Supporting Information

Total Synthesis of (\pm)-Chondrosterin I Using Desymmetric Intramolecular Aldol Reaction

Yuichiro Kawamoto, Daiki Ozone, Toyoharu Kobayashi, and Hisanaka Ito*

School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1
Horinouchi, Hachioji, Tokyo 192-0392, Japan
itohisa@toyaku.ac.jp

Table of Contents

Experimental procedure S1
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of new compounds S8

General

All reactions involving air- and moisture-sensitive reagents were carried out using standard syringe-septum cap techniques. Unless otherwise noted, all solvents and reagents were obtained from commercial suppliers and used without further purification. Routine monitoring of reactions was carried out Merck silica gel 60 F254 TLC plates. Column chromatography was performed on Kanto Chemical Silica Gel 60N (spherical, neutral 60-230 $\mu \mathrm{m}$) with the solvents indicated. Melting points were taken on a Yanako MP-S3 micro melting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured with a JASCO ECZ $400 \mathrm{~S}(400 \mathrm{MHz})$ spectrometer. Chemical shifts were expressed in ppm using $\mathrm{CHCl}_{3}\left(7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H} \mathrm{NMR}, 77.0 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$ NMR) in CDCl_{3} as internal standard. Infrared spectral measurements were carried out with a JASCO FT/IR-4700 and only noteworthy absorptions were listed. HRMS spectra measured on a Micromass LCT spectrometer. X-ray crystallographic analysis was taken with Burker APEX2 Ultra TXS.

Methyl 4,4-dimethyl-2-(1-nitropropyl)cyclopentane-1-carboxylate (10)

To a stirred solution of $9(2.00 \mathrm{~g}, 13.0 \mathrm{mmol})$ in 1-nitropropane $(1.20 \mathrm{ml}, 13.4 \mathrm{mmol})$ were added dropwise TBAF (1.0 M in THF, $13.0 \mathrm{ml}, 13.0 \mathrm{mmol}$) at room temperature under Ar atmosphere, and the reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature the reaction mixture was quenched with 1 M HCl , and extracted with ether. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane-AcOEt, 5:1) to afford $10(2.90 \mathrm{~g}, 92 \%)$ as a colorless oil and a mixture of 2 diastereomers. IR (neat) 2955, 2871, 1737, 1550, 1463, 1437, $1370,1314,1261,1245,1199,1171,808 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88-0.96(3 \mathrm{H}, \mathrm{m})$, $0.99-1.05(6 \mathrm{H}, \mathrm{m}), 1.21-1.42(1 \mathrm{H}, \mathrm{m}), 1.62-2.04(5 \mathrm{H}, \mathrm{m}), 2.61-3.05(2 \mathrm{H}, \mathrm{m}), 3.66,3.71(3 \mathrm{H}, \mathrm{s})$ 4.29-4.41 (1H, m); ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.4,10.5,25.3,25.4,28.6,29.0,29.5$ (overlapping of 2 diastereomers), $38.4,38.6,43.1,44.2,45.0,45.2,45.2,45.3,46.2,46.4,52.0$, 52.1, 93.7, 93.9, 175.5, 175.6; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$266.1368. Found 266.1361.

Methyl 4,4-dimethyl-2-propionylcyclopentane-1-carboxylate (8)

To a stirred solution of $\mathbf{1 0}(1.00 \mathrm{~g}, 4.11 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{ml})$ was added dropwise sodium methoxide (28% in $\mathrm{MeOH}, 1.50 \mathrm{ml}, 6.17 \mathrm{mmol}$) at room temperature under Ar atmosphere, the reaction mixture was stirred at the same temperature for 30 min , and then was bubbled ozone at $-78{ }^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was quenched with dimethyl sulfide and allowed to room temperature for over night. The mixture was partitioned between AcOEt and sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution, the combined organic layer was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The resultant residue was purified by silica gel column chromatography (hexane-AcOEt, $10: 1)$ to afford $\mathbf{8}(750 \mathrm{mg}, 86 \%)$ as a colorless oil. IR (neat) $2954,2870,1734,1714,1462,1437$, $1369,1350,1248,1200,1175,1117 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.94-1.08(9 \mathrm{H}, \mathrm{m}), 1.43-$ $1.52(1 \mathrm{H}, \mathrm{m}), 1.64-1.72(1 \mathrm{H}, \mathrm{m}), 1.77-1.88(2 \mathrm{H}, \mathrm{m}), 2.37-2.53(2 \mathrm{H}, \mathrm{m}), 3.30-3.44(2 \mathrm{H}, \mathrm{m}), 3.63$ $(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.6,28.8,28.9,35.3,39.5,44.2,44.3,44.8,51.8,53.4$, 175.8, 211.8; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$235.1310. Found 235.1304.
(3aR,6aS)-2,5,5-Trimethyltetrahydropentalene-1,3(2H,3aH)-dione (7)

