Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information for

# Chiral Selenide-Catalyzed Enantioselective Synthesis of Trifluoromethylthiolated 2,5-Disubstituted Oxazolines

Tian Qin, Quanbin Jiang, Jieying Ji, Jie Luo and Xiaodan Zhao\*

Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China

E-mail: zhaoxd3@mail.sysu.edu.cn

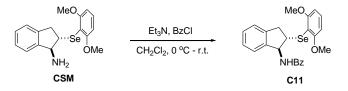
# Contents

| 1. | General considerations                                                 | <b>S</b> 2  |
|----|------------------------------------------------------------------------|-------------|
| 2. | Experimental procedures, characterization data, and HPLC traces        | <b>S</b> 3  |
|    | 2.1 Preparation of catalysts                                           | <b>S</b> 3  |
|    | 2.2 Preparation of N-allylamide substrates                             | <b>S</b> 5  |
|    | 2.3 Chiral selenide catalyzed asymmetric CF <sub>3</sub> S cyclization | <b>S</b> 9  |
|    | 2.4 Transformation of the product                                      | S26         |
| 3. | NMR spectra for new compounds                                          | S27         |
| 4. | X-ray crystallographic data of (R)-4                                   | S57         |
| 5. | References                                                             | <b>S</b> 60 |

# **1. General considerations**

Unless otherwise noted, commercial reagents were purchased from Energy Chemical, Ark, *J & K* or Adamas and used without further purification. The solvents were dried and distilled prior to use by the literature methods. Hexanes and isopropanol for HPLC were purchased from Fisher Scientific and were HPLC grade without a note. All reactions were carried out using oven-dried glassware and all catalytic reactions proceeded without special care. Analytical thin layer chromatography was performed on 0.20 mm silica gel HSGF-254 plates (Huanghai, China), and visualized under 254 nm UV light or by staining with potassium permanganate. Column chromatography was performed on 200-300 mesh silica gel (Huanghai, China).

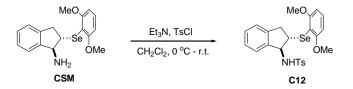
<sup>1</sup>H, <sup>19</sup>F and <sup>13</sup>C NMR spectra were recorded on a Bruker Ascend 400MHz spectrometer at ambient temperature. <sup>1</sup>H NMR spectra are referred to the TMS signal and <sup>13</sup>C NMR spectra are referred to the residual solvent signal. Data for <sup>1</sup>H NMR are reported as follows: chemical shifts ( $\delta$  ppm), multiplicities (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constants (Hz), integration. Data for <sup>13</sup>C NMR and <sup>19</sup>F NMR are reported as follows: chemical shift ( $\delta$  ppm), multiplicity (q = quartet), coupling constant (Hz).


High resolution mass spectra of novel compounds were recorded on LTQ Orbitrap Elite LC/MS (ESI), or MAT 95XP (Thermo, EI) at analytical center of Sun Yat-Sen University. Melting points were determined on WRS-1B melting point apparatus made by Shanghai Precision Instrument Co. Ltd.. Enantiomeric excesses were determined by HPLC analysis on Shimadzu HPLC. The Shimadzu HPLC units including the following instruments: LC-20AT pump, SPD-M20A detector and Daicel Chiralpak IA, OJ-H, OD-H, AD-H and IC columns.

All the racemic products were obtained by using PhSePh as the catalyst at -20  $^{\circ}$ C or 0  $^{\circ}$ C without note.

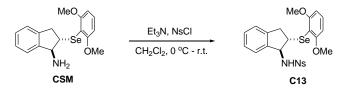
## 2. Experimental procedures, characterization data, and HPLC traces

#### 2.1 Preparation of catalysts


Catalysts **C1-C10** were prepared according to the literature method.<sup>1</sup> All the above compounds are known and were identified by comparison of their NMR data with those reported in the literature. Catalysts **C11**, **C12**, and **C13** were prepared based on the known procedure.<sup>1</sup>



Compound **CSM** was prepared according to the literature method.<sup>2</sup>

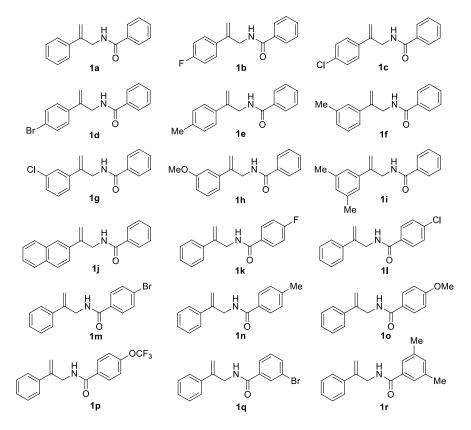

To a solution of **CSM** (1.0 mmol, 1.0 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (5 mL) were added Et<sub>3</sub>N (1.3 mmol, 1.3 equiv) and BzCl (1.2 mmol, 1.2 equiv) at 0 °C. The solution was warmed up to room temperature and then stirred overnight. The resulting mixture was treated with water (5 mL) and extracted with DCM (5 mL  $\times$  3). The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography (eluent: PE/EtOAc = 5/1, v/v) to afford **C11** as a white solid.

*N*-((1*S*,2*S*)-2-((2,6-Dimethoxyphenyl)selanyl)-2,3-dihydro-1H-inden-1-yl)benzami de (C11): 0.33 g, 72% yield.  $[\alpha]^{25}_{D} = +105.4$  (c = 0.2, CHCl<sub>3</sub>). White solid. mp: 138.5 – 140.7 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.66 – 7.64 (m, 2H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.39 (t, *J* = 7.5 Hz, 2H), 7.28 (s, 1H), 7.20 – 7.16 (m, 4H), 6.50 (d, *J* = 8.3 Hz, 2H), 6.22 (d, *J* = 7.9 Hz, 1H), 5.64 (t, *J* = 8.2 Hz, 1H), 4.05 (dd, *J* = 16.9, 8.2 Hz, 1H), 3.81 (s, 6H), 3.32 (dd, *J* = 16.1, 7.9 Hz, 1H), 3.12 – 3.00 (m, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.19, 161.02, 143.20, 141.61, 134.63, 131.55, 130.34, 128.54, 128.09, 127.21, 127.12, 124.42, 124.24, 105.69, 104.36, 62.28, 56.40, 45.31, 38.40. HR-ESI-MS *m*/*z* calcd. for C<sub>24</sub>H<sub>22</sub>NO<sub>3</sub>Se [M-H]<sup>-</sup>: 452.0765, found: 452.0774.



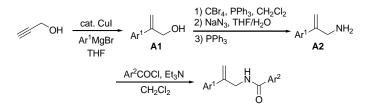
To a solution of **CSM** (1.0 mmol, 1.0 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (5 mL) were added Et<sub>3</sub>N (1.3 mmol, 1.3 equiv) and TsCl (1.2 mmol, 1.2 equiv) at 0 °C. The solution was warmed up to room temperature and then stirred overnight. The resulting mixture was treated with water (5 mL) and extracted with DCM (5 mL  $\times$  3). The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography (eluent: PE/EtOAc = 5/1, v/v) to afford C12 as a white solid.

*N*-((1*S*,2*S*)-2-((2,6-Dimethoxyphenyl)selanyl)-2,3-dihydro-1H-inden-1-yl)-4-meth ylbenzenesulfonamide (C12): 0.22 g, 43% yield.  $[\alpha]^{25}_{D} = -0.1$  (c = 0.2, CHCl<sub>3</sub>). White solid. mp: 144.1 – 147.3 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.61 (d, *J* = 8.3 Hz, 2H), 7.31 (t, *J* = 8.3 Hz, 1H), 7.25 (d, *J* = 4.8 Hz, 2H), 7.21 – 7.17 (m, 1H), 7.15 – 7.07 (m, 3H), 6.59 (d, *J* = 8.3 Hz, 2H), 4.82 (d, *J* = 6.4 Hz, 1H), 4.57 (t, *J* = 5.7 Hz, 1H), 4.04 – 3.99 (m, 1H), 3.83 (s, 6H), 3.30 (dd, *J* = 16.8, 7.4 Hz, 1H), 2.84 (dd, *J* = 16.8, 5.5 Hz, 1H), 2.43 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  161.08, 143.43, 142.14, 141.28, 137.32, 130.46, 129.71, 128.70, 127.66, 127.42, 124.96, 124.78, 106.05, 104.34, 65.12, 56.35, 45.42, 38.22, 21.73. HR-ESI-MS *m*/*z* calcd. for C<sub>24</sub>H<sub>24</sub>NO<sub>4</sub>SSe [M-H]<sup>-</sup>: 502.0591, found: 502.0599.



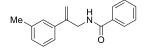

To a solution of **a** (1.0 mmol, 1.0 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (5 mL) were added Et<sub>3</sub>N (1.3 mmol, 1.3 equiv) and NsCl (1.2 mmol, 1.2 equiv) at 0 °C. The solution was warmed up to room temperature and then stirred overnight. The resulting mixture was treated with water (5 mL) and extracted with DCM (5 mL  $\times$  3). The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated *in vacuo*. The resulting residue

was purified by flash column chromatography (eluent: PE/EtOAc = 5/1, v/v) to afford **C13** as a white solid.

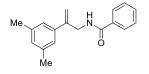

*N*-((1*S*,2*S*)-2-((2,6-Dimethoxyphenyl)selanyl)-2,3-dihydro-1H-inden-1-yl)-4-nitro benzenesulfonamide (C13): 0.29 g, 52% yield.  $[\alpha]^{25}_{D} = +25.8$  (c = 0.2, CHCl<sub>3</sub>). Yellow solid. mp: 162.1 – 165.2 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.27 – 8.25 (m, 2H), 7.93 – 7.91 (m, 2H), 7.34 – 7.27 (m, 2H), 7.21 (m, 2H), 7.14 (d, *J* = 7.2 Hz, 1H), 6.59 (d, *J* = 8.3 Hz, 2H), 5.16 (d, *J* = 7.0 Hz, 1H), 4.71 (t, *J* = 6.6 Hz, 1H), 3.95 (dt, *J* = 7.5, 6.5 Hz, 1H), 3.83 (s, 6H), 3.28 (dd, *J* = 16.7, 7.6 Hz, 1H), 2.85 (dd, *J* = 16.6, 6.6 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  160.77, 150.08, 146.20, 141.82, 140.84, 130.47, 128.96, 128.82, 127.62, 124.89, 124.79, 124.27, 105.82, 104.47, 65.78, 56.37, 45.15, 38.20. HR-ESI-MS *m*/*z* calcd. for C<sub>23</sub>H<sub>21</sub>N<sub>2</sub>O<sub>6</sub>SSe [M-H]<sup>-</sup>: 533.0286, found: 533.0295.

## 2.2 Preparation of *N*-allylamide substrates

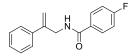



Substrates **1a**,<sup>3</sup> **1b**,<sup>3</sup> **1c**,<sup>3</sup> **1d**,<sup>3</sup> **1e**,<sup>3</sup> **1g**,<sup>3</sup> **1h**,<sup>3</sup> **1j**,<sup>3</sup> **1m**<sup>4</sup> and **1o**<sup>4</sup> were prepared according to the literature methods. All the above compounds are known and were identified by comparison of their NMR data with those reported in the literature.

General procedure for the synthesis of compounds **1f**, **1i**, **1k**, **1l**, **1n**, **1p**, **1q** and **1r** based on the known procedure.<sup>3</sup>

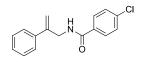



To an oven-dried 100 mL Schlenk flask equipped with a magnetic stir bar was added Ar<sup>1</sup>MgBr (1.0 M in THF, 10 mL, 2.5 equiv) under N<sub>2</sub> atmosphere. The cuprous iodide (0.6 mmol, 0.15 equiv) was added at 0 °C. The resulting mixture was stirred at 0 °C for 30 min, after which a solution of propargyl alcohol (4.0 mmol, 1.0 equiv) in dry THF (15 mL) was added slowly at 0 °C. The reaction mixture was heated to reflux and stirred for 24 h. Themixture was cooled to room temperature, saturated NH<sub>4</sub>Cl solution was added dropwise carefully. The mixture was extracted with EtOAc (10 mL × 3). The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (eluent: PE/EtOAc = 10:1, v/v) to give the target compound A1.

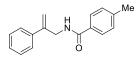

To an oven-dried 25 mL Schlenk flask equipped with a magnetic stir bar were added A1 (2.0 mmol, 1.0 equiv) triphenylphosphine (2.6 mmol, 1.3 equiv) and CH<sub>2</sub>Cl<sub>2</sub> (5 mL) at room temperature. After the solution was cooled to 0 °C, CBr<sub>4</sub> (2.4 mmol, 1.2 equiv) was added. The resulting mixture was stirred at 0 °C for 3h. The solvent was concentrated *in vacuo*. The residue was redissolved in THF/H<sub>2</sub>O (4/1, v/v, 10 mL) and treated with NaN<sub>3</sub> (2.6 mmol, 1.3 equiv) for 1 h. Then, triphenylphosphine (3.0 mmol, 1.5 equiv) was added. After the mixture was stirred at room temperature for 12 h, the organic solvent of the mixture was *in vacuo*. The residual aqueous layer was basified by adding solid NaOH and extracted with CH<sub>2</sub>Cl<sub>2</sub> (10 mL × 3). The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated *in vacuo* to get crude A2 without further purification. To an oven-dried 25 mL Schlenk flask equipped with a magnetic stir bar were added the obtained A2 (1.0 mmol, 1.0 equiv) triethylamine and  $CH_2Cl_2$  (5 mL) at 0 °C. Then, a solution of Ar<sup>2</sup>COCl (1.1 mmol, 1.1 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (10 mL) was added. The reaction was stirred for 2 h at room temperature and quenched by saturated NH<sub>4</sub>Cl solution. The mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (10 mL x 3). The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated *in vacuo*. The crude product was purified by recrystallized from PE/CH<sub>2</sub>Cl<sub>2</sub> to afford the desired product.



*N*-(2-(M-tolyl)allyl)benzamide (1f): 0.38 g, 80% yield. White solid. mp: 92.4 – 94.1 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.72 – 7.70 (m, 2H), 7.50 – 7.46 (m, 1H), 7.42 – 7.38 (m, 1H), 7.29 – 7.23 (m, 3H), 7.13 (d, J = 7.0 Hz, 1H), 6.18 (s, 1H), 5.50 (s, 1H), 5.30 (s, 1H), 4.53 (d, J = 5.5 Hz, 2H), 2.36 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 167.50, 144.47, 138.47, 138.34, 134.64, 131.62, 129.05, 128.71, 128.64, 127.02, 126.99, 123.33, 113.99, 43.97, 21.63. HR-ESI-MS *m/z* calcd. for C<sub>17</sub>H<sub>18</sub>NO [M+H]<sup>+</sup>: 252.1383, found: 252.1379.



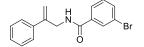

*N*-(2-(3,5-Dimethylphenyl)allyl)benzamide (1i): 0.19 g, 61% yield. White solid. mp: 96.0–97.4 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.73 – 7.71 (m, 2H), 7.50 – 7.46 (m, 1H), 7.43 – 7.39 (m, 2H), 7.09 (s, 2H), 6.96 (s, 1H), 6.16 (s, 1H), 5.48 (s, 1H), 5.28 (s, 1H), 4.51 (d, *J* = 5.5 Hz, 2H), 2.32 (s, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.51, 144.50, 138.55, 138.12, 134.63, 131.52, 129.86, 128.62, 127.02, 124.07, 113.53, 43.92, 21.45. HR-ESI-MS *m*/*z* calcd. for C<sub>18</sub>H<sub>20</sub>NO [M+H]<sup>+</sup>: 266.1539, found: 266.1532.



