Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Posttranscriptional spin labeling of RNA by tetrazine-based cycloaddition

Christof Domnick^a, Gregor Hagelueken^b, Frank Eggert^a, Olav Schiemann^b and Stephanie Kath-Schorr^a

[a] Life and Medical Sciences Institute, Chemical Biology and Medicinal Chemistry Unit, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany.

> [b] Institute for Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany.

Supporting Information

Contents

General methods

- Mass spectrometry (MS)
- High performance liquid chromatography (HPLC)
- Nuclear magnetic resonance (NMR) spectroscopy

Synthesis

• Synthesis of spin labeled tetrazine **3** (**TET**^{NO})

RNA preparation and characterization

- List of DNA and RNA oligonucleotide sequences
- Polyacrylamide gel electrophoresis (PAGE)
- T7 transcription and RNA purification
- MS analysis of transcribed RNA

EPR spectroscopy

- sample preparation
- cw-X-band EPR
- PELDOR

MD simulation

NMR spectra

General Methods

MS

High resolution (HR) ESI+/- mass spectra were recorded on a micrOTOF-Q mass spectrometer from Bruker Daltonik or on an Orbitrap XL from Thermo Fisher Scientific. LC-MS measurements were performed on an HTC esquire from Bruker Daltonik in combination with an Agilent 1100 Series HPLC system (Agilent Technologies) using a Zorbax Narrow Bore SB C18 (2.1×50 mm, 5 µm) column (Agilent Technologies). 10 mM triethylamine/100 mM hexafluoroisopropanol was used as solvent A for the analysis of oligonucleotides with a gradient of $3 \rightarrow 20\%$ B (MeCN, flow rate 0.4 mL min⁻¹) in 20 min. MALDI-TOF mass spectrometry was performed on a Voyager DE, PerSeptive Biosystems by Ella Biotech, Germany

HPLC

HPLC purification/analysis was performed on an *Agilent 1100* or on an *Agilent 1260 Infinity II* Series HPLC system (*Agilent Technologies*) with an *EC 150/4.6 Nucleodur 100-5 C*₁₈ ec column (*Macherey-Nagel*) with H₂O as solvent A and acetonitrile as solvent B at a flow rate of 1 mL min⁻¹ (small molecules) or 0-15 % MeCN (B)/0.1 M ammonium acetate (A) in 15 min, flow rate: 1 mL min⁻¹ (RNA).

NMR

NMR spectra were recorded using an *Avance I 500 MHz* or an *Avance III HD 700 MHz Cryo*, both from *Bruker*. Chemical shifts (δ) are given in ppm and spectra were calibrated to the respective deuterated solvent residue signal of DMSO according to literature values (2.50 ppm for ¹H and 39.5 ppm for ¹³C spectra).^[1] Residual peaks in the spectra of nitroxyl-containing compounds correspond to phenylhydrazine.

Synthesis of 1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1*H*-pyrrole-3-carboxylic acid 4-(1,2,4,5) tetrazin-3-yl-benzylamide (3, Tet^{NO})

3-(*p*-Benzylamino)-1,2,4,5-tetrazine (**1**, 1.0 eq., 22.4 µmol, 5.00 mg, *Jena Bioscience*) and 1oxyl-2,2,5,5-tetramethylpyrroline-3-carboxylate *N*-hydroxysuccinimide ester (TEMPYO-NHS, **2**, 1.5 eq., 33.5 µmol, 9.43 mg, *Alfa Aesar*) were dissolved in a solution of NEt₃ (anhydr., 1.5 eq, 33.5 mmol, 4.60 µL) and DMSO (anhydr., 500 µL) under an atmosphere of argon and exclusion of light. After 1 h the reaction mixture was diluted with water (5 mL) and rapidly frozen in liquid nitrogen. After freeze-drying the crude product was purified via HPLC $(0 \rightarrow 75\%$ B in 20 min; A: ddH₂O; B: MeCN) and **3** was isolated (21.7 µmol, 7.67 mg, 97%) as pink solid.

Chemical formula: $C_{18}H_{21}N_6O_2$; MW: 353.4.

¹**H-NMR** (DMSO-d₆, 500 MHz, r.t.): *δ* [ppm] = 10.59 (s, 1H, H-1), 8.49 (s, 2H, H-4/4'), 7.61 (s, 2H, H-5/5'), 4.71(s, 2H, H-7).

The signals of the methyl groups and of the olefinic proton (H-11) are not seen in the spectrum (Fig. S13). The signals reappear upon in situ reduction by phenylhydrazine (reduced form: d (ppm) = 1.16 (CH₃-14/15), 1.25 (CH₃-16/17), 6.35 (H-11)); see Figures S14 - 16.