To a stirred solution of $\mathbf{8}(135 \mathrm{mg}, 0.640 \mathrm{mmol})$ in THF (5 ml) was added potassium tert-butoxide (1.0 M in THF, $1.90 \mathrm{ml}, 1.90 \mathrm{mmol}$) at room temperature under Ar atmosphere, and the mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 12 h . After cooling to room temperature the reaction mixture was quenched with 1 M HCl , and extracted with AcOEt. The combined organic layer was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The resultant residue was purified by silica gel column chromatography (AcOEt, 100\%) to afford $7(85 \mathrm{mg}, 74 \%)$ as a colorless amorphous. IR (neat) $2955,2867,1775,1732,1575,1465,1446,1395,1360,1245,1220,1111$, $1084,983 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.99(6 \mathrm{H}, \mathrm{s}), 1.43(2 \mathrm{H}, \mathrm{dd}, J=13.2,6.0 \mathrm{~Hz}), 1.62$ $(3 \mathrm{H}, \mathrm{s}), 1.80(2 \mathrm{H}, \mathrm{dd}, J=13.2,9.2 \mathrm{~Hz}), 3.20(2 \mathrm{H}, \mathrm{ddd}, J=12.0,6.2,5.6 \mathrm{~Hz}), 10.68(1 \mathrm{H}, \mathrm{br}) ;{ }^{13} \mathrm{C}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 5.8,28.1,28.5,42.1,43.5,48.1,111.0,201.2 ;$ HRMS (ESI-TOF)

Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$181.1229. Found 181.1222.
($2 r, 3 \mathrm{a} R, 6 \mathrm{a} S$)-2-Allyl-2,5,5-trimethyltetrahydropentalene-1,3(2H,3aH)-dione (11) and (3aR,6aS)-3-(Allyloxy)-2,5,5-trimethyl-4,5,6,6a-tetrahydropentalen-1(3aH)-one (12)

To a stirred solution of $7(470 \mathrm{mg}, 2.61 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(50 \mathrm{ml})$ was added allyl bromide $(0.442$ $\mathrm{ml}, 5.22 \mathrm{mmol}$) and potassium fluoride ($758 \mathrm{mg}, 13.1 \mathrm{mmol}$) at room temperature under Ar atmosphere, and the mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature the reaction mixture was quenched with 1 M HCl , and extracted with AcOEt. The combined organic layer was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The resultant residue was purified by silica gel column chromatography (hexane-AcOEt, 3:1) to afford $\mathbf{1 1}$ (350 mg , $61 \%)$ as a yellow oil and $\mathbf{1 2}(185 \mathrm{mg}, 32 \%)$ as an orange oil. A solution of $\mathbf{1 2}(50.0 \mathrm{mg}, 0.227$ mmol $)$ in DMF (2 ml) was stirred at $110{ }^{\circ} \mathrm{C}$ for 48 h under Ar atmosphere. After cooling to room temperature the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and extracted with diethyl ether. The combined organic layer was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The resultant residue was purified by silica gel column chromatography (hexane-AcOEt, 10:1) to afford $1 \mathbf{1 1}$ (47 $\mathrm{mg}, 94 \%)$ as a yellow oil.

Data for 11
IR (neat) 2956, 2932, 2868, 1760, 1719, 1464, 1450, 1370, 1209, $924 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.73(3 \mathrm{H}, \mathrm{s}), 0.98(3 \mathrm{H}, \mathrm{s}), 1.10(3 \mathrm{H}, \mathrm{s}), 1.74-1.88(4 \mathrm{H}, \mathrm{m}), 2.28(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz})$, 3.26-3.35 (2H, m), 5.00-5.12 (2H, m), 5.51-5.63 (1H, m); ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.2$, $27.4,27.8,40.8,42.4,44.6,51.6,59.6,120.0,131.0,218.6$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{2}$ $[\mathrm{M}-\mathrm{H}]^{-}$219.1385. Found 219.1390.

