Supporting Information for

Rh-catalyzed Aminative Dearomatization of 2-Naphthols

Ji-Cheng Yi^{a,b}, Hang-Fei Tu^a, Shu-Li You*^{a,b}

^aState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Lu, Shanghai 200032, China

^bSchool of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China E-mail: <u>slyou@sioc.ac.cn</u>

Homepage: http://shuliyou.sioc.ac.cn

Table of Contents

General methods	S2
Optimization of reaction conditions	S3-S6
General procedure for the synthesis of substrates	S6-S10
General procedure for the aminative dearomatization of naphthols	S10-S16
Gram-scale reaction and transformations of 3a	S16-S19
Copies of NMR spectra	S20-S72

General methods. Unless stated otherwise, all reactions were carried out in flame-dried glassware under a dry argon atmosphere. All solvents were purified and dried according to standard methods prior to use.

¹H and ¹³C NMR spectra were recorded on a Varian instrument (400 MHz and 100 MHz, respectively), an Agilent instrument (400, 600 MHz and 100, 150 MHz, respectively) or a Bruker instrument (400 MHz and 100 MHz, respectively) and internally referenced to tetramethylsilane signal or residual protio solvent signals. ¹⁹F NMR spectra were recorded on a Varian instrument, Agilent instrument (376 MHz) or a Bruker instrument (376 MHz) and internally referenced to CFCl₃. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, brs = broad singlet, coupling constant (s) in Hz, integration). Data for ¹³C NMR and ¹⁹F NMR are reported in terms of chemical shift (δ , ppm).

Optimization of reaction conditions

Table S1 DPH equivalent screening

Lia 0.2 mmol	$H_2N_{O} \\ NO_2 \\ NO_2 \\ 2 (DPH) \\ X equiv$	Rh₂(esp)₂ (1 mol%) MeOH, rt	NH ₂ J
entry ^a	Х	1a (%) ^b	3 (%) ^b
1	1.5	31	49
2^{c}	1.5	28	51
3	2.0	16	49
4	3.0	7	57
5 ^c	3.0	5	56
6	5.0	2	55

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2** (0.2X mmol), $Rh_2(esp)_2$ (1 mol%) in MeOH (2.0 mL) at rt, ^{*b*} Determined by ¹H NMR using CH_2Br_2 (0.2 mmol) as an internal standard. ^{*c*} 2 mol% of $Rh_2(esp)_2$ was used.

Table S2 Base screening

$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$
--

entry ^a	base	1a $(\%)^b$	3 $(\%)^b$
1	K ₂ CO ₃	28	46
2	K ₃ PO ₄	27	40

3	Cs_2CO_3	24	37
4	^t BuOK		0
5	KOAc	15	0
6	Et_3N	48	0
7	DBU	47	0
8	DABCO	71	0
9	-	7	57

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2** (0.6 mmol), base (0.3 mmol), $Rh_2(esp)_2$ (1 mol%) in MeOH (2.0 mL) at rt, ^{*b*} Determined by ¹H NMR using CH_2Br_2 (0.2 mmol) as an internal standard.

Table S3 Solvent screening

entry ^a	solvent	1a $(\%)^b$	3 $(\%)^b$
1	MeOH	7	57
2	CH ₃ CH ₂ OH	10	50
3	ⁱ PrOH	17	49
4	^t BuOH	27	37
5	^t Amyl-OH	43	26
6	CF ₃ CH ₂ OH	3	49
7	HFIP	47	-
8	EtOAc	33	31
9	CH ₃ CN	28	42

10	toluene	43	-
11	dioxane	30	-
12	DMSO	-	-
13	Et ₃ N	-	-
14	MeOH (1 mL)	5	38
15	MeOH (4 mL)	9	55
16	MeOH/EtOAc	11	55
17	MeOH/CF ₃ CH ₂ OH ^d	2	61 (59 ^{<i>c</i>})
19	CH ₃ CN/CF ₃ CH ₂ OH	-	50^c
20	^t Amyl-OH/CF ₃ CH ₂ OH	-	40^c
21	ⁱ PrOH/CF ₃ CH ₂ OH	-	49 ^c
22	MeOH (1.6 mL)/CF ₃ CH ₂ OH (0.4 mL)	-	53 ^c
23	MeOH (0.4 mL)/CF ₃ CH ₂ OH (1.6 mL)	-	48^c

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2** (0.6 mmol), $Rh_2(esp)_2$ (1 mol%) in MeOH (2.0 mL) at rt, ^{*b*} Determined by ¹H NMR using CH₂Br₂ (0.2 mmol) as an internal standard. ^{*c*} Isolated yields. ^{*d*} CF₃CH₂OH (1.0 mL) and MeOH (1.0 mL) were used as co-solvent.