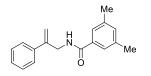

**4-Fluoro-***N***-(2-phenylallyl)benzamide** (**1k**): 0.17 g, 72% yield. White solid. mp: 148.4 – 149.4 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.73 – 7.69 (m, 2H), 7.49 – 7.47 (m,

2H), 7.39 - 7.29 (m, 3H), 7.10 - 7.06 (m, 2H), 6.10 (s, 1H), 5.53 (s, 1H), 5.32 (s, 1H), 4.54 (d, J = 5.5 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  164.82 (d, J = 251.9 Hz), 163.56, 144.25, 138.37, 130.69 (d, J = 3.1 Hz), 129.36 (d, J = 8.9 Hz), 128.73, 128.28, 126.17, 115.69 (d, J = 21.9 Hz), 114.21, 43.91. HR-ESI-MS *m*/*z* calcd. for C<sub>16</sub>H<sub>15</sub>FNO [M+H]<sup>+</sup>: 256.1132, found: 256.1127.




**4-Chloro-***N***-(2-phenylallyl)benzamide (11):** 0.16 g, 64% yield. White solid. mp: 167.5–167.9 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.65 – 7.62 (m, 2H), 7.48 – 7.46 (m, 2H), 7.38 – 7.28 (m, 5H), 6.17 (s, 1H), 5.52 (s, 1H), 5.31 (s, 1H), 4.53 (d, *J* = 5.6 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 166.46, 144.19, 138.33, 137.86, 132.88, 128.92, 128.75, 128.48, 128.31, 126.18, 114.30, 43.93. HR-ESI-MS *m*/*z* calcd. for C<sub>16</sub>H<sub>15</sub>CINO [M+H]<sup>+</sup>: 272.0837, found: 272.0831.




**4-Methyl-***N***-(2-phenylallyl)benzamide (1n):** 0.22 g, 77% yield. White solid. mp: 153.4 – 153.6 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.61 (d, *J* = 8.1 Hz, 2H), 7.49 – 7.47 (m, 2H), 7.37 – 7.30 (m, 3H), 7.20 (d, *J* = 8.0 Hz, 2H), 6.13 (s, 1H), 5.52 (s, 1H), 5.32 (s, 1H), 4.54 (d, *J* = 5.5 Hz, 2H), 2.37 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.42, 144.44, 142.01, 138.51, 131.68, 129.31, 128.68, 128.19, 127.02, 126.19, 114.01, 43.77, 21.53. HR-ESI-MS *m*/*z* calcd. for C<sub>17</sub>H<sub>18</sub>NO [M+H]<sup>+</sup>: 252.1383, found: 252.1379.

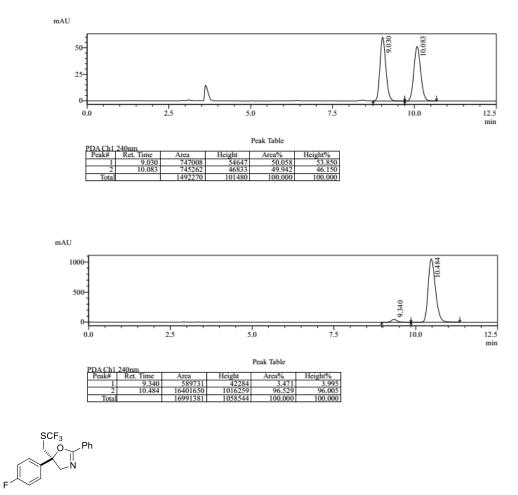
*N*-(2-Phenylallyl)-3-(trifluoromethoxy)benzamide (1p): 0.19 g, 58% yield. Yellow solid. mp: 126.8 – 127.4 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.76 – 7.72 (m, 2H), 7.49 – 7.47 (m, 2H), 7.38 – 7.29 (m, 3H), 7.23 (d, *J* = 8.2 Hz, 2H), 6.16 (s, 1H), 5.53 (s, 1H), 5.32 (s, 1H), 4.54 (d, *J* = 5.6 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 166.28, 151.57, 144.15, 138.33, 132.98, 128.95, 128.74, 128.31, 126.16, 120.71, 120.41 (q, *J* 

= 258.3 Hz), 114.27, 114.24, 43.94. HR-ESI-MS *m*/*z* calcd. for C<sub>17</sub>H<sub>15</sub>F<sub>3</sub>NO<sub>2</sub> [M+H]<sup>+</sup>: 322.1049, found: 322.1043.

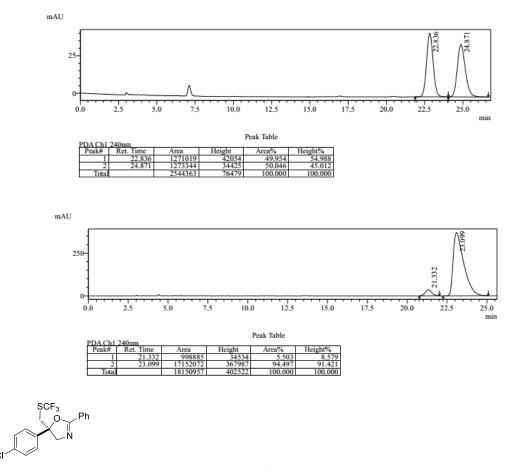


**3-Bromo-***N***-(2-phenylallyl)benzamide (1q):** 0.23 g, 75% yield. White solid. mp: 119.9 – 120.4 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.85 (t, *J* = 1.8 Hz, 1H), 7.61 (dd, J = 7.8, 1.7 Hz, 2H), 7.49 – 7.47 (m, 2H), 7.39 – 7.28 (m, 4H), 6.12 (s, 1H), 5.54 (s, 1H), 5.32 (s, 1H), 4.54 (d, J = 5.6 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.08, 144.07, 138.30, 136.50, 134.56, 130.31, 130.21, 128.73, 128.29, 126.16, 125.58, 122.86, 114.30, 43.93. HR-ESI-MS *m*/*z* calcd. for C<sub>16</sub>H<sub>15</sub>BrNO [M+H]<sup>+</sup>: 316.0332, found: 316.0329.



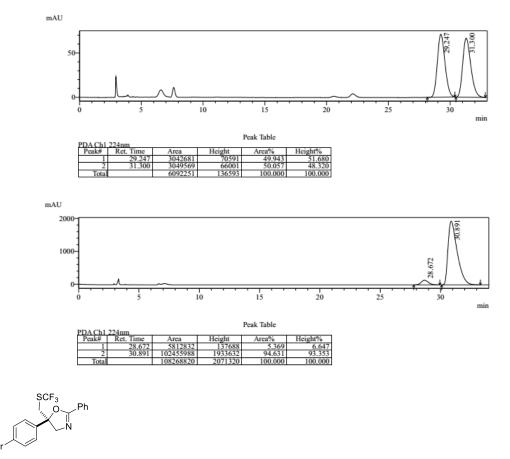

**3,5-Dimethyl-***N***-(2-phenylallyl)benzamide (1r):** 0.29 g, 68% yield. White solid. mp: 85.6 – 86.0 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.50 – 7.47 (m, 2H), 7.37 – 7.28 (m, 5H), 7.10 (s, 1H), 6.17 (s, 1H), 5.52 (s, 1H), 5.31 (s, 1H), 4.52 (d, *J* = 5.6 Hz, 2H), 2.32 (s, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 167.85, 144.45, 138.51, 138.38, 134.57, 133.20, 128.70, 128.21, 126.21, 124.79, 114.06, 43.79, 21.33. HR-ESI-MS *m/z* calcd. for C<sub>18</sub>H<sub>20</sub>NO [M+H]<sup>+</sup>: 266.1539, found: 266.1532.

#### 2.3 Chiral selenide catalyzed asymmetric CF<sub>3</sub>S cyclization


**General Method**: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added **1** (0.1 mmol), **2** (59.6 mg, 0.15 mmol), catalyst **C8** (9.3 mg, 0.02 mmol) and solvent (4.0 mL, CH<sub>2</sub>Cl<sub>2</sub>/toluene = 1:1, v/v) subsequently. The solution was stirred at the room temperature for 20 min then cooled to -78 °C for another 20 min. BF<sub>3</sub> · OEt<sub>2</sub> (18.5  $\mu$ L, 0.15 mmol) was added at -78 °C. The mixture was stirred at -78 °C for 18 h. The reaction was quenched by Et<sub>3</sub>N and concentrated *in vacuo*. The residue was purified by flash silica gel column chromatography to afford the corresponding CF<sub>3</sub>S product.



(*R*)-2,5-Diphenyl-5-(((trifluoromethyl)thio)methyl)-4,5-dihydrooxazole (3a): Prepared by general method and purified by flash silica gel column chromatography (eluent: PE/EtOAc = 20:1 to 10:1 with 0.3% Et<sub>3</sub>N, v/v) to afford **3a** as a colorless oil. 23.5 mg, 70% yield and 93% ee.  $[\alpha]^{25}_{D} = -160.4$  (c = 0.2, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.05 – 8.03 (m, 2H), 7.54 – 7.51 (m, 1H), 7.48 – 7.44 (m, 2H), 7.41 – 7.38 (m, 4H), 7.35 – 7.31 (m, 1H), 4.41 (d, *J* = 15.0 Hz, 1H), 4.27 (d, *J* = 15.0 Hz, 1H), 3.57 (d, *J* = 13.6 Hz, 1H), 3.48 (d, *J* = 13.6 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ 162.99, 142.26, 131.84, 130.77 (q, *J* = 306.4 Hz), 129.06, 129.02, 128.62, 128.43, 127.30, 124.71, 86.96, 66.92, 40.50. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -40.89. HR-ESI-MS *m*/*z* calcd. for C<sub>17</sub>H<sub>15</sub>F<sub>3</sub>NOS [M+H]<sup>+</sup>: 338.0821, found: 338.0817. HPLC (Daicel Chiralpak OD-H column, *i*-PrOH/hexane = 1/99, 1 mL/min, 240 nm) t<sub>1</sub> = 10.5 min (major), t<sub>2</sub> = 9.3 min (minor).



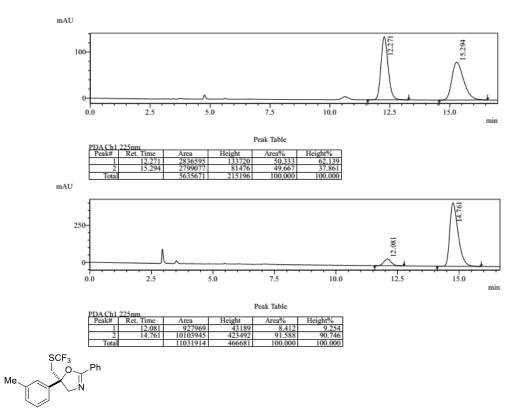

(*R*)-5-(4-Fluorophenyl)-2-phenyl-5-(((trifluoromethyl)thio)methyl)-4,5-dihydroox azole (3b): Prepared by general method and purified by flash silica gel column chromatography (eluent: PE/EtOAc = 20:1 to 10:1 with 0.3% Et<sub>3</sub>N, v/v) to afford 3b as a colorless oil. 24.2 mg, 68% yield and 89% ee.  $[\alpha]^{25}_{D} = -128.3$  (c = 0.2, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 – 8.01 (m, 2H), 7.55 – 7.51 (m, 1H), 7.48 – 7.44 (m, 2H), 7.40 – 7.35 (m, 2H), 7.12 – 7.06 (m, 2H), 4.40 (d, *J* = 15.0 Hz, 1H), 4.24 (d, *J* = 15.0 Hz, 1H), 3.53 (d, *J* = 13.6 Hz, 1H), 3.47 (d, *J* = 13.6 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  163.86, 162.63 (d, *J* = 247.7 Hz), 138.01 (d, *J* = 3.1 Hz), 131.95, 130.68 (q, *J* = 306.3 Hz), 128.66, 128.42, 127.15, 126.69 (d, *J* = 8.3 Hz), 115.98 (d, *J* = 21.8 Hz), 86.68, 67.00, 40.50. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -40.90, -113.53. HR-ESI-MS *m*/*z* calcd. for C<sub>17</sub>H<sub>13</sub>F<sub>4</sub>NOS [M+H]<sup>+</sup>: 356.0727, found: 356.0720. HPLC (Daicel Chiralpak IA column, *i*-PrOH/hexane = 0.8/99.2, 1 mL/min, 240 nm) t<sub>1</sub> = 23.1 min (major), t<sub>2</sub> = 21.3 min (minor).



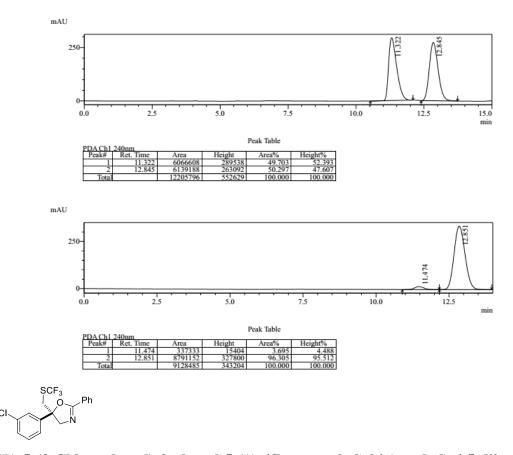
(*R*)-5-(4-Chlorophenyl)-2-phenyl-5-(((trifluoromethyl)thio)methyl)-4,5-dihydroo xazole (3c): Prepared by general method and purified by flash silica gel column chromatography (eluent: PE/EtOAc = 20:1 to 10:1 with 0.3% Et<sub>3</sub>N, v/v) to afford 3c as a colorless oil. 24.6 mg, 66% yield and 89% ee.  $[\alpha]^{25}_{D} = -153.4$  (c = 0.2, CHCl<sub>3</sub>).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 – 8.01 (m, 2H), 7.55 – 7.51 (m, 1H), 7.48 – 7.44 (m, 2H), 7.39 – 7.32 (m, 4H), 4.39 (d, *J* = 15.0 Hz, 1H), 4.22 (d, *J* = 15.0 Hz, 1H), 3.53 (d, *J* = 13.7 Hz, 1H), 3.46 (d, *J* = 13.7 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  162.91, 140.71, 134.47, 131.99, 130.64 (q, *J* = 306.4 Hz), 129.23, 128.68, 128.43, 127.09, 126.28, 86.64, 66.99, 40.32. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -40.84. HR-ESI-MS *m*/*z* calcd. for C<sub>17</sub>H<sub>14</sub>ClF<sub>3</sub>NOS [M+H]<sup>+</sup>: 372.0431, found: 372.0439. HPLC (Daicel Chiralpak AD-H column, *i*-PrOH/hexane = 0.8/99.2, 1 mL/min, 224 nm) t<sub>1</sub> = 30.9 min (major), t<sub>2</sub> = 28.7 min (minor).