Data for $\mathbf{1 2}$
IR (neat) 2953, 2864, 1686, 1627, 1388, 1336, 1285, 1240, 1222, 1124, 977, $935 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.99(3 \mathrm{H}, \mathrm{s}), 1.00(3 \mathrm{H}, \mathrm{s}), 1.37(1 \mathrm{H}, \mathrm{dd}, J=12.0,8.0 \mathrm{~Hz}), 1.43(1 \mathrm{H}, \mathrm{dd}, J=$ $12.8,8.0 \mathrm{~Hz}), 1.61(3 \mathrm{H}, \mathrm{s}), 1.72-1.89(2 \mathrm{H}, \mathrm{m}), 3.01-3.09(1 \mathrm{H}, \mathrm{m}), 3.30-3.38(1 \mathrm{H}, \mathrm{m}), 4.63-4.73$
$(2 \mathrm{H}, \mathrm{m}), 5.25-5.40(2 \mathrm{H}, \mathrm{m}), 5.90-6.01(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 6.3,27.7,28.5$, 41.7, 43.3, 43.9, 43.9, 51.1, 70.1, 113.8, 117.8, 132.3, 185.5, 207.9; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$243.1361. Found 243.1352.
tert-Butyl (E)-4-((2r,3aR,6aS)-2,5,5-trimethyl-1,3-dioxooctahydropentalen-2-yl)but-2-enoate (13)

To a stirred suspension of Grubbs II catalyst ($58.0 \mathrm{mg}, 0.0680 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at reflux under Ar atmosphere was added 11 ($300 \mathrm{mg}, 1.36 \mathrm{mmol}$) and tert-butyl acrylate $(0.990 \mathrm{ml}, 6.80 \mathrm{mmol})$, and the suspension was stirred at the same temperature for 14 h . After cooling to room temperature the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and extracted with CHCl_{3}. The combined organic layer was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The resultant residue was purified by silica gel column chromatography (hexane-AcOEt, 7:1) to afford $\mathbf{1 3}$ (356 mg , 82%) as a white crystal. Mp 90-93 ${ }^{\circ} \mathrm{C}$; IR (KBr) 2957, 2934, 1757, 1714, 1655, 1366, 1336, 1301, 1280, 1167, 1151, 1132, 1029, $981 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.75(3 \mathrm{H}, \mathrm{s}), 0.98$ $(3 \mathrm{H}, \mathrm{s}), 1.13(3 \mathrm{H}, \mathrm{s}), 1.43(9 \mathrm{H}, \mathrm{s}), 1.74-1.90(4 \mathrm{H}, \mathrm{m}), 2.37(2 \mathrm{H}, \mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}), 3.26-3.35$ $(2 \mathrm{H}, \mathrm{m}), 5.71(1 \mathrm{H}, \mathrm{dt}, J=15.2,1.2 \mathrm{~Hz}), 6.50-6.59(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.8$, $27.3,27.8,28.0,39.7,40.8,44.7,51.6,58.5,80.5,127.6,139.1,164.7,218.0$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 343.1885$. Found 343.1878.
tert-Butyl 4-((2r,3aR,6aS)-2,5,5-trimethyl-1,3-dioxooctahydropentalen-2-yl)butanoate (6)

A suspension of $\mathbf{1 3}(280 \mathrm{mg}, 0.873 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(47 \mathrm{mg}, 0.0437 \mathrm{mmol})$ in EtOH was stirred at room temperature for 2 h under H_{2} atmosphere. The insoluble material was removed by filtration, and concentrated in vacuo to afford $\mathbf{6}(280 \mathrm{mg}, 98 \%)$ as a pink oil. IR (neat) 2961,

2930, 2868, 1722, 1712, 1366, 1260, 1148, $1073 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.70(3 \mathrm{H}$, s), $0.97(3 \mathrm{H}, \mathrm{s}), 1.09(3 \mathrm{H}, \mathrm{s}), 1.38(9 \mathrm{H}, \mathrm{s}), 1.41-1.61(4 \mathrm{H}, \mathrm{m}), 1.73-1.91(4 \mathrm{H}, \mathrm{m}), 2.05-2.16(2 \mathrm{H}$, m), 3.32-3.45 (2H, m); ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.4,19.5,27.4,27.8,28.0,34.9,36.8$, $40.8,44.5,51.3,58.9,80.7,171.9,218.6$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 345.2042. Found 345.2036.
tert-Butyl (3aS,7aR)-2,2,4-trimethyl-7-oxo-1,2,3,3a,5,6,7,7a-octahydro-6aHcyclopenta $[a]$ pentalene-6a-carboxylate (15)