HR MS (ESI⁺): calcd. for [M]⁺: 353.1721; found: *m*/*z* = 353.1709.

Figure S1. HPL-chromatogram of purified Tet^{NO} 3.

Figure S2. HR-MS (ESI⁺) of **Tet**^{NO} **3** (calcd. for [M]⁺: 353.1721 (bottom panel: simulated spectrum); found: m/z = 353.1709 (top panel: measured spectrum).

Figure S3. Cw-X-band EPR spectrum of Tet^{NO} 3 (in MeCN).

Figure S4. HR-MS (ESI⁺) of click product **TPC3** resulting from the reaction of **TPT3^{CP}-OH** and **Tet^{NO} 3** (calcd. for $[M]^+$: 788.2657 (bottom panel: simulated spectrum); found: m/z = 788.2676 (top panel: measured spectrum).

List of DNA and RNA oligonucleotide sequences

d**NaM** cyanoethyl phosphoramidite was purchased from *Berry & Associates Inc.*, USA. Solid phase syntheses and purification of d**NaM**-modified oligonucleotides were performed in 200 nmol scale by *Ella Biotech*, Germany. DNA primer and unmodified RNA oligonucleotides were synthesized and purified by *Biomers.net*, Germany.

A. Primer for T7 in vitro transcription **DNA**^{T7} 5'-ATA ATA CGA CTC ACT ATA GG-3'

B. Template strand containing X = dNaM
 DNA^{NaM} 5'-GGX TCT GAT ATC AGA TCC TA TAG TGA GTC GTA TTA T-3'

C. RNA transcript containing Y = TPT3^{CP}
 RNA^{CP} 5'-GGA UCU GAU AUC AGA YCC-3'
 RNA transcript containing Z = TPT3^{CP} after iEDDA reaction with Tet^{NO}
 RNA^{NO} 5'-GGA UCU GAU AUC AGA ZCC-3'

D. Solid-phase synthesized RNA

RNA^c 5'-GGA UCU GAU AUC AGA UCC-3'

Polyacrylamide gel electrophoresis

For analytical (20%) and preparative (20%) denaturing PAGE separation, a solution of formamide/8.3 M urea (95/5, v/v) supplemented with 20 mM ethylenediaminetetraacetic acid (EDTA) was used as loading buffer in equal ratio with the sample volume. Samples were heated to 95 °C for 2 min prior to gel loading. Analytical gels were run at 300 V for 1 h, preparative gels were run at 400 V for 4 h. 1×Tris-borate-EDTA buffer (1×TBE) was employed as running buffer.

Analytical polyacrylamide gels were stained with *SYBR*[®] *Safe* (*Life Technologies*) and visualized by UV illumination using a *Genoplex* gel documentation system (*VWR*).

In vitro transcription

In vitro transcription reactions were prepared in 100 μ L scale with final concentrations of 40 mM Tris·HCl pH 7.9, 25 mM MgCl₂, 5 mM DTT, 2.5 mM each canonical triphosphate, 1 mM unnatural triphosphate (**TPT3^{CP}** TP^[2]), 3 μ M template DNA and primer, 0.5 U μ L⁻¹ RNasin (*Promega*), 3 ng μ L⁻¹ iPP (*Roche*), and 5 U μ L⁻¹ T7 RNA polymerase (*self-made*, AA sequence conforms with GenBank^[3]: AY264774.1), which was added to the mixture endmost. Transcriptions were run at 37 °C for 4 h.

Crude reactions were DNase digested by subsequent addition of $10.0 \,\mu\text{L}$ 10xDNase I reaction buffer (100 mM Tris·HCI pH 7.6, 25 mM MgCl₂, 5 mM CaCl₂, *New England Biolabs*) and RNase-free DNase I (*New England Biolabs*) to a final concentration of $4 \cdot 10^{-2} \,\text{U} \,\mu\text{L}^{-1}$. Samples were incubated at 37 °C for 30 min followed by enzyme inactivation at 95 °C for 2 min.

PAGE Purification transcribed RNA^{CP}

Crude, DNase-digested transcription reactions of **RNA**^{CP} were purified via preparative denaturing PAGE. After visualization by UV-shadowing and excision of the RNA, electroelution was performed into 170 μ L 8 M NH₄OAc using an electroelution chamber (*self-made*, 150 V, 45 min) and precipitated from EtOH_{abs}.