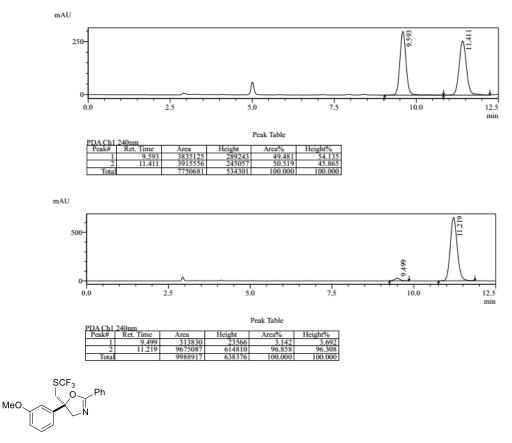



(*R*)-5-(4-Bromophenyl)-2-phenyl-5-(((trifluoromethyl)thio)methyl)-4,5-dihydroox azole (3d): Prepared by general method and purified by flash silica gel column chromatography (eluent: PE/EtOAc = 20:1 to 10:1 with 0.3% Et<sub>3</sub>N, v/v) to afford 3d as a colorless oil. 28.1 mg, 67% yield and 90% ee.  $[\alpha]^{25}_{D} = -207.5$  (c = 0.2, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.02 (d, *J* = 7.3 Hz, 2H), 7.55 – 7.52 (m, 3H), 7.48 – 7.44 (m, 2H), 7.27 (d, *J* = 8.6 Hz, 2H), 4.39 (d, *J* = 15.0 Hz, 1H), 4.22 (d, *J* = 15.0 Hz, 1H), 3.52 (d, *J* = 13.7 Hz, 1H), 3.46 (d, *J* = 13.7 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  162.88, 141.23, 132.17, 131.98, 130.64 (q, *J* = 306.3 Hz), 128.67, 128.42, 127.07,

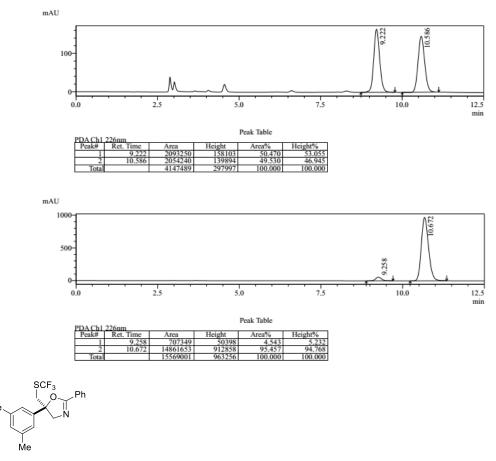
126.57, 122.56, 86.65, 66.95, 40.24. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -40.85. HR-ESI-MS *m*/*z* calcd. for C<sub>17</sub>H<sub>14</sub>BrF<sub>3</sub>NOS [M+H]<sup>+</sup>: 415.9926, found: 415.9929. HPLC (Daicel Chiralpak AD-H column, *i*-PrOH/hexane = 1/99, 1 mL/min, 231 nm) t<sub>1</sub> = 28.6min (major), t<sub>2</sub> = 26.1 min (minor).



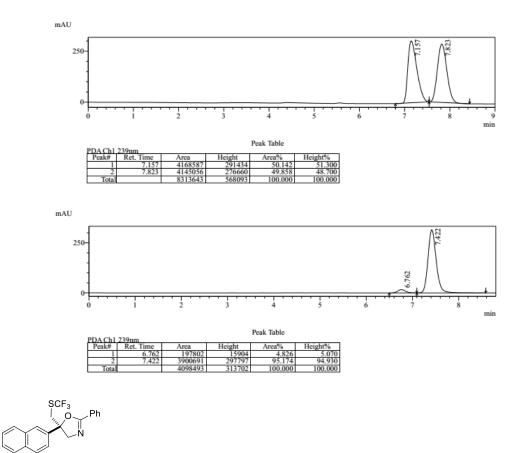

(*R*)-2-Phenyl-5-(p-tolyl)-5-(((trifluoromethyl)thio)methyl)-4,5-dihydrooxazole


(3e): Prepared by general method and purified by flash silica gel column chromatography (eluent: PE/EtOAc = 20:1 to 10:1 with 0.3% Et<sub>3</sub>N, v/v) to afford **3e** as a colorless oil. 24.1 mg, 69% yield and 83% ee.  $[\alpha]^{25}_{D} = -193.3$  (c = 0.2, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (d, *J* = 7.6 Hz, 2H), 7.53 – 7.50 (m, 1H), 7.47 – 7.43 (m, 2H), 7.29 – 7.24 (m, 2H), 7.20 (d, *J* = 7.7 Hz, 2H), 4.38 (d, *J* = 15.0 Hz, 1H), 4.24 (d, *J* = 15.0 Hz, 1H), 3.56 (d, *J* = 13.5 Hz, 1H), 3.46 (d, *J* = 13.5 Hz, 1H), 2.35 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  163.00, 139.26, 138.27, 131.78, 130.81 (q, *J* = 306.2 Hz), 129.66, 128.59, 128.42, 127.40, 124.63, 86.95, 66.92, 40.49, 21.18. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -40.84. HR-ESI-MS *m/z* calcd. for C<sub>18</sub>H<sub>17</sub>F<sub>3</sub>NOS [M+H]<sup>+</sup>:352.0977, found: 352.0971. HPLC (Daicel Chiralpak OD-H column, *i*-PrOH/hexane = 0.5/99.5, 1 mL/min, 225 nm) t<sub>1</sub> = 14.8 min (major), t<sub>2</sub> = 12.1 min (minor).

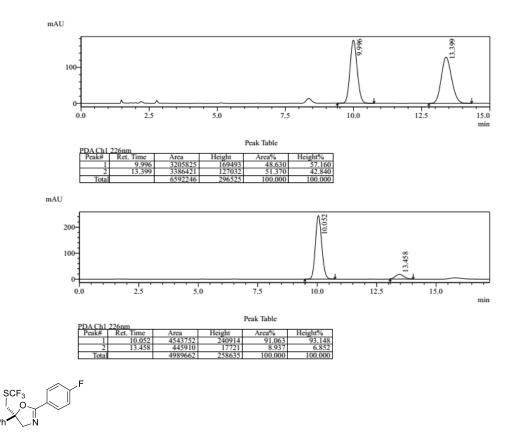



(*R*)-2-Phenyl-5-(m-tolyl)-5-(((trifluoromethyl)thio)methyl)-4,5-dihydrooxazole (3f): Prepared by general method and purified by flash silica gel column chromatography (eluent: PE/EtOAc = 20:1 to 10:1 with 0.3% Et<sub>3</sub>N, v/v) to afford 3f as a colorless oil. 23.3 mg, 66% yield and 93% ee. [ $\alpha$ ]<sup>25</sup><sub>D</sub> = -111.5 (c = 0.2, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (d, *J* = 7.6 Hz, 2H), 7.55 – 7.51 (m, 1H), 7.48 – 7.44 (m, 1H), 7.31 – 7.27 (m, 1H), 7.19 – 7.14 (m, 3H), 4.39 (d, *J* = 15.0 Hz, 1H), 4.26 (d, *J* = 15.0 Hz, 1H), 3.57 (d, *J* = 13.5 Hz, 1H), 3.46 (d, *J* = 13.5 Hz, 1H), 2.38 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  163.02, 142.24, 138.84, 131.82, 130.82 (q, *J* = 306.4 Hz), 129.19, 128.93, 128.62, 128.45, 127.38, 125.31, 121.77, 86.96, 77.48, 40.55, 21.74. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -40.90. HR-ESI-MS *m*/*z* calcd. for C<sub>18</sub>H<sub>17</sub>F<sub>3</sub>NOS [M+H]<sup>+</sup>: 352.0977, found: 352.0971. HPLC (Daicel Chiralpak OD-H column, *i*-PrOH/hexane = 0.5/99.5, 1 mL/min, 240 nm) t<sub>1</sub> = 12.9 min (major), t<sub>2</sub> = 11.5 min (minor).

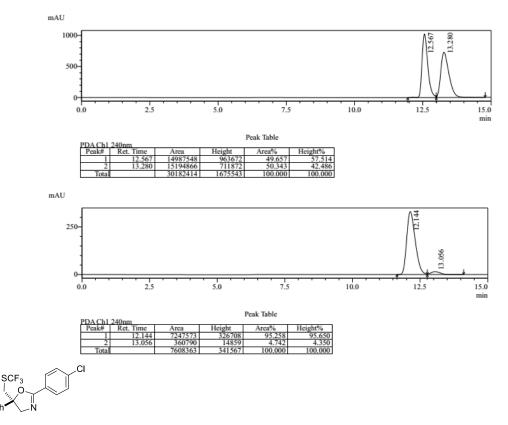



(*R*)-5-(3-Chlorophenyl)-2-phenyl-5-(((trifluoromethyl)thio)methyl)-4,5-dihydroo xazole (3g): Prepared by general method and purified by flash silica gel column chromatography (eluent: PE/EtOAc = 20:1 to 10:1 with 0.3% Et<sub>3</sub>N, v/v) to afford 3g as a colorless oil. 23.7 mg, 64% yield and 94% ee.  $[\alpha]^{25}_{D}$  = -26.8 (c = 0.2, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (d, *J* = 7.6 Hz, 2H), 7.55 – 7.52 (m, 1H), 7.49 – 7.45 (m, 2H), 7.41 (s, 1H), 7.37 – 7.31 (m, 2H), 7.27 – 7.25 (m, 1H), 4.40 (d, *J* = 15.1 Hz, 1H), 3.53 (d, *J* = 13.7 Hz, 1H), 3.46 (d, *J* = 13.7 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  162.89, 144.28, 135.11, 131.99, 130.62 (q, *J* = 306.6 Hz), 130.39, 128.68, 128.49, 128.45, 127.02, 125.15, 122.97, 86.51, 66.93, 40.35. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -40.83. HR-ESI-MS *m*/*z* calcd. for C<sub>17</sub>H<sub>14</sub>ClF<sub>3</sub>NOS [M+H]<sup>+</sup>: 372.0431, found: 372.0420. HPLC (Daicel Chiralpak IA column, *i*-PrOH/hexane = 1/99, 1 mL/min, 240 nm) t<sub>1</sub> = 11.2 min (major), t<sub>2</sub> = 9.5 min (minor).

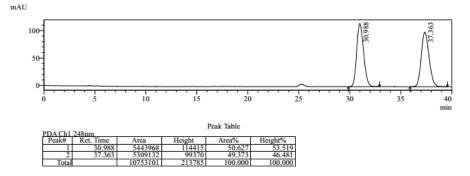


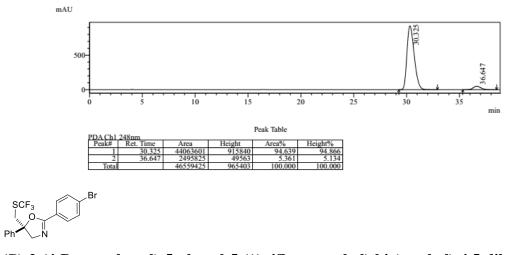

(*R*)-5-(3-Methoxyphenyl)-2-phenyl-5-(((trifluoromethyl)thio)methyl)-4,5-dihydro oxazole (3h): Prepared by general method and purified by flash silica gel column chromatography (eluent: PE/EtOAc = 20:1 to 10:1 with 0.3% Et<sub>3</sub>N, v/v) to afford 3h as a colorless oil. 24.6 mg, 68% yield and 91% ee.  $[\alpha]^{25}_{D} = -136.9$  (c = 0.2, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (d, *J* = 7.7 Hz, 2H), 7.53 – 7.50 (m, 1H), 7.47 – 7.43 (m, 2H), 7.34 – 7.30 (m, 1H), 6.95 (d, *J* = 8.7 Hz, 1H), 6.86 (d, *J* = 8.2 Hz, 1H), 4.39 (d, *J* = 15.0 Hz, 1H), 4.26 (d, *J* = 15.0 Hz, 1H), 3.81 (s, 3H), 3.56 (d, *J* = 13.6 Hz, 1H), 3.46 (d, *J* = 13.6 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  162.95, 160.08, 143.89, 131.81, 131.26 (q, *J* = 306.4 Hz), 130.21, 128.60, 128.50, 128.41, 127.30, 116.90, 113.18, 111.18, 86.86, 66.91, 55.42, 40.41. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -40.89. HR-ESI-MS *m*/*z* calcd. for C<sub>18</sub>H<sub>17</sub>F<sub>3</sub>NO<sub>2</sub>S [M+H]<sup>+</sup>: 368.0027, found: 368.0034. HPLC (Daicel Chiralpak IA column, *i*-PrOH/hexane = 2/98, 1 mL/min, 226 nm) t<sub>1</sub> = 10.7 min (major), t<sub>2</sub> = 9.3 min (minor).



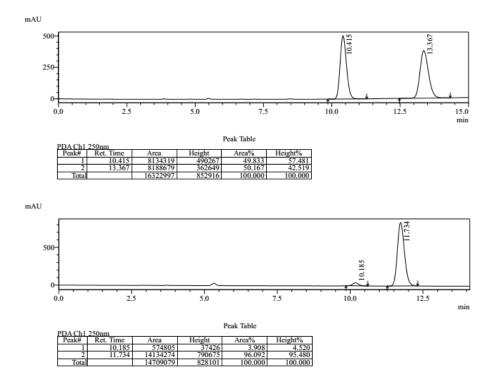

(*R*)-5-(3,5-Dimethylphenyl)-2-phenyl-5-(((trifluoromethyl)thio)methyl)-4,5-dihyd rooxazole (3i): Prepared by general method and purified by flash silica gel column chromatography (eluent: PE/EtOAc = 20:1 to 10:1 with 0.3% Et<sub>3</sub>N, v/v) to afford 3i as a colorless oil. 23.1 mg, 63% yield and 90% ee.  $[\alpha]^{25}_{D} = -107.2$  (c = 0.2, CHCl<sub>3</sub>).<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (d, *J* = 7.4 Hz, 2H), 7.55 – 7.51 (m, 1H), 7.48 – 7.45 (m, 2H), 6.98 (s, 3H), 4.38 (d, *J* = 15.0 Hz, 1H), 4.24 (d, *J* = 15.0 Hz, 1H), 3.56 (d, *J* = 13.5 Hz, 1H), 3.44 (d, *J* = 13.5 Hz, 1H), 2.34 (s, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  163.04, 142.22, 138.72, 131.79, 130.85 (q, *J* = 306.4 Hz), 130.04, 128.62, 128.46, 127.41, 122.38, 86.95, 66.87, 40.56, 21.61. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -40.90. HR-ESI-MS *m*/*z* calcd. for C<sub>19</sub>H<sub>19</sub>F<sub>3</sub>NOS [M+H]<sup>+</sup>: 366.1134, found: 366.1131. HPLC (Daicel Chiralpak OD-H column, *i*-PrOH/hexane = 0.5/99.5, 1 mL/min, 239 nm) t<sub>1</sub> = 7.4 min (major), t<sub>2</sub> = 6.8 min (minor).

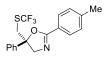



(*R*)-5-(Naphthalen-1-yl)-2-phenyl-5-(((trifluoromethyl)thio)methyl)-4,5-dihydroo xazole (3j): Prepared by general method and purified by flash silica gel column chromatography (eluent: PE/EtOAc = 20:1 to 10:1 with 0.3% Et<sub>3</sub>N, v/v) to afford 3j as a colorless oil. 26.9 mg, 70% yield and 82% ee.  $[\alpha]^{25}_{D}$  = -204.5 (c = 0.2, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.10 – 8.08 (m, 2H), 7.91 – 7.88 (m, 2H), 7.87 – 7.83 (m, 2H), 7.57 – 7.43 (m, 6H), 4.48 (d, *J* = 15.1 Hz, 1H), 4.36 (d, *J* = 15.1 Hz, 1H), 3.67 (d, *J* = 13.6 Hz, 1H), 3.58 (d, *J* = 13.6 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  163.06, 139.31, 133.10, 133.04, 131.89, 130.56 (q, *J* = 306.5 Hz), 129.22, 128.66, 128.49, 128.36, 127.82, 127.33, 126.88, 126.75, 123.80, 122.42, 87.12, 66.95, 40.39. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -40.81. HR-ESI-MS *m*/*z* calcd. for C<sub>21</sub>H<sub>17</sub>F<sub>3</sub>NOS [M+H]<sup>+</sup>: 388.0977, found: 388.0965. HPLC (Daicel Chiralpak AD-H column, i-PrOH/hexane = 2/98, 2 mL/min, 226 nm) t<sub>1</sub> = 13.4 min (major), t<sub>2</sub> = 10.1 min (minor).