To a stirred solution of $\mathbf{6}(20 \mathrm{mg}, 0.0620 \mathrm{mmol})$ in THF $(1 \mathrm{ml})$ was added potassium tert-butoxide (1.0 M in THF, $0.200 \mathrm{ml}, 0.200 \mathrm{mmol}$) at $-20{ }^{\circ} \mathrm{C}$ under Ar atmosphere, and the mixture was stirred at the same temperature for 2 h . The reaction mixture was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution, and extracted with AcOEt. The combined organic layer was washed with brine, dried over MgSO_{4}, and concentrated in vacuo to afford the crude 14. To a stirred solution of the crude 14 and DMAP ($10 \mathrm{mg}, 0.0819 \mathrm{mmol}$) in pyridine $(0.5 \mathrm{ml})$ was added $\mathrm{POCl}_{3}(0.0700 \mathrm{ml}$, 0.751 mmol) at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at $90{ }^{\circ} \mathrm{C}$ for 15 h . After cooling to room temperature the reaction mixture was quenched with sat. NaHCO_{3} aqueous solution, acidified with 1 M HCl , and extracted with AcOEt . The combined organic layer was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The resultant residue was purified by silica gel column chromatography (hexane-AcOEt, 10:1) to afford $15(15 \mathrm{mg}, 79 \%)$ as a pale yellow crystal. Mp 72-75 ${ }^{\circ} \mathrm{C}$; IR (KBr) 3449, 3000, 2928, 2867, 1712, 1465, 1444, 1367, 1246, 1221, 1133, 1095, $844,827 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.95(3 \mathrm{H}, \mathrm{s}), 1.08(3 \mathrm{H}, \mathrm{s}), 1.46(9 \mathrm{H}, \mathrm{s}), 1.41-1.52$ $(2 \mathrm{H}, \mathrm{m}), 1.76(3 \mathrm{H}, \mathrm{s}), 1.60-1.87(2 \mathrm{H}, \mathrm{m}), 1.95-2.05(1 \mathrm{H}, \mathrm{m}), 2.16-2.30(2 \mathrm{H}, \mathrm{m}), 2.87-3.10(2 \mathrm{H}$, m), 3.28-3.37 ($1 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.2,26.4,27.9,28.0,34.1,40.0,40.3$, 43.3, 43.6, 45.1, 57.7, 72.0, 81.9, 137.7, 138.6, 172.4, 214.8; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$327.1936. Found 327.1934.
tert-Butyl (3aS,3bR,6aS,7aS)-3a-hydroxy-5,5,7a-trimethyl-7-oxodecahydro-1Hcyclopenta $[a]$ pentalene-3-carboxylate (16)

To a stirred solution of $\mathbf{6}(80 \mathrm{mg}, 0.248 \mathrm{mmol})$ in THF (4 ml) was added potassium tert-butoxide (1.0 M in THF, $0.750 \mathrm{ml}, 0.750 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$ under Ar atmosphere, and the mixture was stirred at the same temperature for 2 h . The reaction mixture was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution, and extracted with AcOEt. The combined organic layer was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The resultant residue was purified by silica gel column chromatography (hexane-AcOEt, 8:1) to afford $\mathbf{1 6}$ ($60 \mathrm{mg}, 75 \%$) as a mixture of diastereomers (3:1).

Data for less polar diastereomer (white crystal)
Mp 103-105 ${ }^{\circ} \mathrm{C}$; IR (KBr) 3568, 2932, 1712, 1455, 1383, 1316, 1255, 1130, 1074, 1030, $845 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.94(3 \mathrm{H}, \mathrm{s}), 1.03(3 \mathrm{H}, \mathrm{s}), 1.10(3 \mathrm{H}, \mathrm{s}), 1.50(9 \mathrm{H}, \mathrm{s}), 1.41-1.73$ $(5 \mathrm{H}, \mathrm{m}), 1.78-1.96(3 \mathrm{H}, \mathrm{m}), 2.72-2.80(1 \mathrm{H}, \mathrm{m}), 2.80(1 \mathrm{H}, \mathrm{s}), 2.90-3.03(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.3,27.2,27.9,28.2,29.1,36.8,40.8,43.0,43.6,48.8,52.5,56.7,59.2,81.9$, 85.4, 173.4, 224.7; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 345.2042$. Found 345.2032. Data for polar diastereomer (white crystal)