Posttrancriptional labeling of RNA^{CP} with tetrazine spin label Tet^{NO}

Purified **RNA^{CP}** was incubated with an excess of tetrazine conjugate **3** (100-fold) at room temperature for 1 h in aqueous solution. Prior to HPLC purification, the RNA sample (**RNA^{NO}**) was purified by Microspin[™] G-25 Columns (*GE Healthcare*).

RNA concentration determination

The absorption at 260 nm (A_{260}) was determined using a *Nanodrop* UV-spectrometer 2000c (*Thermo Fisher Scientific*). Concentrations were obtained from the A_{260} value and software-assisted calculation (*http://biotools.nubic.northwestern.edu/ OligoCalc.html*).

Figure S5. LC-MS analysis showing the UV-trace at 260 nm (panel above), deconvoluted ESI⁻ spectrum (central panel) and raw ESI⁻ data (panel below) of *in vitro* transcribed **RNA**^{CP} ($M_{calcd.}$ for **RNA**^{CP}: 6174.4 (5'-PPP), found: *m*/*z* = 6174.8, $M_{calcd.}$ + Na⁺: 6197.4, found: *m*/*z* = 6197.2, $M_{calcd.}$ + K⁺: 6212.4, found : *m*/*z* = 6212.5).

Figure S6. 20% denaturing PAGE analysis of 18mer **RNA^{NO}** used in PELDOR experiments and an unmodified synthetic control **RNA^C**. Despite the strong denaturing conditions of the PAGE experiment, duplex formation is observed for both self-complementary RNA sequences.

Figure S7. HPLC and MALDI-TOF MS analysis of **RNA**^{NO}. A. HPL chromatogram at 260 nm of purified **RNA**^{NO}. B. MALDI-TOF MS spectrum of **RNA**^{NO} (eluted sample of the HPLC trace shown in A). MALDI-TOF mass spectrometry was performed on a *Voyager DE*, *PerSeptive Biosystems* by *Ella Biotech*, Germany (M_{calcd.} for **RNA**^{NO}: 6499.7 (5'-PPP), found: m/z = 6499.1, M_{calcd.} + K⁺: 6537.6, found: m/z = 6532.7; unreacted **RNA**^{CP} + Na⁺ M_{calcd.}: 6196.4, found: m/z = 6194.5).

Figure S8. UV melting curves (average of four measurements) of **RNA**^{NO} duplex and unmodified duplex **RNA**^C overlaid with fitted data. Thermal denaturation experiments of modified and unmodified oligonucleotides were carried out on a *Cary 100 UV-Vis* spectrophotometer (*Agilent Technologies*). 1 μ M samples were prepared in 100 μ L phosphate buffer (145 mM NaCl, 10 mM NaH₂PO₄, 10 mM Na₂HPO₄, pH 7.0) containing 10 mM MgCl2, annealed 5 min at 70 °C followed by cooling to 18 °C with 2 °C min⁻¹, and analyzed in micro-cuvettes (*Hellma Analytics*). The temperature range for melting curve measurements was set from 20 °C to 95 °C with a rate of 1.0 °C min⁻¹. Melting points were determined from four measurements (**RNA**^{NO} duplex: 68.4 ± 0.5; **RNA**^C duplex: 67.1 ± 0.3).

EPR spectroscopy

Sample preparation for EPR measurements

Purified **RNA**^{NO} was dissolved in 80 µL phosphate buffer containing 145 mM NaCl, 10 mM NaH₂PO₄, 10 mM Na₂HPO₄, pH 7.0 to a final concentration of 20 µM, and hybridized by heating to 70 °C for 5 min, followed by a gradient 70 \rightarrow 18 °C with a cooling rate of 2 °C min⁻¹.

Continuous-wave-(cw)-X-band electron paramagnetic resonance spectroscopy

10 μ L samples of spin labeled **RNA**^{NO} was used to record room temperature *cw*-X-band EPR spectra on an *EMXnano* spectrometer from *Bruker*. The samples were measured at room temperature with a microwave power of 0.32 mW, a modulation amplitude of 1 G, a time constant of 20.48 ms, a conversion time of 20.10 ms.

Figure S9. Spin counting of **RNA**^{NO}: [spins] = 98 μ M spins, [A₂₆₀] = 104 μ M, 94% (the EMXnano spectrometer (*Bruker*) allowed reference free concentration determination using an internal standard, the absolute number of spins was determined using the software *SpinCount*: Estimated error: 10%).

