34–7.31 (m, 1H), 7.27 (dd, J = 7.2, 1.8 Hz, 1H), 1.60 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 165.68, 134.32, 133.99, 131.79, 130.76, 127.04, 120.95, 82.55, 28.13. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₁₁H₁₃BrO₂ 257.0172; Found 257.0174. *Tert-butyl 3-nitrobenzoate (4p):*^{7j} Colorless liquid (23 mg, 21% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm; 8.78 (t, J = 2.4 1H), 8.38–8.36 (m, 1H), 8.31 (dt, J = 7.2, 1.2 Hz, 1H), 7.61 (t, J = 8.4 Hz, 1H), 1.62 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 163.48, 135.11, 133.75, 129.33, 126.87, 124.39, 82.60, 28.09. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₁₁H₁₃NO₄ 224.0917; Found 224.0914.

Diisopropyl isophthalate (4q):⁴ Colorless liquid (64 mg, 51% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm; 8.64 (t, J = 1.8 Hz, 1H), 8.18 (dd, J = 7.8, 1.8 Hz, 2H), 7.48 (t, J = 7.8 Hz, 1H), 5.28–5.21 (m, 2H), 1.36 (d, J = 6.6 Hz, 12H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 165.29, 133.47, 131.22, 130.49, 128.32, 68.78, 21.86. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₁₄H₁₈O₄ 251.1278; Found 251.1275.

Diisopropyl malonate (4r):^{7k} Colorless liquid (81 mg, 86% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm; 5.03–4.97 (m, 2H), 3.24 (s, 2H), 1.20 (d, J = 6.6 Hz, 12H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 166.12, 68.88, 42.23, 21.55. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₉H₁₆O₄ 189.1121; Found 189.1123.

*Ethyl 4-phenylbutanoate (4s):*⁷¹ Colorless liquid (83 mg, 86% yield). ¹H NMR (600 MHz, CDCl₃) δ ppm; 7.29 (t, J = 7.2 Hz, 2H), 7.20 (t, J = 7.8 Hz, 3H), 4.13 (q, J = 7.2 Hz, 2H), 2.66 (t, J = 7.8 Hz, 2H), 2.33 (t, J = 7.8 Hz, 2H), 1.97 (p, J = 7.8 Hz, 2H), 1.26 (t, J = 7.2 Hz, 4H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 173.46, 141.42, 128.47, 128.35, 125.94, 60.23, 35.14, 33.67, 26.54, 14.24. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₁₂H₁₆O₂ 193.1223; Found 193.1226.

*Isopropyl 2-(4-(4-chlorobenzoyl)phenoxy)-2-methylpropanoate (4t):*¹¹ White solid (144 mg, 80% yield), mp: 78–80 °C (lit 80–81 °C).^{1d 1}H NMR (600 MHz, CDCl₃) δ ppm; 7.71 (d, J = 8.4 Hz, 2H), 7.68 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.4 Hz, 2H), 6.85

(d, J = 9.0 Hz, 2H), 5.10–5.03 (m, 1H), 1.64 (s, 6H), 1.19 (d, J = 6.6 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ ppm; 194.16, 173.03, 159.70, 138.29, 136.40, 131.89, 131.11, 130.19, 128.49, 117.23, 79.39, 69.29, 25.34, 21.49. HRMS (ESI) m/z: ([M+H]⁺) Calcd for C₂₀H₂₁ClO₄ 361.1201; Found 361.1200.

References and notes (cited in the paper)

1. R. H. Dave, B. D. Hosangadi, Tetrahedron Letts. 1996, 37, 6375-6378.

2. S. Palaniappan, M.S. Ram, Green Chem. 2002, 4, 53-55.

3. S. P. Morcillo, A. J. Mota, R. Robles, J. Org. Chem. 2011, 76, 2277-2281.

4. R. Y. Jagadeesh, A. Brückner, M. Beller, J. Am. Chem. Soc. 2013, 135, 10776-10782.

(a) S. Gowrisankar, H. Neumann, M. Beller, *Angew. Chem. Int. Ed.* 2011, **123**, 5245-5249. (b) B.
A. Tschaen, G. A. Molander, *Org. Lett.* 2013, **15**, 500-503. (c) H. Liu, M. S. Eisen, *Eur. J. Org. Chem.* 2017, **2017**, 4852-4858. (d) X. F. Wu, C. Darcel, *Eur. J. Org. Chem.* 2009, **2009**, 1144-1147.