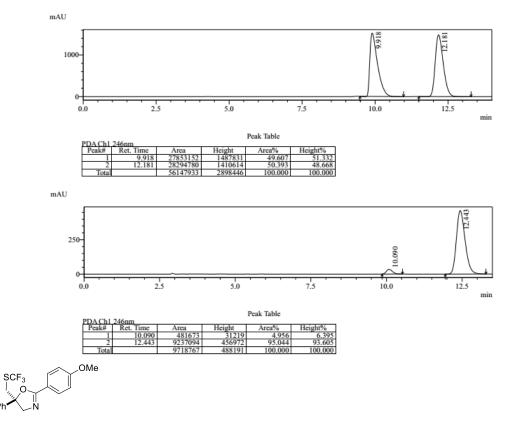

(*R*)-2-(4-Fluorophenyl)-5-phenyl-5-(((trifluoromethyl)thio)methyl)-4,5-dihydroox azole (3k): Prepared by general method and purified by flash silica gel column chromatography (eluent: PE/EtOAc = 20:1 to 10:1 with 0.3% Et<sub>3</sub>N, v/v) to afford 3k as a colorless oil. 21.1 mg, 59% yield and 91% ee.  $[\alpha]^{25}_{D} = -27.5$  (c = 0.2, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 – 8.01 (m, 2H), 7.55 – 7.34 (m, 5H), 7.16 – 7.06 (m, 2H), 4.40 (d, *J* = 15.0 Hz, 1H), 4.24 (d, *J* = 15.0 Hz, 1H), 3.56 (d, *J* = 13.6 Hz, 1H), 3.47 (d, *J* = 13.6 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.06 (d, *J* = 252.4 Hz), 163.81, 142.13, 130.71 (d, *J* = 8.9 Hz), 130.73 (q, *J* = 306.1 Hz), 130.66, 129.06, 128.51, 124.69, 123.54 (d, *J* = 3.1 Hz), 115.82 (d, *J* = 22.0 Hz), 87.21, 66.91, 40.52. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -40.88, 107.48. HR-ESI-MS *m/z* calcd. for C<sub>17</sub>H<sub>14</sub>F<sub>4</sub>NOS [M+H]<sup>+</sup>: 356.0727, found: 356.0713. HPLC (Daicel Chiralpak IC column, *i*-PrOH/hexane = 0.8/99.2, 0.5 mL/min, 240 nm) t<sub>1</sub> = 12.1 min (major), t<sub>2</sub> = 13.1 min (minor).





(*R*)-2-(4-Chlorophenyl)-5-phenyl-5-(((trifluoromethyl)thio)methyl)-4,5-dihydroo xazole (3l): Prepared by general method and purified by flash silica gel column chromatography (eluent: PE/EtOAc = 20:1 to 10:1 with 0.3% Et<sub>3</sub>N, v/v) to afford 3l as a colorless oil. 24.2 mg, 65% yield and 89% ee.  $[\alpha]^{25}_{D}$  = -101.5 (c = 0.2, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.98 – 7.95 (m, 2H), 7.45 – 7.32 (m, 7H), 4.40 (d, *J* = 15.1 Hz, 1H), 4.26 (d, *J* = 15.1 Hz, 1H), 3.56 (d, *J* = 13.7 Hz, 1H), 3.46 (d, *J* = 13.8 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  162.15, 142.07, 138.12, 130.71 (q, *J* = 306.6 Hz), 129.76, 129.08, 128.98, 128.54, 125.77, 124.67, 87.28, 66.91, 40.51. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -40.85. HR-ESI-MS *m*/*z* calcd. for C<sub>17</sub>H<sub>14</sub>ClF<sub>3</sub>NOS [M+H]<sup>+</sup>: 372.0431, found: 372.0430. HPLC (Daicel Chiralpak AD-H column, *i*-PrOH/hexane = 1/99, 1 mL/min, 248 nm) t<sub>1</sub> = 30.3min (major), t<sub>2</sub> = 36.6 min (minor).

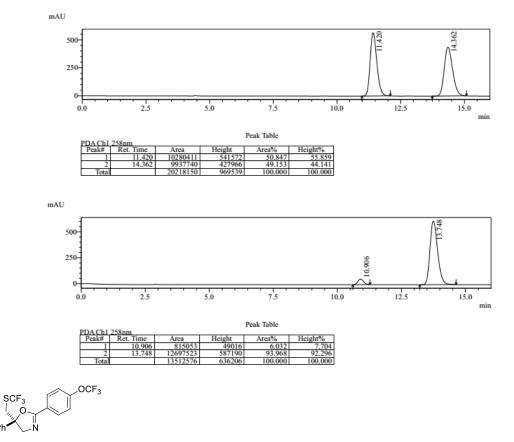





(*R*)-2-(4-Bromophenyl)-5-phenyl-5-(((trifluoromethyl)thio)methyl)-4,5-dihydroox azole (3m): Prepared by general method and purified by flash silica gel column chromatography (eluent: PE/EtOAc = 20:1 to 10:1 with 0.3% Et<sub>3</sub>N, v/v) to afford 3m as a colorless oil. 30.4 mg, 73% yield and 92% ee.  $[\alpha]^{25}_{D} = -243.8$  (c = 0.2, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.90 (d, *J* = 7.1 Hz, 2H), 7.60 – 7.58 (m, 2H), 7.43 – 7.31 (m, 5H), 4.39 (d, *J* = 15.1 Hz, 1H), 4.26 (d, *J* = 15.1 Hz, 1H), 3.56 (d, *J* = 13.7 Hz, 1H), 3.46 (d, *J* = 13.7 Hz, 1H).  $\delta$  162.24, 142.06, 131.94, 130.71 (q, *J* = 306.3 Hz), 129.93, 129.07, 128.54, 126.61, 126.24, 124.66, 87.29, 66.91, 40.49. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -40.84. HR-ESI-MS *m*/*z* calcd. for C<sub>17</sub>H<sub>14</sub>BrF<sub>3</sub>NOS [M+H]<sup>+</sup>: 415.9932, found: 415.9931. HPLC (Daicel Chiralpak OD-H column, *i*-PrOH/hexane = 1/99, 1 mL/min, 250 nm) t<sub>1</sub> = 11.7 min (major), t<sub>2</sub> = 10.2 min (minor).

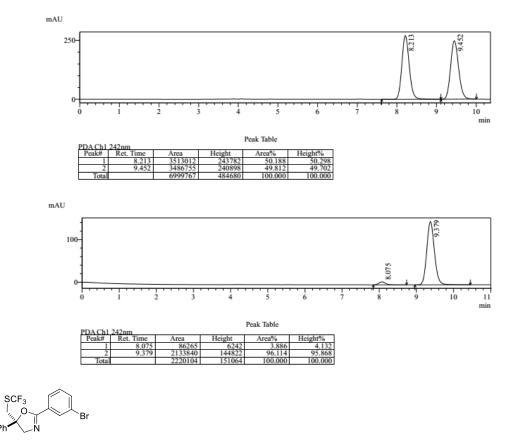




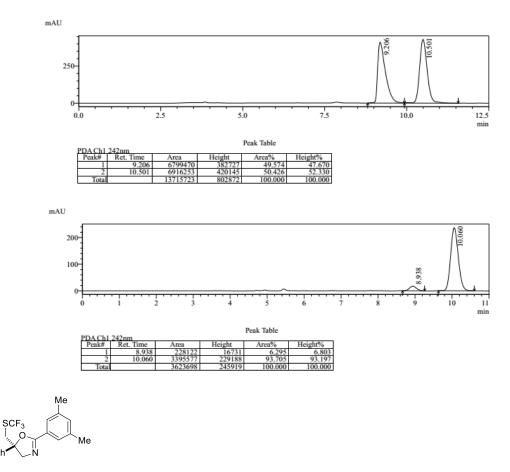

#### (*R*)-5-Phenyl-2-(p-tolyl)-5-(((trifluoromethyl)thio)methyl)-4,5-dihydrooxazole

(3n): Prepared by general method and purified by flash silica gel column chromatography (eluent: PE/EtOAc = 20:1 to 10:1 with 0.3% Et<sub>3</sub>N, v/v) to afford **3n** as a colorless oil. 26.7 mg, 76% yield and 90% ee.  $[\alpha]^{25}_{D} = -131.5$  (c = 0.2, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 (d, *J* = 7.8 Hz, 2H), 7.40 (d, *J* = 3.5 Hz, 4H), 7.35 – 7.33 (m, 1H), 7.27 (d, *J* = 7.3 Hz, 2H), 4.39 (d, *J* = 14.9 Hz, 1H), 4.25 (d, *J* = 14.9 Hz, 1H), 3.57 (d, *J* = 13.5 Hz, 1H), 3.47 (d, *J* = 13.5 Hz, 1H), 2.42 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  163.10, 142.33, 130.78 (q, *J* = 306.6 Hz), 129.35, 129.01, 128.40, 124.74, 124.51, 86.81, 66.91, 40.50, 21.76. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -40.92. HR-ESI-MS m/z calcd. for C<sub>18</sub>H<sub>17</sub>F<sub>3</sub>NOS [M+H]<sup>+</sup>: 352.0977, found: 352.0986. HPLC (Daicel Chiralpak OD-H column, *i*-PrOH/hexane = 1/99, 1 mL/min, 246 nm) t<sub>1</sub> = 12.4 min (minor), t<sub>2</sub> = 10.1 min (major).

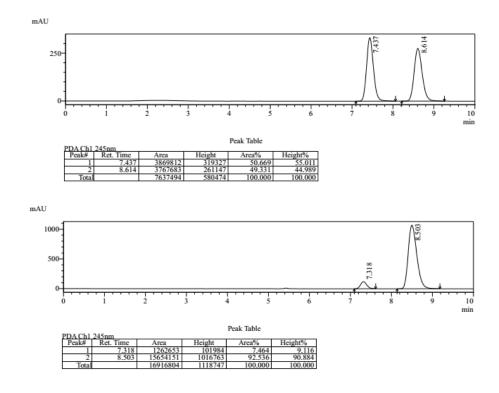



(*R*)-2-(4-Methoxyphenyl)-5-phenyl-5-(((trifluoromethyl)thio)methyl)-4,5-dihydro oxazole (30): Prepared by general method and purified by flash silica gel column chromatography (eluent: PE/EtOAc = 20:1 to 10:1 with 0.3%  $Et_3N$ , v/v) to afford 30

as a colorless oil. 24.9 mg, 68% yield and 88% ee.  $[\alpha]^{25}_{D} = -128.4$  (c = 0.2, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.98 (d, *J* = 8.6 Hz, 2H), 7.39 (s, 4H), 7.35 – 7.33 (m, 1H), 6.96 (d, *J* = 8.6 Hz, 2H), 4.37 (d, *J* = 14.8 Hz, 1H), 4.24 (d, *J* = 14.8 Hz, 1H), 3.86 (s, 3H), 3.56 (d, *J* = 13.5 Hz, 1H), 3.48 (d, *J* = 13.5 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  162.83, 162.53, 142.35, 130.80 (q, *J* = 306.3 Hz), 130.19, 128.99, 128.39, 124.74, 119.77, 114.01, 86.79, 66.90, 55.54, 40.48. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -40.91. HR-ESI-MS *m/z* calcd. for C<sub>18</sub>H<sub>17</sub>O<sub>2</sub>NF<sub>3</sub>S [M+H]<sup>+</sup>: 368.0927, found: 368.0920. HPLC (Daicel Chiralpak OD-H column, *i*-PrOH/hexane = 1/99, 1 mL/min, 258 nm) t<sub>1</sub> = 13.7 min (minor), t<sub>2</sub> = 10.9 min (major).




(*R*)-5-Phenyl-2-(4-(trifluoromethoxy)phenyl)-5-(((trifluoromethyl)thio)methyl)-4, 5-dihydrooxazole (3p): Prepared by general method and purified by flash silica gel column chromatography (eluent: PE/EtOAc = 20:1 to 10:1 with 0.3% Et<sub>3</sub>N, v/v) to afford **3p** as a colorless oil. 30.3 mg, 72% yield and 92% ee.  $[\alpha]^{25}_{D}$  = -114.5 (c = 0.2, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.09 – 8.06 (m, 2H), 7.44 – 7.32 (m, 5H), 7.30 (d, *J* = 8.1 Hz, 2H), 4.41 (d, *J* = 15.1 Hz, 1H), 4.28 (d, *J* = 15.1 Hz, 1H), 3.57 (d, *J* = 13.7 Hz, 1H), 3.47 (d, *J* = 13.7 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  161.85, 151.84, 142.07, 130.73 (q, *J* = 306.6 Hz), 130.26, 129.11, 128.58, 125.86, 124.67,


120.78, 120.51 (q, J = 258.2 Hz), 87.38, 66.95, 40.51. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$ -40.86, -57.68. HR-ESI-MS m/z calcd. for C<sub>18</sub>H<sub>14</sub>NO<sub>2</sub>F<sub>6</sub>S [M+H]<sup>+</sup>: 422.0644, Found: 422.0652. HPLC (Daicel Chiralpak OD-H column, *i*-PrOH/hexane = 1/99, 1 mL/min, 242 nm) t<sub>1</sub> = 9.4 min (major), t<sub>2</sub> = 8.1 min (minor).



(*R*)-2-(3-Bromophenyl)-5-phenyl-5-(((trifluoromethyl)thio)methyl)-4,5-dihydroox azole (3q): Prepared by general method and purified by flash silica gel column chromatography (eluent: PE/EtOAc = 20:1 to 10:1 with 0.3% Et<sub>3</sub>N, v/v) to afford 3q as a colorless oil. 31.7 mg, 76% yield and 87% ee.  $[\alpha]^{25}_{D} = -63.5$  (c = 0.2, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.18 (s, 1H), 7.96 (d, *J* = 7.7 Hz, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.43 – 7.31 (m, 6H), 4.41 (d, *J* = 15.2 Hz, 1H), 4.28 (d, *J* = 15.2 Hz, 1H), 3.57 (d, *J* = 13.7 Hz, 1H), 3.46 (d, *J* = 13.7 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  161.69, 142.01, 134.81, 131.37, 130.71 (q, *J* = 306.3 Hz), 130.20, 29.18, 129.09, 128.57, 126.99, 124.66, 122.69, 87.39, 66.79, 40.50. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -40.85. HR-ESI-MS *m*/*z* calcd. for C<sub>17</sub>H<sub>14</sub>BrF<sub>3</sub>NOS [M+H]<sup>+</sup>: 415.9926, found: 415.9936. HPLC (Daicel Chiralpak OD-H column, *i*-PrOH/hexane = 1/99, 1 mL/min, 242 nm) t<sub>1</sub> = 10.1 min (minor), t<sub>2</sub> = 8.9 min (major).