PELDOR spectroscopy

For PELDOR spectroscopy, the spin labeled **RNA**^{NO} duplex was dissolved in 80 μ L D₂O buffer (145 mM NaCl, 10 mM NaH₂PO₄, 10 mM Na₂HPO₄, pH 7.0 supplemented with 20% deuterated ethylene glycol). The sample was transferred to a 3 mm quartz Q-band EPR tube and flash-cooled in liquid nitrogen. The PELDOR time traces were recorded on an *ELEXSYS E580* pulsed Q-band EPR spectrometer (*Bruker*), with an *ER 5106QT-2* Q-band resonator. The instrument was equipped with a continuous flow helium cryostat (*CF935*) and temperature control system (*ITC 502*), both from *Oxford Instruments*. The second microwave frequency was coupled into the microwave bridge using a commercially available setup from

Bruker. All pulses were amplified via a 150 W pulsed traveling wave tube amplifier. PELDOR experiments were performed with the pulse sequence p/2(nA)-t1-p(nA) (t1 b t) p(nB)-(t2 t)p(nA)-t2-echo. The detection pulses (nA) were set to 12 ns for the p/2 and 24 ns for the ppulses and applied at a frequency 80 MHz lower than the resonance frequency of the resonator. The pulse amplitudes were chosen to optimize the refocused echo. The p/2-pulse was phase-cycled to eliminate receiver offsets. The pump pulse (nB) was set at the resonance frequency of the resonator and its optimal length (typically 16 ns) was determined using a transient nutation experiment for each sample. The field was adjusted such that the pump pulse was applied to the maximum of the nitroxide spectrum. The pulse amplitude was optimized to maximize the inversion of a Hahn-echo at the pump frequency. All PELDOR spectra were recorded at 50 K with an experiment repetition time of 1 ms, a video amplifier bandwidth of 20 MHz, and an amplifier gain of 42 dB. The parameter t1 was set to 260 ns and the maximum of t2 was set to values ranging from 10 µs. Deuterium modulation was suppressed by addition of 8 spectra of variable t1 with a dt1 of 16 ns. The obtained time traces were divided by a mono exponential decay to eliminate intermolecular contributions and renormalized. Distance distributions were obtained from the background-corrected data by using the program DEER Analysis 2016 (http://www.epr.ethz.ch/software.html) developed by Jeschke *et al.*^[4].

MD Simulation

The self-complementary 18mer **RNA**^{NO} duplex was constructed based on A-form RNA in HyperChem (Release 7.01, *Hypercube, Inc.*) with one **TPC3** residue per oligonucleotide. The structure and internal atom numbering of the click-spin-labeled nucleotide **TPC3** is shown in Fig. S9. The obtained duplex geometry was converted to Gromacs 2018^[5] format using new parameters for **TPC3** (see below) within the CHARMM 36 all atom force field (version January 2018)^[6]. The structure was placed in a cubic box (7.879 nm³) solvated with 15486 TIP3P water molecules and 34 Na⁺ counterions.

The system was energy minimized 6 times switching alternatively between runs using steepest descent gradients or Polak-Ribiere conjugate gradients until convergence to machine precision. Subsequently, 480ps MD calculations at constant temperature (300 K, NVT) followed by 480 ps MD calculations at constant pressure (1 bar, NPT) equilibrate solvent and ions. Finally, a MD trajectory was calculated without restrains or constrains (except bond lengths) over 1200 ns at 300 K. The time span between 200 ns and 1200 ns has been used for the characterization of the system.

Figure S10. Structure of the spin label **TPC3** with atom definitions of the residue "**TPC3**" used in the Gromacs – Charmm36 force field. The indicated C26[S]-C27[S]-C29[S] isomer was used for the MD-calculations.

Parametrization of TPC3

The **TPC3** residue was parametrized in CHARMM using CGenFF^[7]. 6-31G* *ab initio* calculations were used on selected groups to adjust the charges, bond lengths, angles and dihedral angles suggested by CGenFF being expected to be unreliable. This was particularly true for the nitroxide label and the diazine ring. All charges and parameters together with the atom numbering (Figure S9) are listed in Gromacs format in Table S1. The final charge distribution in CHARMM at the nitroxide label (N8, -0.09; O9, -0.36; N-O bond length 0.139 nm) compares well to the somewhat higher polarity used in an Amber parametrization (atoms analogue to N8, +0.18, O9, -0.403; N-O bond length 0.125 nm).^[7c]

Figure S11. Rotamer distribution of selected "dihedral" angles of the two **TPC3** units in the duplex formed by **RNA^{NO}**. Red lines belong to RNA2 with the **TPC3** residue in the more rigid 3' end (upper position in Figure 2D and E), black lines to RNA1 with the **TPC3** residue in the more flexible 3' end (lower position in Figure 2D and E).

Figure S12. Typical conformations of the rigid (B) and of the more flexible (A) end of the duplex formed by **RNA**^{NO} (the **TPC3** residue is colored in pink). The structures belong to a frame at 537564 ps which has been selected as the center of a cluster by its smallest rmsd deviation from all other structures (program cluster in gmx).