Mp 104-108 ${ }^{\circ} \mathrm{C}$; IR (KBr) 3478, 2955, 2868, 1732, 1706, 1454, 1380, 1302, 1258, 1219, 1157, $1101 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.96(3 \mathrm{H}, \mathrm{s}), 1.07(3 \mathrm{H}, \mathrm{s}), 1.20(3 \mathrm{H}, \mathrm{s}), 1.48(9 \mathrm{H}, \mathrm{s})$, 1.41-1.74 (4H, m), 1.81-2.15 ($4 \mathrm{H}, \mathrm{m}$), 2.47-2.53 ($1 \mathrm{H}, \mathrm{m}$), 2.88-3.06 ($2 \mathrm{H}, \mathrm{m}$), $3.64(1 \mathrm{H}, \mathrm{s}),{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.9,23.8,28.2,28.7,36.2,41.0,42.2,42.3,46.0,52.6,56.8,60.2$, 81.8, 86.0, 172.2, 222.6; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 345.2042$. Found 345.2037.
tert-Butyl (3bR,6aS,7aS)-5,5,7a-trimethyl-7-oxo-2,3b,4,5,6,6a,7,7a-octahydro-1Hcyclopenta $[a]$ pentalene-3-carboxylate (19)

To a stirred solution of $\mathbf{1 6}(20 \mathrm{mg}, 0.0650 \mathrm{mmol})$ in pyridine $(1 \mathrm{ml})$ was added $\mathrm{SOCl}_{2}(0.0500 \mathrm{ml}$, 0.650 mmol) at room temperature under Ar atmosphere, and the mixture was stirred at the same temperature for 16 h . The reaction mixture was quenched with 1 M HCl , and extracted with ether. The combined organic layer was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The resultant residue was purified by silica gel column chromatography (hexane-AcOEt, 12:1) to afford 19 (16 mg, 81\%) as a colorless oil. IR (neat) $3434,2956,1739,1702,1655,1368,1168$, $1110 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.99(3 \mathrm{H}, \mathrm{s}), 1.13(3 \mathrm{H}, \mathrm{s}), 1.39(3 \mathrm{H}, \mathrm{s}), 1.51(9 \mathrm{H}, \mathrm{s})$, $1.53-1.69(2 H, m), 1.76-1.82(1 H, m), 1.90-2.05(3 H, m), 2.66(1 H, d d, J=16,8.4 \mathrm{~Hz}), 2.77-2.87$ $(1 \mathrm{H}, \mathrm{m}), 3.18(1 \mathrm{H}$, ddd $J=9.6,9.6,9.6 \mathrm{~Hz}), 3.88(1 \mathrm{H}, \mathrm{ddd}, J=9.6,9.6,9.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.7,26.3,28.0,28.2,32.8,35.6,42.1,43.3,45.9,46.3,57.8,63.4,80.3,128.9$, 164.4, 164.7, 220.9; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$327.1936. Found 327.1927.
(3b $R, 6 \mathrm{a} S, 7 \mathrm{a} S$)-5,5,7a-Trimethyl-7-oxo-2,3b,4,5,6,6a,7,7a-octahydro- 1 H cyclopenta $[a]$ pentalene-3-carboxylic acid (1)

To a stirred solution of $19(60 \mathrm{mg}, 0.197 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{ml})$ was added TFA $(0.23 \mathrm{ml})$ at the room temperature, and the reaction mixture was stirred at the same temperature for 3 h . After concentration in vacuo, the residue was purified by silica gel column chromatography (hexaneAcOEt, 3:1) to afford $1(45 \mathrm{mg}, 92 \%)$ as a white crystal. Mp 186-189 ${ }^{\circ} \mathrm{C}$; IR (KBr) 2957, 1737, $1683,1432,1369,1336,1296,1279,1207,1119,1075,914,714 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.00(3 \mathrm{H}, \mathrm{s}), 1.14(3 \mathrm{H}, \mathrm{s}), 1.43(3 \mathrm{H}, \mathrm{s}), 1.57-1.70(2 \mathrm{H}, \mathrm{m}), 1.81-1.87(1 \mathrm{H}, \mathrm{m}), 1.95-2.10$ $(3 \mathrm{H}, \mathrm{m}), 2.72(1 \mathrm{H}, \mathrm{dd}, J=16.0,8.8 \mathrm{~Hz}), 2.83-2.95(1 \mathrm{H}, \mathrm{m}), 3.22(1 \mathrm{H}, \mathrm{ddd}, J=9.6,9.6,9.6 \mathrm{~Hz})$, $3.95(1 \mathrm{H}$, ddd, $J=9.6,9.6,9.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.8,26.5,28.2,32.5,35.6$, $42.2,43.5,46.1,46.1,58.2,63.8,126.6,170.2,170.2,220.2$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]^{-}$247.1334. Found 247.1340.

X : parts per Million : Proton

X : parts per Million : Proton

X : parts per Million : Proton

X : parts per Million : Proton

X : parts per Million : Proton

X : parts per Million : Proton

X : parts per Million : Proton

X : parts per Million : Proton