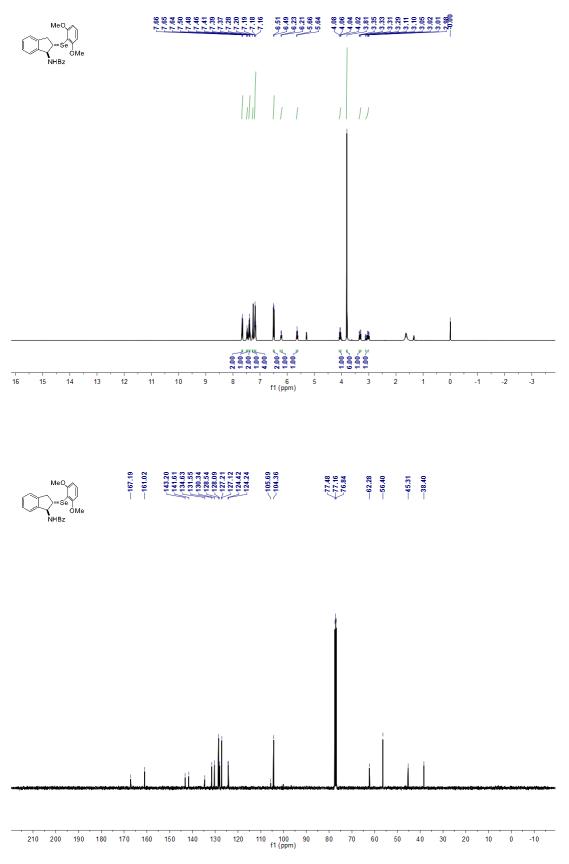


(*R*)-2-(3,5-Dimethylphenyl)-5-phenyl-5-(((trifluoromethyl)thio)methyl)-4,5-dihyd rooxazole (3r): Prepared by general method and purified by flash silica gel column chromatography (eluent: PE/EtOAc = 20:1 to 10:1 with 0.3% Et<sub>3</sub>N, v/v) to afford 3r as a colorless oil. 23.7 mg, 65% yield and 85% ee.  $[\alpha]^{25}_{D} = -114.7$  (c = 0.2, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.65 (s, 2H), 7.43 – 7.39 (m, 4H), 7.37 – 7.31 (m, 1H), 7.16 (s, 1H), 4.39 (d, *J* = 15.0 Hz, 1H), 4.24 (d, *J* = 15.0 Hz, 1H), 3.57 (d, *J* = 13.5 Hz, 1H), 2.38 (s, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  163.36, 142.36, 138.31, 133.57, 130.08 (q, *J* = 306.2 Hz), 129.02, 127.06, 126.15, 124.74, 86.85, 66.80, 40.46, 21.34. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -40.95. HR-ESI-MS *m/z* calcd. for C<sub>19</sub>H<sub>19</sub>F<sub>3</sub>NOS [M+H]<sup>+</sup>: 366.1134, found: 366.1131. HPLC (Daicel Chiralpak OD-H column, *i*-PrOH/hexane = 1/99, 1 mL/min, 245 nm) t<sub>1</sub> = 8.5 min (minor), t<sub>2</sub> = 7.3 min (major).

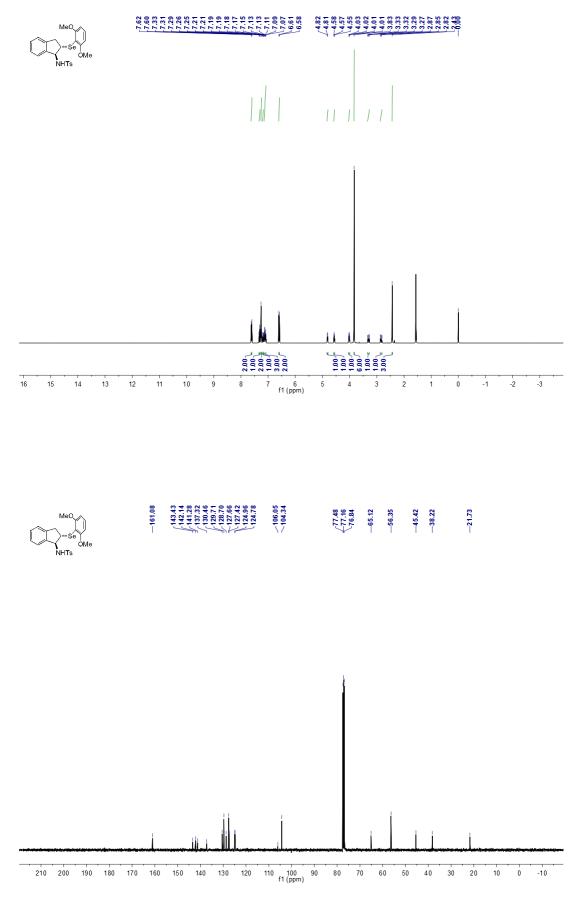


#### 2.4 Transformation of the products

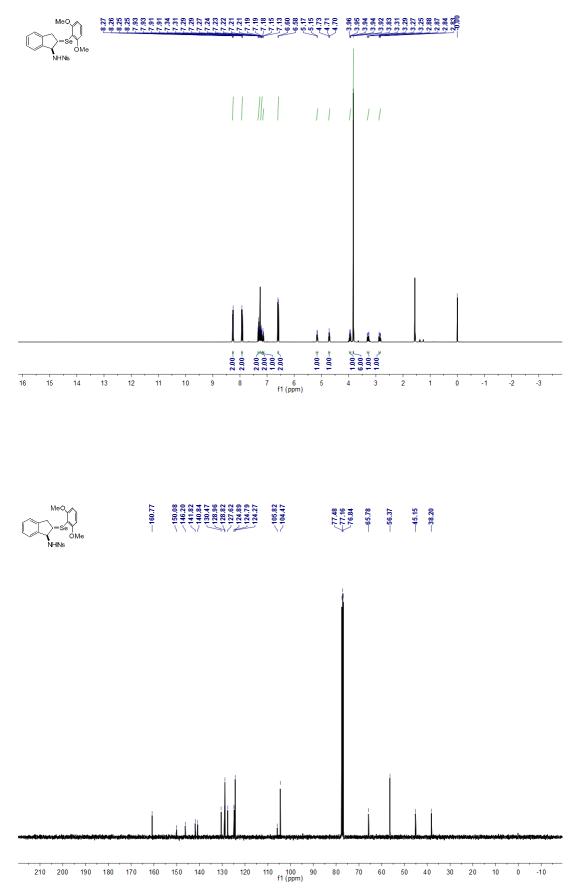



# (R)-1-Amino-2-phenyl-3-((trifluoromethyl)thio)propan-2-yl

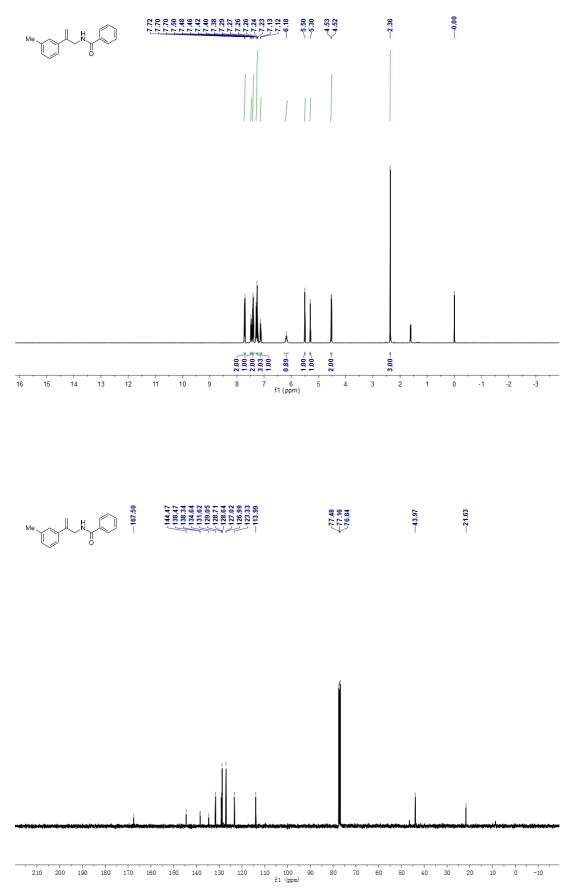
#### benzoate


hydrochloride ((*R*)-4): Prepared according to the literature.<sup>5</sup> The residue was recrystallized from hexane/CH<sub>2</sub>Cl<sub>2</sub> to afford (*R*)-4. 16.6 mg, 85% yield.  $[\alpha]^{25}_{D} = -78.5$  (c = 0.2, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.56 (s, 3H), 8.13 (d, *J* = 7.7 Hz, 2H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.47 (m, 2H), 7.38 (m, 5H), 3.98 (s, 2H), 3.86 (s, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 166.11, 136.05, 134.20, 130.69 (q, *J* = 306.4 Hz), 130.49, 129.64, 129.50, 129.19, 128.80, 125.50, 82.95, 46.52, 37.75. HR-ESI-MS m/z calcd. for C<sub>17</sub>H<sub>17</sub>F<sub>3</sub>NO<sub>2</sub>S [M]<sup>+</sup>: 356.0927, found: 356. 0927.