Table S4 catalyst screening

entry ^a	catalyst	1a $(\%)^b$	3 $(\%)^b$
1	$\mathbf{Rh}_2(\mathbf{esp})_2$	2	61
2	Rh ₂ (OAc) ₄	53	11

3	$Rh_2(TFA)_4$	97	-
4	[Rh(COD)Cl] ₂	97	trace
5	RhCl ₃	100	-
6	[Ir(COD)Cl] ₂	90	trace
7	Pd(OAc) ₂	100	-
8	CuBr	67	trace
9	CuI	decomposed	-
9 10	CuI Cu(OTf) ₂	decomposed 78	- trace
9 10 11	CuI Cu(OTf) ₂ Sc(OTf) ₃	decomposed 78 100	- trace -
9 10 11 12	CuI Cu(OTf) ₂ Sc(OTf) ₃ Zn(OTf) ₂	decomposed 78 100 100	- trace -

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2** (0.6 mmol), catalyst (1 mol%) in CF₃CH₂OH (1.0 mL) and MeOH (1.0 mL) at rt, ^{*b*} Determined by ¹H NMR using CH₂Br₂ (0.2 mmol) as an internal standard.

General procedure for the synthesis of substrates

The synthesis of substituted naphthols was accomplished following the reported procedures.^{1, 3-7}

1a,¹ ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.4 Hz, 1H), 7.69 (d, *J* = 8.4 Hz, 1H), 7.48 (s, 1H), 7.45-7.40 (m, 1H), 7.33-7.29 (m, 1H), 4.88 (s, 1H), 2.52 (s, 3H), 2.42 (s, 3H).

1b,² ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.4 Hz, 1H), 7.73 (d, *J* = 8.4 Hz, 1H), 7.49 (s, 1H), 7.45-7.41 (m, 1H), 7.33-7.30 (m, 1H), 4.92 (s, 1H), 2.80 (q, *J* = 7.6 Hz, 2H), 2.53 (s, 3H), 1.35 (t, *J* = 7.6 Hz, 3H).

1c,³ ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.8 Hz, 1H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.51 (s, 1H), 7.45 (t, *J* = 7.6 Hz, 1H), 7.35-7.22 (m, 6H), 4.83 (s, 1H), 4.17 (s, 2H), 2.50 (s, 3H).

1d,^{1 1}H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.4 Hz, 1H), 7.72 (s, 1H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.49-7.45 (m, 1H), 7.37-7.33 (m, 1H), 5.77 (s, 1H), 2.58 (s, 3H).

1e,¹ ¹H NMR (400 MHz, CDCl₃) δ 7.90-7.88 (m, 2H), 7.69-7.66 (m, 1H), 7.51-7.47 (m, 1H), 7.36-7.32 (m, 1H), 5.70 (s, 1H), 2.61 (s, 3H).

1f,^{1 1}H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.89 (d, *J* = 8.4 Hz, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.51-7.48 (m, 1H), 7.35-7.31 (m, 1H), 5.39 (s, 1H), 2.62 (s, 3H).

1g,^{1 1}H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.4 Hz, 1H), 7.78 (d, *J* = 8.4 Hz, 1H), 7.60 (s, 1H), 7.54-7.44 (m, 6H), 7.37-7.34 (m, 1H), 5.33 (s, 1H), 2.61 (s, 3H).

1h,^{1 1}H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.8 Hz, 1H), 7.70 (d, *J* = 8.4 Hz, 1H), 7.49 (s, 1H), 7.44-7.40 (m, 1H), 7.32-7.28 (m, 1H), 4.90 (s, 1H), 3.06 (q, *J* = 7.6 Hz, 2H), 2.43 (s, 3H), 1.28 (t, *J* = 7.6 Hz, 3H).

1i,⁴ ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.4 Hz, 1H), 7.46 (s, 1H), 7.40 (s, 1H), 7.27 (d, *J* = 8.0 Hz, 1H), 4.80 (s, 1H), 2.51 (s, 3H), 2.46 (s, 3H), 2.42 (s, 3H).