6. R. Gopinath, B. K. Patel, Org. Lett. 2000, 2, 577-579.

7. (a) A. P. Melissaris, M. H. Litt, J. Org. Chem. 1992, 57, 6998-6999. (b) M. J. Heying, E. M. Rockafellow, W. S. Jenks, Org. Lett. 2009, 11, 955-958. (c) S. Muthusamy, B. Gnanaprakasam, Tetrahedron Lett. 2005, 46, 635-638. (d) R. Shang, J. B. Li, S. L. Zhang, Q. X. Guo, Y. Fu, L. Liu, J. Am. Chem. Soc. 2009, 131, 5738-5739. (e) A. N. Rao, K. Ganesan, C. K. Shinde, Synth. Commun. 2012, 42, 2299-2308. (f) Y. Hayashi, S. Santoro, Y. Azuma, F. Himo, T. Ohshima, K. Mashima, J. Am. Chem. Soc. 2013, 135, 6192-6199. (g) G. Ma, H. J. Qiao, F. Yang, Y. T. Leng, Y. J. Wu, Appl. Organometal. Chem. 2014, 28, 44-47. (h) P, E. Eaton, R. M. Martin, J. Org. Chem. 1988, 53, 2728-2732. (i) J. W. Wrigglesworth, B. Cox, G. C. Lloyd-Jones, K. I. Booker-Milburn, Org. Lett. 2011, 13, 5326-5329. (j) W. C. Drewe, M. Beltran, R. Nanjunda, J. Med. Chem. 2008, 51, 7751-7767. (k) D. S. Bose, A. Satyender, H. B. Mereyala, Synthesis. 2006, 14, 2392-2396. (I) A. K. Ghosh, D. R. Nicponski, Org. Lett. 2011, 13, 4328-4331. (m) S. Santra, P. K. Hota, R. Bhattacharyya, ACS Catal. 2013, 3, 2776-2789. (n) A. Yokoyama, T. Maruyama, K. Tagami, I. Azumaya, T. Yokozawa, Org. Lett. 2008, 10, 3207-3210. (o) A. R. S. Ribeiro, P. M. Esteves, M. C. S. Mattos, S Synthesis. 2011, 5, 739-744. (p) G. Aridoss, K. K. Laali, J. Org. Chem. 2011, 19, 8088-8094. (q) A. C. Laungania, B. Breit, Chem. Commun. 2008, 0, 844-846. (r) K. A. Monk, R. Siles, K. G. Pinney, C. M. Garner, Tetrahedron Lett. 2003, 44, 3759–3761. (s) J. Magano, M. H. Chen, J. D. Clark, T. Nussbaumer, J. Org. Chem. 2006, 71, 7103-7105. (t) C. M. Kormos, N. E. Leadbeater, Synlett. 2007, 13, 2006–2010. (u) J. McNulty, J. J. Nair, A. Robertson, Org. Lett. 2007, 9, 4575-4578. (v) D. A. Watson, X. Fan, S. L. Buchwald, J. Org. Chem. 2008, 73, 7096-7101.

8. B. V. Tamhankar, U. V. Desai, R. B. Mane, P. P. Wadgaonkar, A. V. Bedekar, *Synth. Commun.* 2001, **31**, 2021-2027.

M. Minakawa, H. Baek, Y. M. A. Yamada, J. W. Han, Y. Uozumi, *Org. Lett.* 2013, **15**, 5798-5801.
A. K. Twibanire, T. B. Grindley, *Org. Lett.* 2011, **13**, 2988-2991.

11. E. Vitaku, B. R. Smith, D. T. Smith, J. T. Njardarson, Top US pharmaceutical products of 2013.

S21

S29

0 -10 180 170

- 169.99				52,40	-27.75	-16.49
° √ √ °						
		ant of a fill of the original state of the origina				
190 180 170 160 150	140 130 120	110 100 90 fl (ppm)	80 70 60	50 40	30 20	10 0 -1(

S85