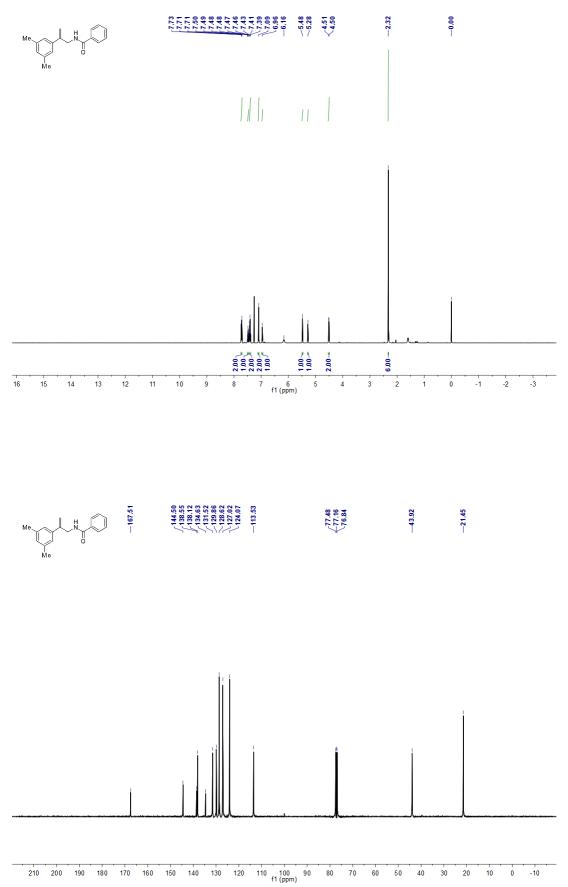
# 3. NMR spectra for new compounds


NMR spectra of compound C11 in CDCl<sub>3</sub>

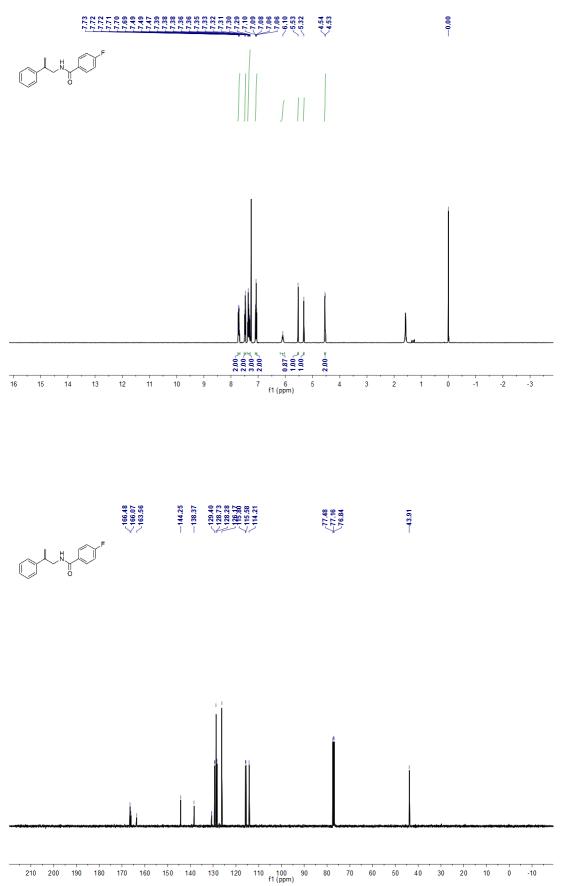



# NMR spectra of compound C12 in CDCl<sub>3</sub>

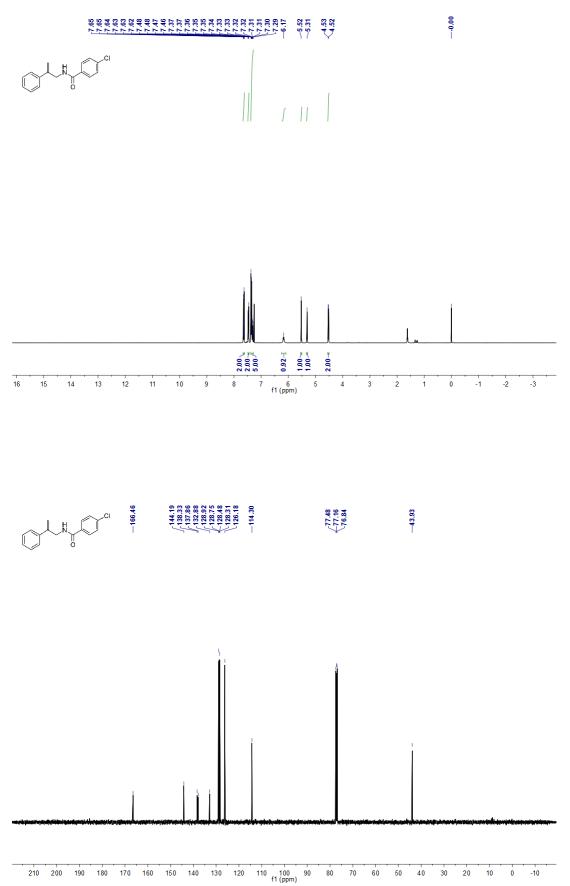



NMR spectra of compound C13 in  $CDCl_3$ 

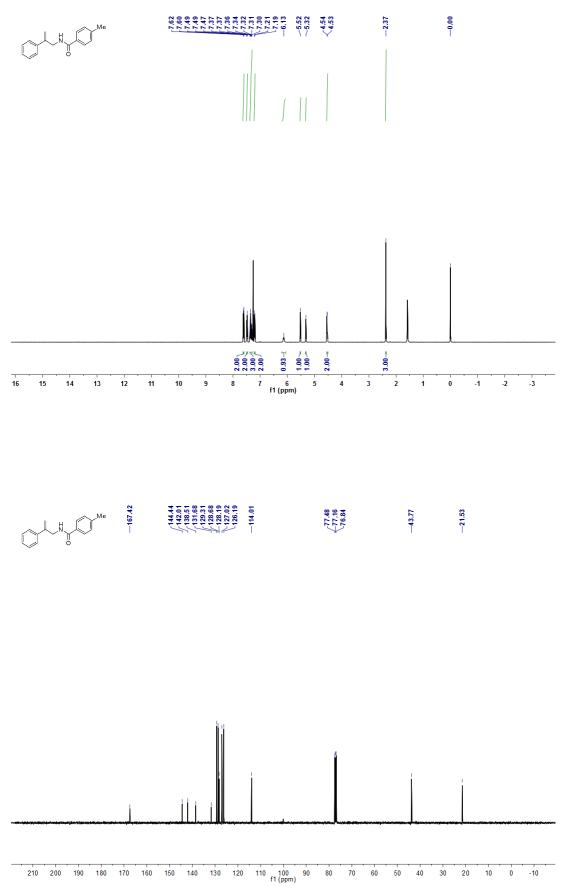



NMR spectra of compound 1f in CDCl<sub>3</sub>

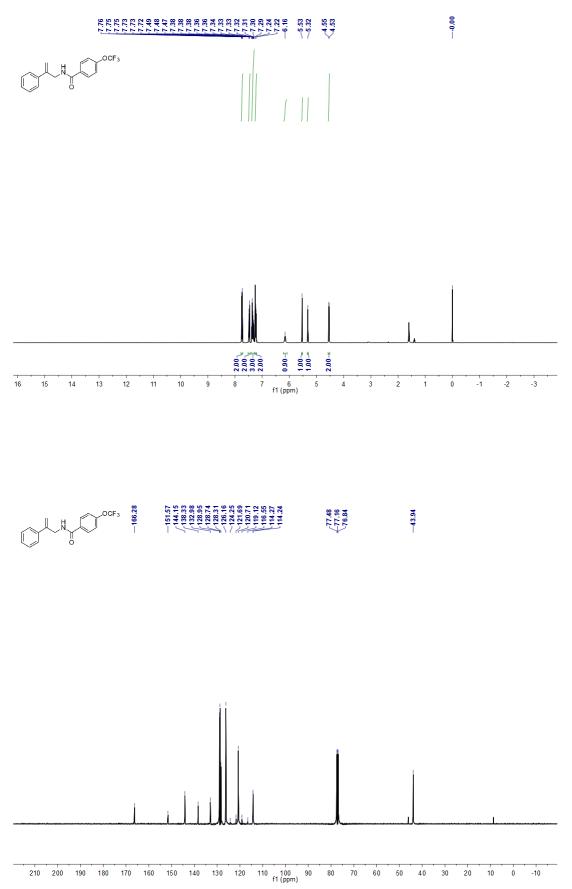



NMR spectra of compound 1i in CDCl<sub>3</sub>

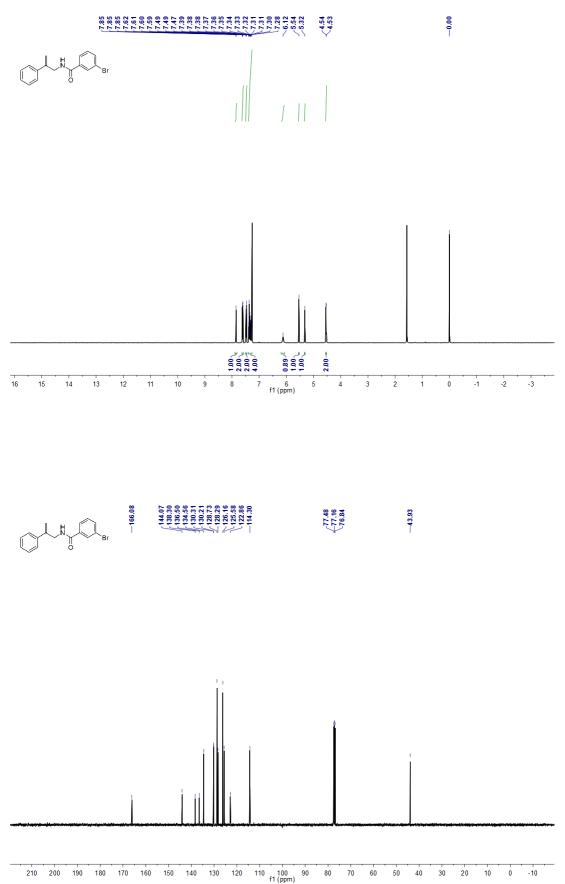



NMR spectra of compound 1k in CDCl<sub>3</sub>

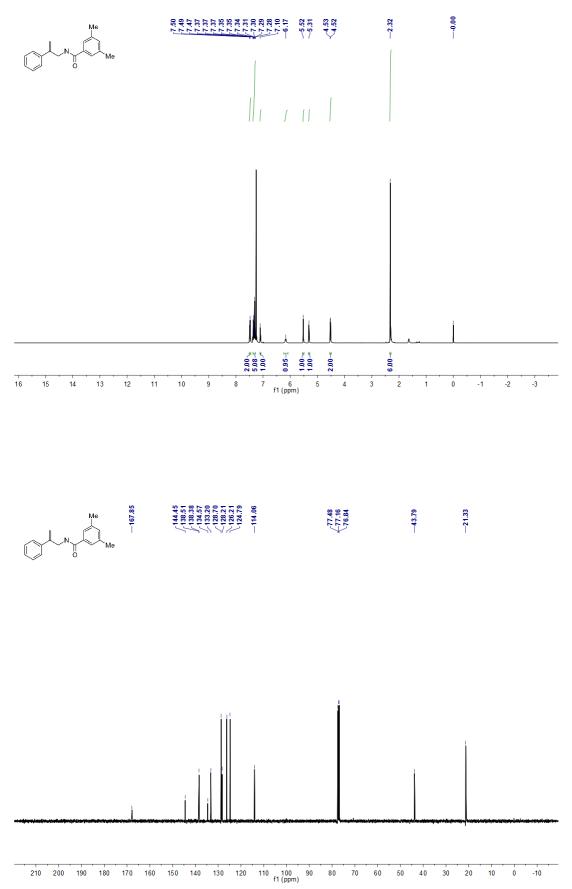



NMR spectra of compound 11 in CDCl<sub>3</sub>

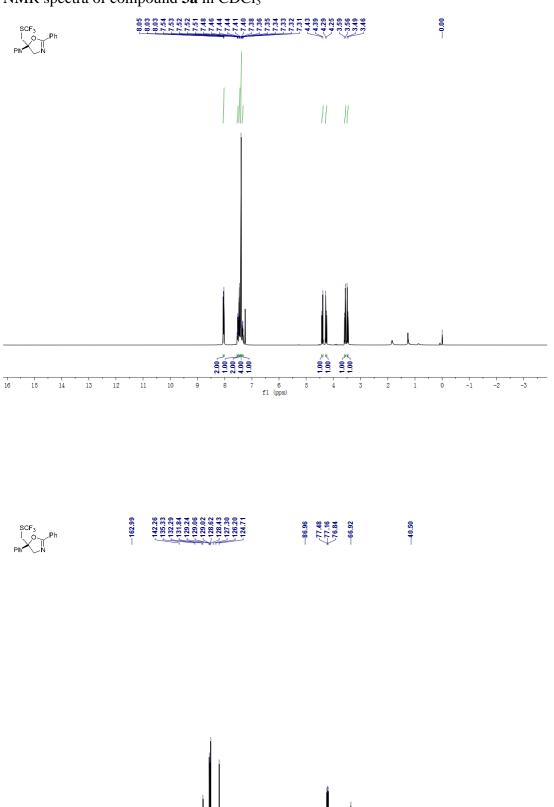


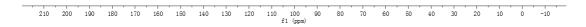

NMR spectra of compound 1n in CDCl<sub>3</sub>

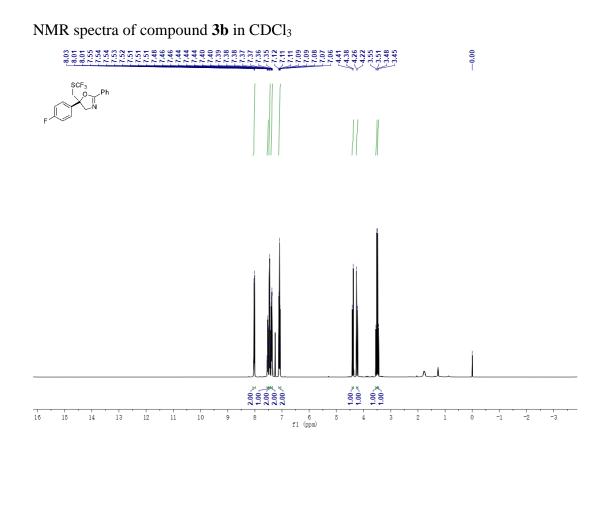


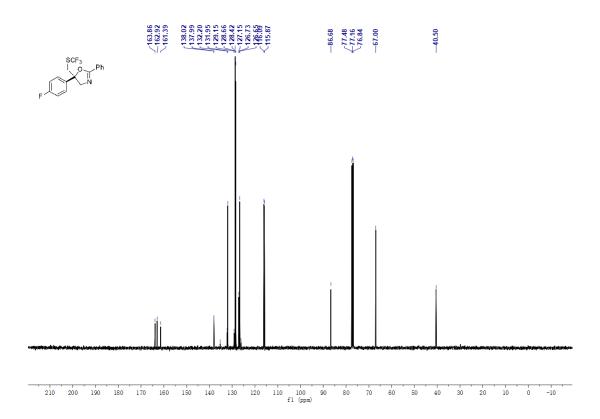

NMR spectra of compound 1p in CDCl<sub>3</sub>

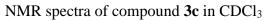


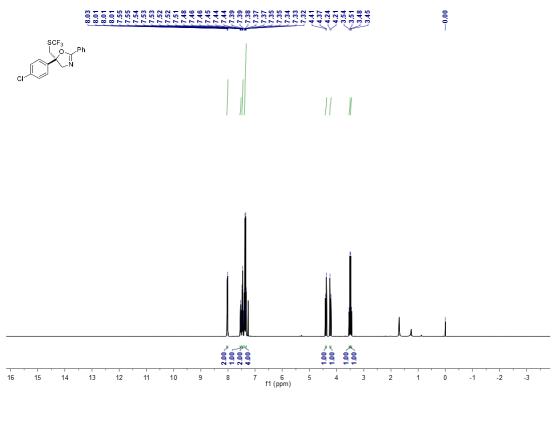

NMR spectra of compound 1q in CDCl<sub>3</sub>

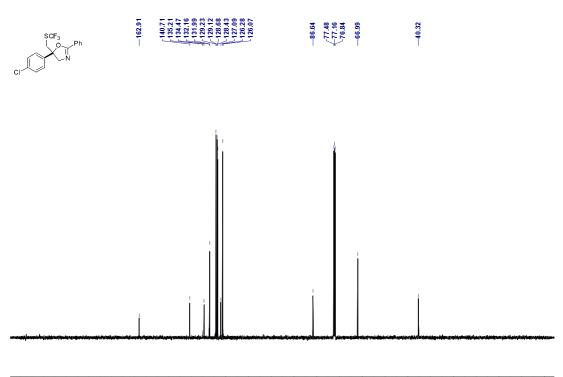




NMR spectra of compound 1r in CDCl<sub>3</sub>

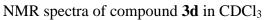


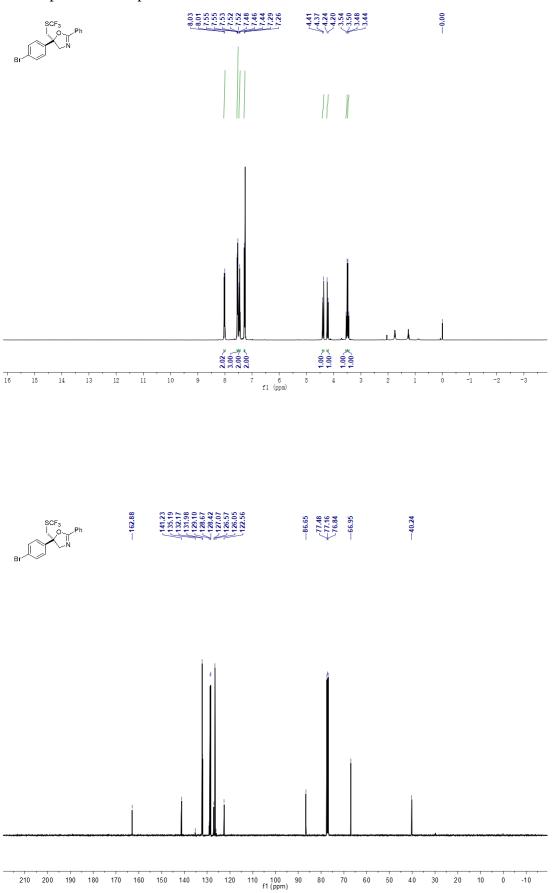


NMR spectra of compound 3a in CDCl<sub>3</sub>



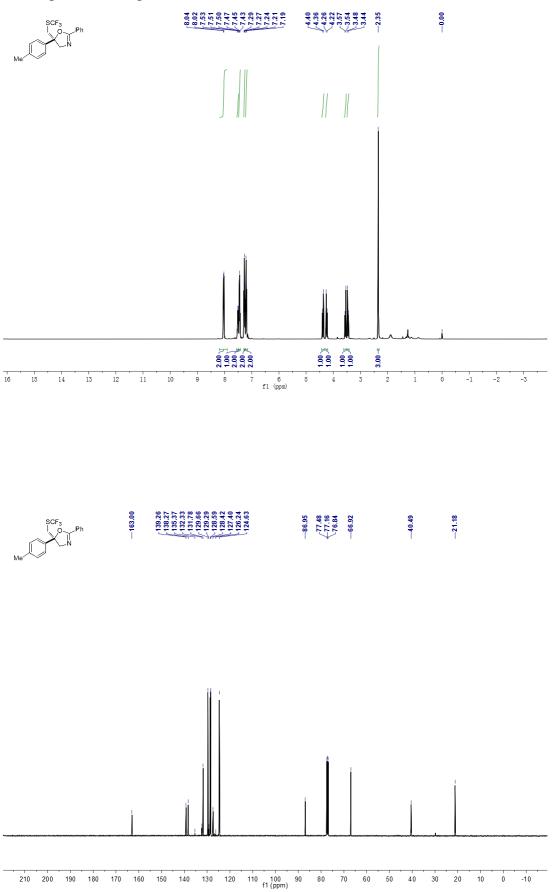





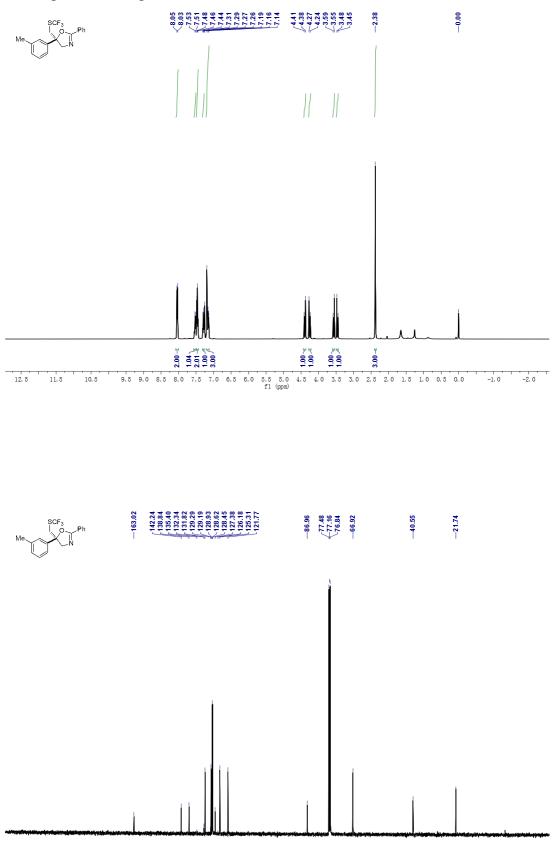



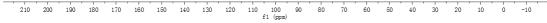





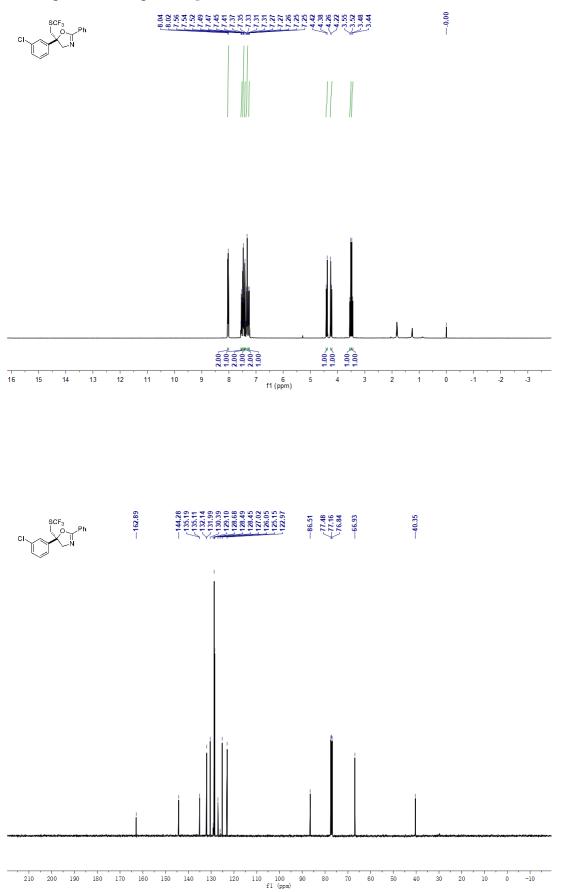




210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

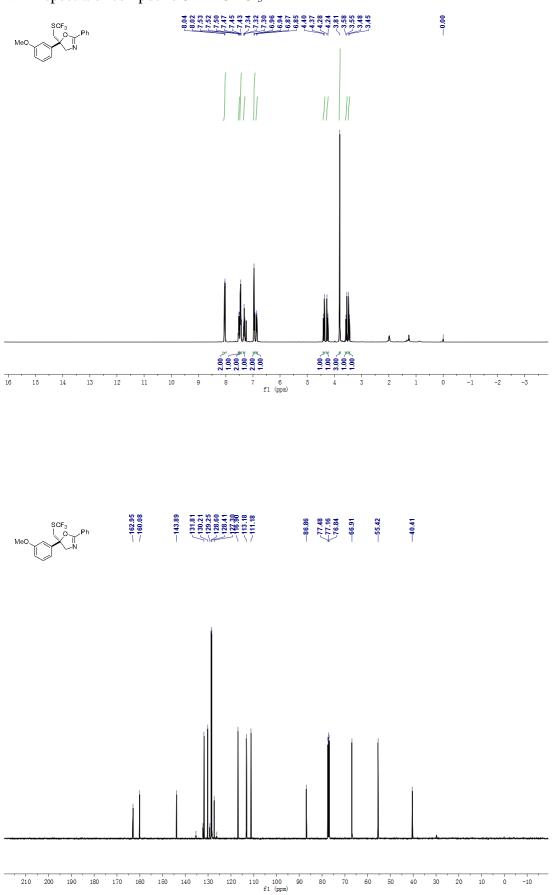


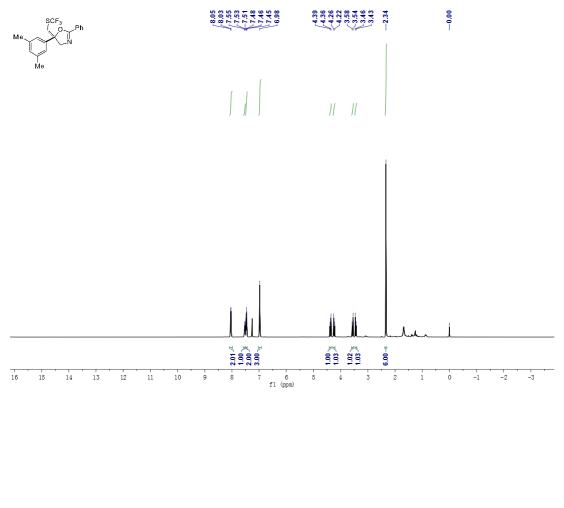

### NMR spectra of compound 3e in CDCl<sub>3</sub>

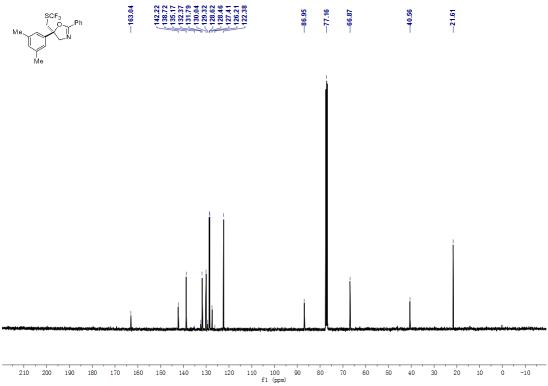



NMR spectra of compound **3f** in CDCl<sub>3</sub>

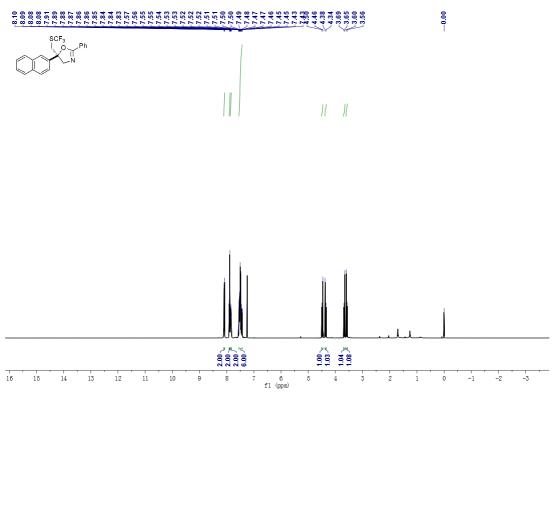


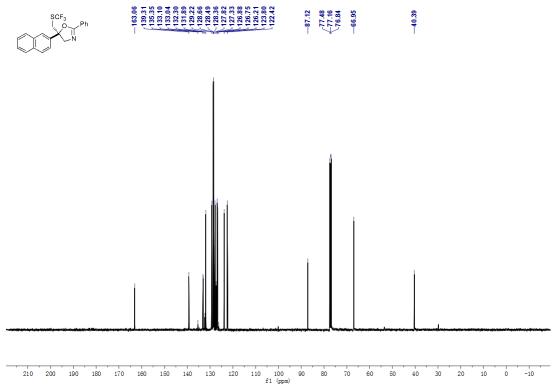




### NMR spectra of compound 3g in CDCl<sub>3</sub>

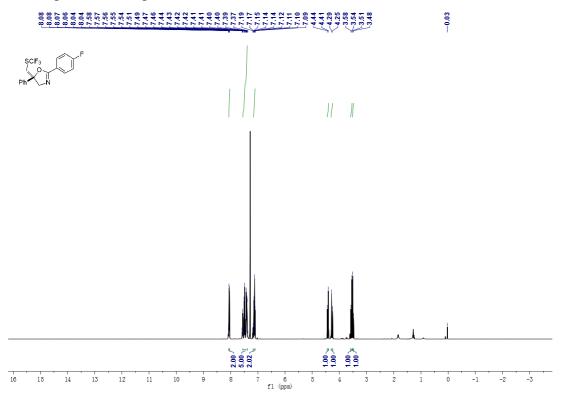


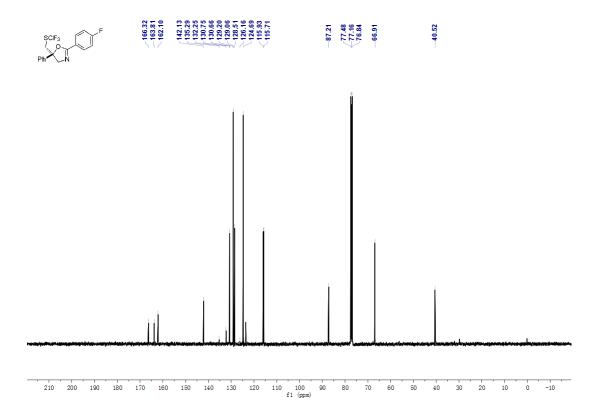

NMR spectra of compound **3h** in CDCl<sub>3</sub>



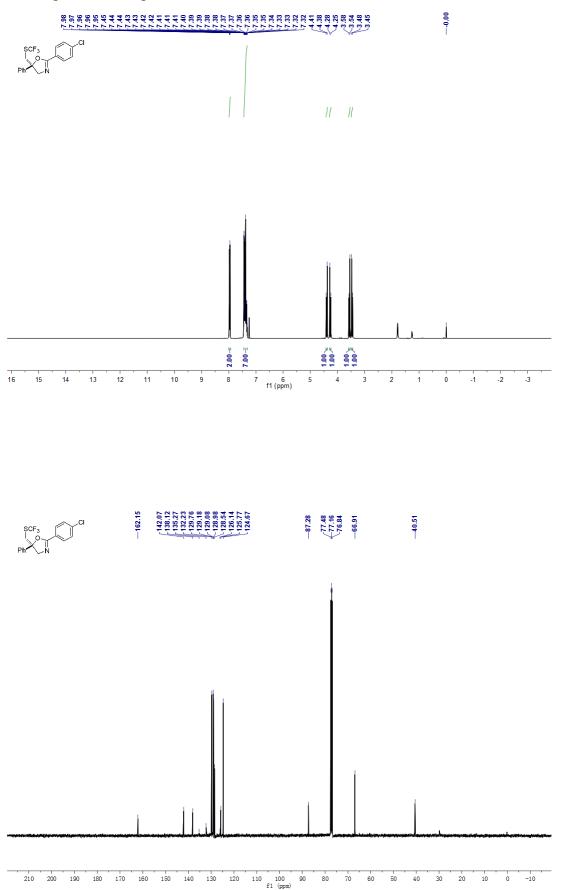


### NMR spectra of compound 3i in CDCl<sub>3</sub>

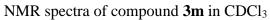


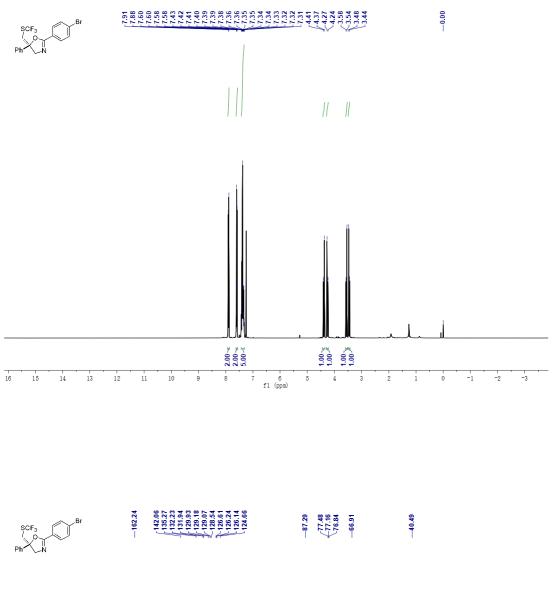


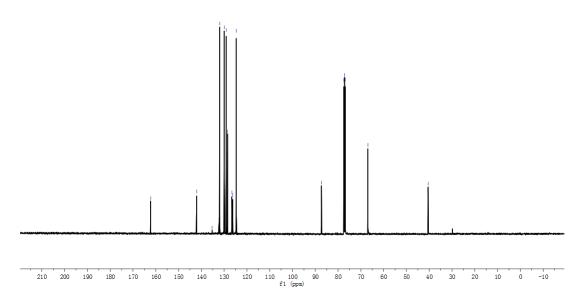


NMR spectra of compound **3j** in CDCl<sub>3</sub>



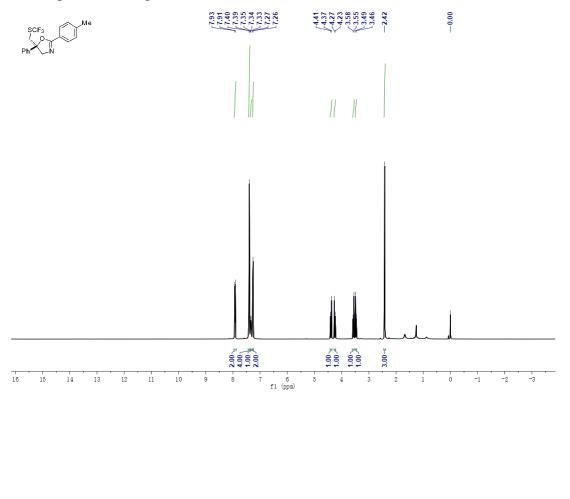




NMR spectra of compound **3k** in CDCl<sub>3</sub>

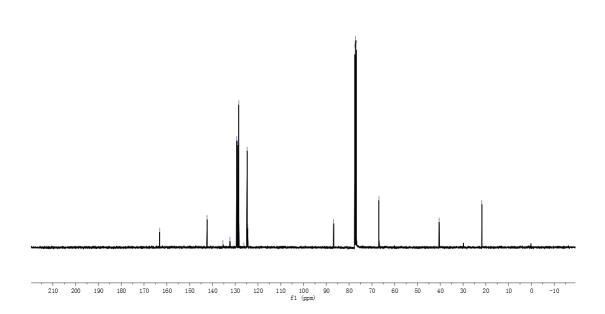


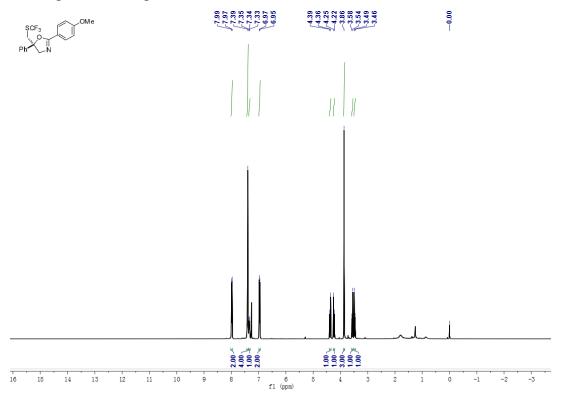

NMR spectra of compound **3l** in CDCl<sub>3</sub>

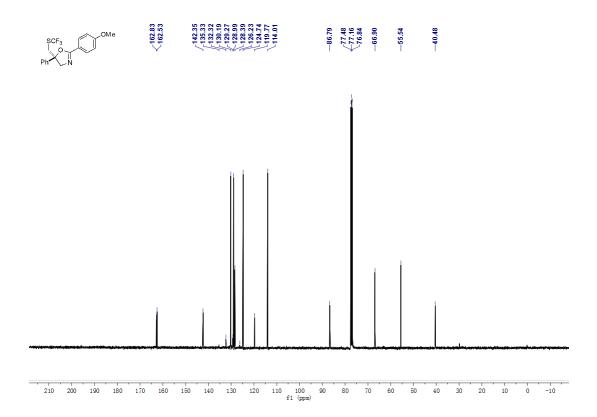




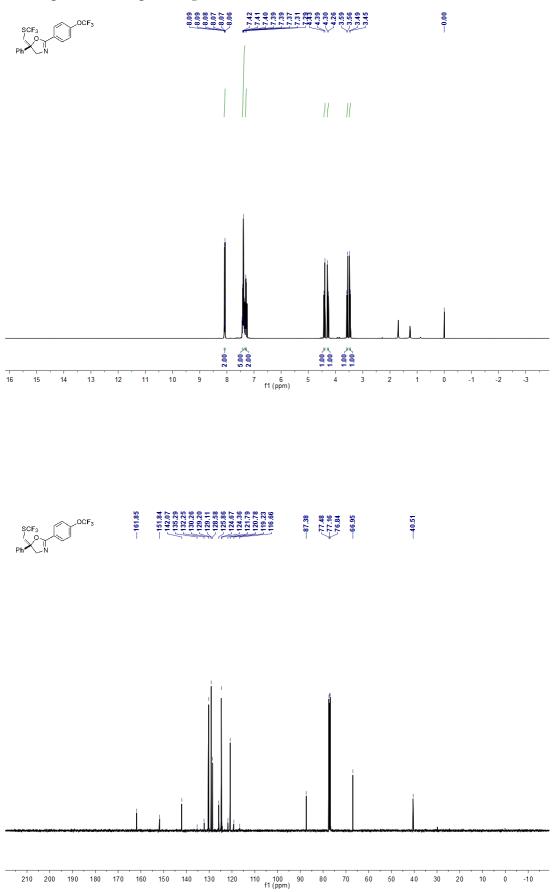





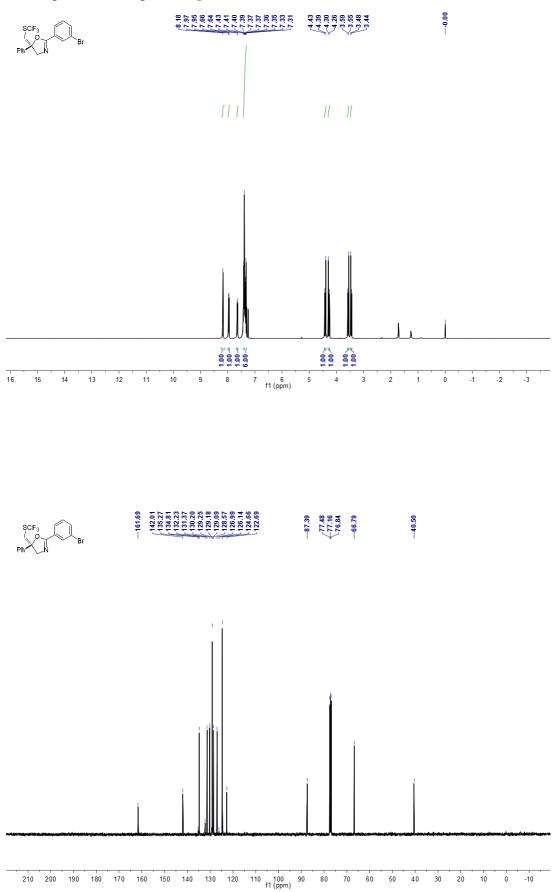


### NMR spectra of compound 3n in CDCl<sub>3</sub>



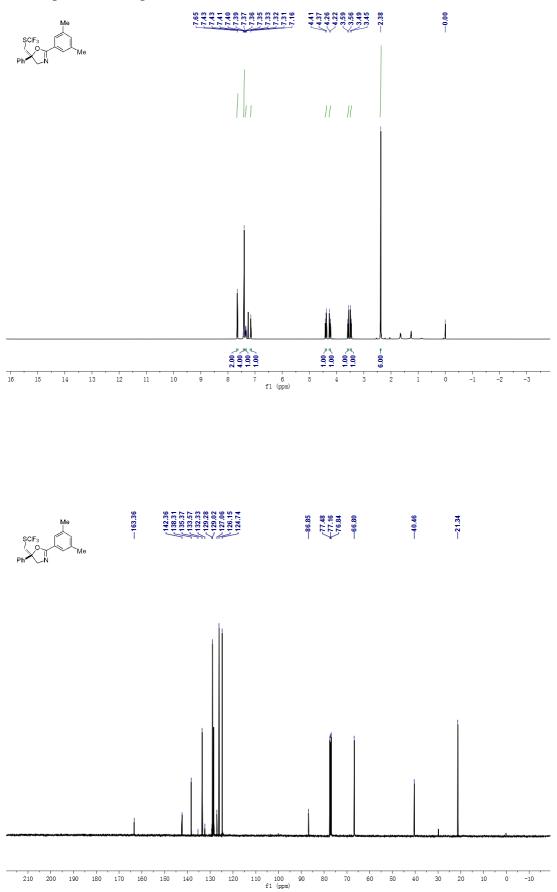


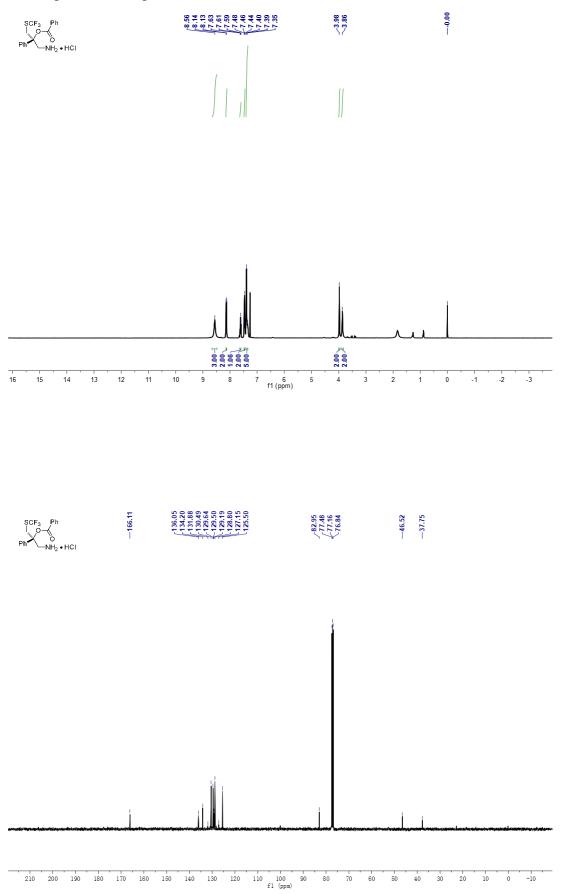

### NMR spectra of compound 30 in CDCl<sub>3</sub>



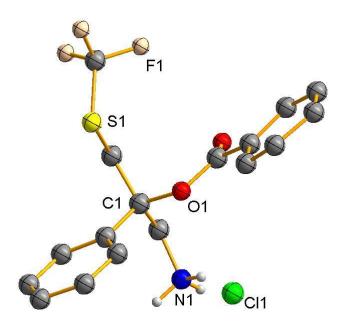




### NMR spectra of compound **3p** in CDCl<sub>3</sub>




NMR spectra of compound 3q in CDCl<sub>3</sub>




### NMR spectra of compound **3r** in CDCl<sub>3</sub>



### NMR spectra of compound (*R*)-4 in CDCl<sub>3</sub>



## 4. X-ray crystallographic data of (R)-4



Single crystals of (*R*)-4 were grown by slow evaporation of its hexane/ isopropanol solution. The single-crystal collected on Agilent Technologies Gemini A Ultra system, with Cu/K $\alpha$  4 radiation ( $\lambda = 1.54178$  Å). All empirical absorption corrections were applied using the **SCALE3 ABSPACK** program.<sup>6</sup> The structures were solved by direct method and refined by full-matrix least-squares analysis on  $F^2$  using the **SHELX97** program package. All the non-hydrogen atoms were refined anisotropically. All the hydrogen atoms were placed in calculated positions with fixed isotropic thermal parameters and included in the structure factor calculations in the final stage of full-matrix least-squares refinement. All calculations were performed using the SHELXTL system of computer programs.<sup>7</sup> Crystallographic data and details of refinements are listed in *Table S1*, and selected bond distances and angles for are listed in *Table S2*. Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC 1873635).