1j,⁵ ¹H NMR (400 MHz, CDCl₃) δ 7.62 (s, 1H), 7.59 (d, *J* = 8.4 Hz, 1H), 7.44 (s, 1H), 7.15 (d, *J* = 8.0 Hz, 1H), 4.85 (s, 1H), 2.51 (s, 6H), 2.41 (s, 3H).

1k,^{1 1}H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.4 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 8.8 Hz, 1H), 7.51-7.47 (m, 1H), 7.36-7.32 (m, 1H), 7.06 (d, *J* = 8.8 Hz, 1H), 4.84 (s, 1H), 2.54 (s, 3H).

11,^{3 1}H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.4 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 8.8 Hz, 1H), 7.50-7.47 (m, 1H), 7.35-7.31 (m, 1H), 7.06 (d, *J* = 8.8 Hz, 1H), 4.86 (s, 1H), 3.07 (q, *J* = 7.6 Hz, 2H), 1.29 (t, *J* = 7.6 Hz, 3H).

1m,⁶ ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.4 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.71 (d, *J* = 8.8 Hz, 1H), 7.45-7.41 (m, 1H), 7.34-7.31 (m, 1H), 7.26-7.14 (m, 5H), 7.11 (d, *J* = 8.8 Hz, 1H), 4.90 (s, 1H), 4.45 (s, 2H).

1n,⁷ ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.79 (m, 2H), 7.60-7.57 (m, 2H), 7.52-7.48 (m, 1H), 7.43-7.39 (m, 3H), 7.35-7.30 (m, 2H), 7.27-7.25 (m, 1H), 5.13 (s, 1H).

10,⁸ ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 9.2 Hz, 1H), 7.51 (d, *J* = 8.4 Hz, 1H), 7.17 (dd, *J* = 9.2, 2.4 Hz, 1H), 7.09 (d, *J* = 2.4 Hz, 1H), 7.04 (d, *J* = 8.4 Hz, 1H), 4.74 (s, 1H), 3.90 (s, 3H), 2.51 (s, 3H).

1p,^{8 1}H NMR (400 MHz, CDCl₃) δ 7.67-7.65 (m, 2H), 7.57 (d, J = 8.4 Hz, 1H), 7.18 (d, J = 8.4 Hz, 1H), 6.99 (d, J = 8.8 Hz, 1H), 4.81 (s, 1H), 2.53 (s, 3H), 2.51 (s, 3H).

1q, ⁹ ¹H NMR (400 MHz, DMSO-d₆) δ 9.56 (s, 1H), 8.08 (s, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.79-7.77 (m, 3H), 7.71 (d, J = 8.8 Hz, 1H), 7.51-7.47 (m, 2H), 7.38-7.34 (m, 1H), 7.19 (d, J = 8.8 Hz, 1H), 2.44 (s, 3H).

General procedure for the aminative dearomatization of naphthols

Naphthol derivative **1** (0.2 mmol, 1.0 equiv) was added to an oven-dried Schlenk tube, CF₃CH₂OH (1 mL) and MeOH (1 mL) were added under argon at room temperature. To this solution were added Rh₂(esp)₂ (1.5 mg, 0.002 mmol, 0.01 equiv) and DPH **2** (120 mg, 0.6 mmol, 3.0 equiv). After the reaction was complete (monitored by TLC), the reaction was quenched by saturated aqueous solution of NaHCO₃ (5 mL). The aqueous phase was extracted with ethyl acetate (3 × 10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was then purified by silica gel column chromatography [PE/EtOAc = 5/1, then PE/EtOAc = 5/1 (1% Et₃N)] to afford the desired product **3**.

3a: Yellow oil, 22.1 mg, 59% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.0 Hz, 1H), 7.38-7.34 (m, 1H), 7.30-7.27 (m, 1H), 7.24-7.23 (m, 2H), 2.04 (brs, 2H), 2.02 (s, 3H), 1.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 206.6, 145.4, 141.3, 131.1, 129.3, 129.2, 128.5, 127.5, 126.0, 60.9, 32.7, 15.8; IR (thin film): v_{max} (cm⁻¹) = 3359, 3294; 3044, 2968, 2923, 1653, 1438, 1361, 1262, 1091, 1026, 894, 819, 745; HRMS (ESI) calcd for C₁₂H₁₄NO ([M+H]⁺): 188.1070. Found: 188.1064.

3b: Yellow oil, 24.6 mg, 61% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 7.6 Hz, 1H), 7.38-7.34 (m, 1H), 7.31-7.25 (m, 2H), 7.17 (s, 1H), 2.54-2.34 (m, 2H), 1.96 (brs, 2H), 1.39 (s, 3H), 1.16 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 206.2, 145.2, 139.5, 136.7, 129.3, 128.6, 127.5, 125.9, 61.2, 32.5, 22.4, 12.6; IR (thin film): v_{max} (cm⁻¹) = 3358, 3296, 3048, 2959, 1659, 1448, 1378, 1255, 1084, 1019, 936, 881, 817, 758; HRMS (ESI) calcd for C₁₃H₁₆NO ([M+H]⁺): 202.1226. Found: 202.1221.

3c: Yellow oil, 30.9 mg, 59% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 7.6 Hz, 1H), 7.38-7.18 (m, 8H), 7.06 (s, 1H), 3.79 (AB, *J*_{AB} = 16.0 Hz, 1H), 3.68 (BA, *J*_{BA} = 16.0 Hz, 1H), 2.04 (brs, 2H), 1.35 (s, 3H); ¹³C NMR (400 MHz, CDCl₃) δ 205.8, 145.4, 141.5, 138.9, 134.6, 129.6, 129.10, 129.08, 129.0, 128.5, 127.5, 126.4, 126.0, 61.4, 35.5, 32.6; IR (thin film): v_{max} (cm⁻¹) = 3357, 3297, 3039, 2915, 1656, 1500, 1439, 1374, 1321, 1258, 1086, 970, 894, 816, 750, 710; HRMS (ESI) calcd for C₁₈H₁₈NO ([M+H]⁺): 264.1383. Found: 264.1376.

3d: Yellow oil, 20.9 mg, 50% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.0 Hz, 1H), 7.64 (s, 1H), 7.47-7.43 (m, 1H), 7.36-7.32 (m, 1H), 7.29-7.27 (m, 1H), 1.99 (brs, 2H), 1.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.5, 145.0, 142.5, 130.7, 129.1, 128.4, 128.06, 128.02, 126.6, 63.2, 32.8; IR (thin film): v_{max} (cm⁻¹) = 3359, 3298, 2920, 1675, 1598, 1496, 1444, 1341, 1221, 1146, 1083, 1023, 933, 839, 754; HRMS (ESI) calcd for C₁₁H₁₁ClNO ([M+H]⁺): 208.0524. Found: 208.0519.

3e: Yellow solid, 25.7 mg, 51% yield, m.p. 60-62 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.48-7.44 (m, 1H), 7.35-7.31 (m, 1H), 7.30-7.28 (m, 1H), 1.99 (brs, 2H), 1.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.6, 146.7, 145.4, 130.9, 129.1, 128.8, 128.0, 126.6, 120.0, 63.1, 32.8; IR (thin film): v_{max} (cm⁻¹) = 3363, 2983, 2921, 2311, 2097, 1857, 1660, 1586, 1439, 1333, 1217, 1150, 1076, 915, 824, 767; HRMS (ESI) calcd for C₁₁H₁₁BrNO ([M+H]⁺): 252.0019. Found: 252.0012.

3f: Yellow solid, 27.0 mg, 45% yield, m.p. 96-98 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.48-7.44 (m, 1H), 7.34-7.30 (m, 1H), 7.26-7.25 (m, 1H), 2.12 (brs, 2H), 1.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 200.8, 154.1, 145.9, 131.0, 130.1, 128.9, 127.9, 126.5, 98.8, 62.1, 32.9; IR (thin film): v_{max} (cm⁻¹) = 3358, 3298, 2978, 2918, 2956, 2307, 2104, 1654, 1577, 1438, 1334, 1211, 1146, 1072, 1022, 892, 825, 758; HRMS (ESI) calcd for C₁₁H₁₁INO ([M+H]⁺): 299.9880. Found: 299.9871.

3g: Yellow solid, 30.6 mg, 61% yield, m.p. 138-140 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.0 Hz, 1H), 7.54-7.51 (m, 3H), 7.44-7.31 (m, 6H), 2.18 (brs, 2H), 1.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 205.2, 145.6, 141.4, 135.5, 134.2, 130.1, 129.6, 129.2, 128.35, 128.32, 128.2, 127.7, 126.0, 62.3, 32.3; IR (thin film): v_{max} (cm⁻¹) = 3371, 3310, 3044, 2921, 2861, 2308, 2105, 1658, 1458, 1358, 1292, 1205, 1066, 925, 828, 745, 709; HRMS (ESI) calcd for C₁₇H₁₆NO ([M+H]⁺): 250.1226. Found: 250.1220.