| Table S1 | Crystal o | data and | structure | refinement | for | <b>(</b> <i>R</i> <b>)-4</b> . |
|----------|-----------|----------|-----------|------------|-----|--------------------------------|
|----------|-----------|----------|-----------|------------|-----|--------------------------------|

| $C_{17}H_{17}ClF_3NO_2S$ |
|--------------------------|
| 1567.30                  |
| 150.02(10)               |
| orthorhombic             |
| P212121                  |
| 15.1112(4)               |
| 15.5876(5)               |
|                          |

| c/Å                                   | 31.4003(9)                                                |
|---------------------------------------|-----------------------------------------------------------|
| α/°                                   | 90.00                                                     |
| β/°                                   | 90.00                                                     |
| $\gamma/^{\circ}$                     | 90.00                                                     |
| Volume/Å3                             | 7396.3(4)                                                 |
| Z                                     | 4                                                         |
| pcalcg/cm3                            | 1.408                                                     |
| μ/mm-1                                | 3.250                                                     |
| F(000)                                | 3232.0                                                    |
| Crystal size/mm3                      | $0.30 \times 0.20 \times 0.11$                            |
| Radiation                             | Cu Ka ( $\lambda = 1.54184$ )                             |
| $2\Theta$ range for data collection/° | 5.62 to 134.58                                            |
| Index ranges                          | $-8 \leq h \leq 17,-17 \leq k \leq 18,-37 \leq l \leq 36$ |
| Reflections collected                 | 21018                                                     |
| Independent reflections               | 11812 [Rint = 0.0675,<br>Rsigma = N/A]                    |
| Data/restraints/parameters            | 11812/29/1119                                             |
| Goodness-of-fit on F2                 | 1.018                                                     |
| Final R indexes [I>= $2\sigma$ (I)]   | R1 = 0.0566, wR2 = 0.1316                                 |
| Final R indexes [all data]            | R1 = 0.0805, wR2 = 0.1466                                 |
| Largest diff. peak/hole / e Å-3       | 0.74/-0.59                                                |
| Flack parameter                       | -0.012(16)                                                |
|                                       |                                                           |

# Table S2 Bond Lengths for (R)-4.

| Atom       | Atom       | Length/Å | Atom       | Atom       | Length/Å |
|------------|------------|----------|------------|------------|----------|
| N1         | C2         | 1.464(6) | N3         | C36        | 1.481(6) |
| 01         | C11        | 1.328(8) | 05         | C45        | 1.358(6) |
| 01         | C1         | 1.452(7) | 05         | C35        | 1.450(6) |
| O2         | C11        | 1.213(9) | 06         | C45        | 1.209(7) |
| C1         | C4         | 1.504(8) | C44        | F9         | 1.304(9) |
| C1         | C3         | 1.545(8) | C44        | F7         | 1.307(9) |
| C1         | C2         | 1.547(7) | C44        | F8         | 1.319(9) |
| C3         | <b>S</b> 1 | 1.802(8) | C44        | <b>S</b> 3 | 1.772(9) |
| <b>S</b> 1 | C10        | 1.766(8) | <b>S</b> 3 | C37        | 1.802(9) |
| C10        | F2         | 1.313(8) | C37        | C35        | 1.540(9) |
| C10        | F1         | 1.317(8) | C35        | C36        | 1.523(7) |
| C10        | F3         | 1.325(8) | C35        | C38        | 1.543(7) |