3h: Yellow oil, 21.4 mg, 53% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.0 Hz, 1H), 7.38-7.34 (m, 1H), 7.30-7.28 (m, 1H), 7.23-7.21 (m, 2H), 2.14 (brs, 2H), 2.0 (s, 3H), 1.86-1.69 (m, 2H), 0.65 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 206.3, 143.9, 141.5, 132.0, 130.2, 129.0, 128.3, 127.5, 126.5, 64.2, 39.1, 15.6, 8.2; IR (thin film): v_{max} (cm⁻¹) = 3356, 3043, 2928, 2866, 1652, 1442, 1368, 1322, 1260, 1029, 922, 816, 753; HRMS (ESI) calcd for C₁₃H₁₆NO ([M+H]⁺): 202.1226. Found: 202.1221.

3i: Yellow oil, 22.2 mg, 55% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.0 Hz, 1H), 7.19-7.17 (m, 2H), 7.05 (s, 1H), 2.36 (s, 3H), 2.01 (d, *J* = 1.2 Hz, 3H), 1.81 (brs, 2H), 1.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 206.8, 142.5, 141.5, 137.2, 131.1, 130.1, 129.2, 129.1, 126.0, 60.7, 32.7, 21.0, 15.9; IR (thin film): v_{max} (cm⁻¹) = 3572, 3355, 3290, 2921, 2868, 1651, 1502, 1440, 1368, 1269, 1100, 1026, 900, 818, 761; HRMS (ESI) calcd for C₁₃H₁₆NO ([M+H]⁺): 202.1226. Found: 202.1221.

3j: Yellow oil, 21.2 mg, 53% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (s, 1H), 7.20 (s, 1H), 7.14-7.07 (m, 2H), 2.38 (s, 3H), 2.02-2.00 (m, 5H), 1.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 206.5, 145.3, 141.4, 139.7, 130.0, 128.5, 128.2, 126.8, 126.6, 60.9, 32.8, 21.6, 15.7; IR (thin film): v_{max} (cm⁻¹) = 3358, 3292, 2964, 2920, 2867, 1650, 1514, 1439, 1370, 1258, 1179, 1096, 1026, 964, 892, 810, 722; HRMS (ESI) calcd for C₁₃H₁₆NO ([M+H]⁺): 202.1226. Found: 202.1221.

3k: Yellow oil, 33.3 mg, 64% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 7.6 Hz, 1H), 7.46-7.42 (m, 2H), 7.32-7.31 (m, 2H), 6.20 (d, *J* = 10.0 Hz, 1H), 2.02 (brs, 2H), 1.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 206.3, 146.2, 145.1, 130.5, 129.4, 128.9, 127.6, 126.3, 123.5, 61.3, 32.6; IR (thin film): v_{max} (cm⁻¹) = 3356, 3294, 3048, 2971, 1660, 1448, 1225, 1146, 1077, 1023, 897, 815, 755, 679; HRMS (ESI) calcd for C₁₁H₁₂NO ([M+H]⁺): 174.0913. Found: 174.0909.

3l: Yellow oil, 24.2 mg, 65% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.6 Hz, 1H), 7.45-7.40 (m, 2H), 7.34-7.30 (m, 2H), 6.19 (d, *J* = 10.0 Hz, 1H), 1.88-1.71 (m, 5H), 0.69 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 206.3, 145.2, 145.1, 130.2, 129.8, 129.2, 127.5, 126.8, 124.4, 64.4, 38.9, 8.2; IR (thin film): v_{max} (cm⁻¹) = 3356, 3295, 3049, 2957, 1658, 1451, 1373, 1221, 1082, 950, 824, 755, 680; HRMS (ESI) calcd for C₁₂H₁₄NO ([M+H]⁺): 188.1070. Found: 188.1065.