| C4         | C9         | 1.378(8) | C38        | C39        | 1.377(7) |
| C4         | C5         | 1.398(9) | C38        | C43        | 1.388(7) |

| C5 |  |
|----|--|
|    |  |

1.382(8)

| Tuble 55 Dolid Aligies for (A)-4. |            |            |          |      |            |            |           |
|-----------------------------------|------------|------------|----------|------|------------|------------|-----------|
| Atom                              | Atom       | Atom       | Angle/°  | Atom | h Atom     | Atom       | Angle/°   |
| C11                               | 01         | C1         | 122.6(5) | C45  | O5         | C35        | 122.6(4)  |
| 01                                | C1         | C4         | 109.8(4) | F9   | C44        | F7         | 108.8(9)  |
| 01                                | C1         | C3         | 111.4(6) | F9   | C44        | F8         | 106.0(8)  |
| C4                                | C1         | C3         | 100.0(6) | F7   | C44        | F8         | 106.1(8)  |
| 01                                | C1         | C2         | 111.3(5) | F9   | C44        | <b>S</b> 3 | 111.7(11) |
| C4                                | C1         | C2         | 116.5(4) | F7   | C44        | <b>S</b> 3 | 109.0(8)  |
| C3                                | C1         | C2         | 107.3(5) | F8   | C44        | <b>S</b> 3 | 115.0(8)  |
| 01                                | C1         | C3'        | 91.0(6)  | C44  | <b>S</b> 3 | C37        | 96.8(5)   |
| C4                                | C1         | C3'        | 122.9(7) | C35  | C37        | <b>S</b> 3 | 112.4(7)  |
| C3                                | C1         | C3'        | 25.6(5)  | 05   | C35        | C36        | 113.1(4)  |
| C2                                | C1         | C3'        | 102.5(5) | 05   | C35        | C37'       | 114.9(8)  |
| C1                                | C3         | <b>S</b> 1 | 114.2(6) | C36  | C35        | C37'       | 104.8(5)  |
| C10                               | <b>S</b> 1 | C3         | 98.8(5)  | O5   | C35        | C37        | 103.9(8)  |
| F2                                | C10        | F1         | 106.2(7) | C36  | C35        | C37        | 110.9(5)  |
| F2                                | C10        | F3         | 105.8(7) | O5   | C35        | C38        | 104.0(4)  |
| F1                                | C10        | F3         | 106.0(7) | C36  | C35        | C38        | 109.3(4)  |
| F2                                | C10        | <b>S</b> 1 | 114.3(6) | C37  | C35        | C38        | 115.4(9)  |
| F1                                | C10        | <b>S</b> 1 | 114.9(6) | N3   | C36        | C35        | 113.2(4)  |
| F3                                | C10        | <b>S</b> 1 | 108.9(7) | C39  | C38        | C43        | 119.3(5)  |
| N1                                | C2         | C1         | 116.5(4) | C39  | C38        | C35        | 121.3(4)  |
| C9                                | C4         | C5         | 117.9(6) | C43  | C38        | C35        | 119.1(4)  |
| C9                                | C4         | C1         | 123.1(5) | C38  | C39        | C40        | 120.1(5)  |
| C5                                | C4         | C1         | 118.6(6) | C41  | C40        | C39        | 120.7(5)  |
|                                   |            |            |          |      |            |            |           |

#### *Table S3* Bond Angles for (*R*)-4.

C6

#### **5. References**

- (1) J. Luo, Y. Liu and X. Zhao, Org. Lett., 2017, 19, 3434.
- (2) X. Liu, R. An, X. Zhang, J. Luo and X. Zhao, Angew. Chem., Int. Ed., 2016, 55, 5846;
- (3) Y. Kawato, A. Kubota, H. Ono, H. Egami and Y. Hamashima, *Org Lett.*, 2015, 17, 1244.
- (4) A. Jaganathan, A. Garzan, D. C. Whitehead, R. J. Staples and B. Borhan, *Angew. Chem.*, *Int. Ed.*, 2011, **50**, 2593.
- (5) H. Aït- Haddou, O. Hoarau, D. Cramailére, F. Pezet, C. J. Daran and G. G. A. Balavoine, *Chem. Eur. J.*, 2004, **10**, 699.
- (6) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339.
- (7) L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard and H. Puschmann, *Acta Cryst.*, 2015, **A71**, 59.