3m

3m: Yellow oil, 28.9 mg, 58% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 7.2 Hz, 1H), 7.42-7.38 (m, 1H), 7.33-7.29 (m, 1H), 7.22-7.07 (m, 5H), 6.68-6.61 (m, 2H), 6.03 (d, *J* = 10.0 Hz, 1H), 3.02 (AB, *J_{AB}* = 12.8 Hz, 1H), 2.96 (BA, *J_{BA}* = 12.8 Hz, 1H), 1.96 (brs, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 205.5, 144.9, 144.2, 134.5, 130.1, 130.04, 130.01, 129.2, 127.8, 127.6, 127.2, 126.8, 124.3, 65.3, 52.4; IR (thin film): v_{max} (cm⁻¹) = 3356, 3291, 3039, 2922, 2848, 1658, 1445, 1225, 1076, 1012, 820, 752, 690; HRMS (ESI) calcd for C₁₇H₁₆NO ([M+H]⁺): 250.1226. Found: 250.1221.

3n: Yellow solid, 21 mg, 45% yield, m.p. 70-72 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 7.6 Hz, 1H), 7.44-7.35 (m, 4H), 7.24-7.20 (m, 5H), 6.16 (d, J = 10.0 Hz, 1H), 2.42 (brs, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 203.2, 145.2, 144.8, 142.8, 130.6, 129.8, 129.3, 128.6, 128.5, 128.1, 127.7, 125.8, 124.1, 66.1; IR (thin film): v_{max} (cm⁻¹) = 3356, 3294, 3052, 2916, 2306, 2107, 1651, 1594, 1478, 1394, 1231, 1106, 1026, 972, 854, 826, 751, 684; HRMS (ESI) calcd for C₁₆H₁₄NO ([M+H]⁺): 236.1070. Found: 236.1064.

3o: Yellow oil, 20.0 mg, 49% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.8 Hz, 1H), 7.37 (d, *J* = 9.6 Hz, 1H), 6.97 (dd, *J* = 8.8, 2.8 Hz, 1H), 6.83 (d, *J* = 2.4 Hz, 1H), 6.20 (d, *J* = 9.6 Hz, 1H), 3.84 (s, 3H), 2.14 (brs, 2H), 1.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 206.3, 158.9, 144.9, 138.0, 129.9, 127.6, 124.0, 115.8, 114.5, 60.7, 55.4, 32.3; IR (thin film): v_{max} (cm⁻¹) = 2935, 2845, 2101, 1658, 1584, 1478, 1447,

1371, 1256, 1145, 1091, 1025, 808, 703; HRMS (ESI) calcd for C₁₂H₁₁O₂ ([M-NH₂]⁺): 187.0754. Found: 187.0755.

3p: Yellow oil, 17.5 mg, 47% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 1H), 7.41 (d, J = 10.0 Hz, 1H), 7.21 (d, J = 7.6 Hz, 1H), 7.12 (d, J = 7.6 Hz, 1H), 6.14 (d, J = 9.6 Hz, 1H), 2.41 (s, 3H), 1.96 (brs, 2H), 1.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 206.4, 146.2, 145.1, 141.1, 129.4, 128.2, 127.1, 126.3, 122.5, 61.2, 32.7, 21.6; IR (thin film): v_{max} (cm⁻¹) = 3351, 3290, 3036, 2919, 2683, 2108, 1659, 1604, 1446, 1379, 1301, 1234, 1164, 1084, 1029, 896, 827, 679; HRMS (ESI) calcd for C₁₂H₁₄NO ([M+H]⁺): 188.1070. Found: 188.1066.

3q: Yellow oil, 20.3 mg, 41% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.0 Hz, 1H), 7.65 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.61-7.58 (m, 2H), 7.52-7.44 (m, 4H), 7.40-7.38 (m, 1H), 6.24 (d, *J* = 10.0 Hz, 1H), 2.18 (brs, 2H), 1.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 206.1, 145.1, 145.0, 140.8, 139.9, 129.4, 129.2, 129.0, 128.1, 127.8, 127.0, 126.9, 124.0, 61.2, 32.5; IR (thin film): v_{max} (cm⁻¹) = 3363, 3300, 3044, 2918, 2859, 2312, 2103, 1652, 1465, 1364, 1296, 1239, 1176, 1077, 1025, 893, 821, 753, 690; HRMS (ESI) calcd for C₁₇H₁₆NO ([M+H]⁺): 250.1226. Found: 250.1219.

Gram-scale reaction

According to the general procedure, a gram-scale reaction was carried out. The

S16

aminative dearomatization of **1a** in 6.0 mmol scale gave the desired product **3a** in 60% yield (670 mg).

Transformations of product 3a.

A flame-dried Schlenk tube was cooled down to room temperature under argon. To this tube were added **3a** (56.2 mg, 0.30 mmol) and THF (2.0 mL). Then the reaction mixture was cooled to 0 °C, then NaHCO₃ (28 mg, 0.33 mmol) and CbzCl (47 μ L, 0.33 mmol) were added. The resulting mixture was stirred at room temperature. After the reaction was complete (monitored by TLC), the reaction mixture was quenched with H₂O and the aqueous phase was extracted with ethyl acetate (3 × 5 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was then purified by silica gel column chromatography (PE/EtOAc = 5/1) to afford the desired product **4** as a yellow solid.¹⁰ 90 mg, 93% yield. Two rotamers were observed by NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 7.6 Hz, 1H), 7.38-6.99 (m, 9H), 6.01 (s, 1H), 4.98 and 4.66 (s, 2H), 2.03 (s, 3H), 1.39 (s, 3H).

A flame-dried Schlenk tube was cooled down to room temperature under argon. To this tube were added **3a** (56.2 mg, 0.30 mmol), CeCl₃ 7H₂O (157 mg, 0.42 mmol), and MeOH (3.0 mL). Then the reaction mixture was cooled to 0 °C, and NaBH₄ (23 mg, 0.60 mmol) was added. After completion (5 mins), the reaction was quenched by adding saturated NH₄Cl solution (3.0 mL). The mixture was diluted with H₂O (2.0 mL) and extracted with ethyl acetate (5 mL x 3). The combined ethyl acetate extracts were $_{S17}$

washed with brine, dried over anhydrous Na₂SO₄ and filtrated. After the solvent was removed under reduced pressure, the crude product was purified by silica gel column chromatography [PE/EtOAc =1:1 – DCM/MeOH = 5:1 (1% Et₃N)] to afford **5** as a grey sticky. 47 mg, 83% yield. ¹H NMR (400 MHz, CD₃OD) δ 7.47 (d, *J* = 6.8 Hz, 1H), 7.33-7.27 (m, 2H), 7.14 (d, *J* = 6.8 Hz, 1H), 6.36 (s, 1H), 4.28 (s, 1H), 2.04 (s, 3H), 1.53 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 138.3, 135.8, 132.4, 128.4, 127.1, 126.4, 123.3, 123.0, 74.2, 58.7, 18.6, 18.2; IR (thin film): v_{max} (cm⁻¹) = 3341, 2905, 1596, 1490, 1439, 1376, 1283, 1244, 1129, 1081, 995, 945, 872, 835, 756, 647, 588, 548, 494, 424; HRMS (ESI) calcd for C₁₂H₁₆NO ([M+H]⁺): 190.1226. Found: 190.1227.

The relative configuration of 5 is assigned via NOESY spectra.

Reference:

- ¹ T. Oguma and T. Katsuki, J. Am. Chem. Soc., 2012, **134**, 20017.
- ² E. Ghera and Y. Ben-David, J. Org. Chem., 1985, 50, 3355.

³ J. Nan, J. Liu, H. Zheng, Z. Zuo, L. Hou, H. Hu, Y. Wang and X. Luan, *Angew. Chem. Int. Ed.*, 2015, **54**, 2356.

⁴ R.-Q. Xu, P. Yang, H.-F. Tu, S.-G. Wang and S.-L. You, *Angew. Chem. Int. Ed.*, 2016, **55**, 15137.

⁵ S.-G. Wang, X.-J. Liu, Q.-C. Zhao, C. Zheng, S.-B. Wang and S.-L. You, *Angew. Chem. Int. Ed.*, 2015, **54**, 14929.

⁶ N. K. Paul, L. Dietrich and A. Jha, Synth. Commun., 2007, **37**, 877.

- ⁷ T. Truong and O. Daugulis, *Chem. Sci.*, 2013, **4**, 531.
- ⁸ K. Krohn and G. Zimmermann, J. Org. Chem., 1998, **63**, 4140.
- ⁹ S. Kim and S. H. Hong, *Adv. Synth. Catal.*, 2017, **359**, 798.
 ¹⁰ Y.-Z. Cheng, K. Zhou, M. Zhu, L.-A.-C. Li, X. Zhang and S.-L. You, *Chem. Eur. J.*,

2018, **24**, 12519.