Discussion of MD results

The distance distribution of the nitroxide labels over 1000 ns fits well to the distribution obtained by the PELDOR experiments (Figure 2C). However, the distribution of the *N-N* distances of the RNA base pairs indicates two different conformational regions at the two ends of the duplex (Fig. 2D), Obviously, the sampling over 1000 ns at 300 K is not sufficient to produce identical distributions of conformational states at the two ends of the duplex being chemically identical. A more detailed analysis of the involved conformations is depicted in Figure S12 showing a flexible and a rigid linker conformation in the duplex.

 Table S1. Force field parameters^[5] for TPC3 (spin labeled TPT3^{CP} nucleoside):

A. New residue topology entry "TPC3" in "merged.rtp" of the Gromacs – CHARMM 36 force field. Partial charges were suggested by CGenFF^[10] (interface 1.0.0, force field 3.0.1) and adjusted using AM1 and 6-31G* QM calculations

[TPC3]	
	[ato	oms]	,
	atom	atomtype	charge
	P	P	1.500 0
	01P	ON 3	-0.780 1
	O2P	ON 3	-0.780 2
	N2	NG2S1	-0.430 3
	C9	CG201	0.550 4
	C10	CG2R51	-0.100 5
	C11	CG2R51	-0.080 6
	C12	CG3C50	0.200 7
	NЗ	NG3C51	-0.090 8
	C13	CG3C50	0.200 9
	C14	CG331	-0.240 10
	C15	CG331	-0.240 11
	C16	CG331	-0.240 12
	C17	CG331	-0.240 13
	01	OG2D1	-0.450 14
	H4	HGP1	0.311 15
	H5	HGR51	0.150 16
	02	OG312	-0.360 17
	H7	HGA3	0.090 18
	Н8	HGA3	0.090 19
	Н9	HGA3	0.090 20
	H10	HGA3	0.090 21
	H11	HGA3	0.090 22
	H12	HGA3	0.090 23
	H13	HGA3	0.090 24
	H14	HGA3	0.090 25
	H15	HGA3	0.090 26
	H16	HGA3	0.090 27
	H17	HGA3	0.090 28
	H18	HGA3	0.090 29
	C18	CG321	0.003 30
	C19	CG2R61	-0.003 31
	C20	CG2R61	-0.117 32
	C21	CG2R61	-0.110 33
	C22	CG2R61	0.249 34
	C23	CG2R61	-0.110 35
	C24	CG2R61	-0.117 36
	C25	CG2DC1	0.040 37
	C26	CG3RC1	-0.030 38
	C27	CG3RC1	-0,010 39
	C28	CG2DC1	0,015 40
	N4	NG2D1	-0,230 41
	N5	NG2D1	-0,235 42
	C29	CG3C31	-0,072 43
	C30	CG331	-0,268 44
	C31	CG321	0,136 45
	03	OG302	-0,299 46
	C32	CG206	0,164 47
	04	OG2D1	-0,390 48
	N6	NG2S1	-0,430 49
	05'	ON2	-0.570 50
	C5 '	CN8B	-0.080 51
	H5'	HN8	0.090 52
	H5'	HN8	0.090 53
	C4'	CN'/	0.160 54
	H4'	HN 7	0.090 55
	04	ON 6B	-0.500 56
	CI.	CN7B	U.160 57
	H1'	HN /	0.090 58
	NI	NN2B	-0.300 59
	06	CGZR61	0.025 60
	нb	HGR62	0.190 61
	CUE	CGZK61	0.105 62
	CHJ	CGITI	-0.005 63
	CM2	CG2RCU	-0.095 64
		CG2KCU	0.000 65
	SHJ	SGZKOU	-0.030 66

;

68 69 70 71 72 73 74 75 76 77
69 70 71 72 73 74 75 76 77
70 71 72 73 74 75 76 77
71 72 73 74 75 76 77
72 73 74 75 76 77
73 74 75 76 77
74 75 76 77
75 76 77
76 77
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

[bonds] N2 C9

С9	C10
C10	C11
C10	C12
C12	NЗ
C11	C13
NЗ	C13
C12	C14
C12	C15
C13	C16
C13	C17
C9	01
N2	H4
C11	Н5
NЗ	02
C14	H7
C14	Н8
C14	Н9
C15	H10
C15	H11
C15	H12
C16	Н13
C16	H14
C16	H15
C17	H16
C17	H17
C17	H18
N2	C18
C18	C19
C19	C20
C20	C21
C21	C22
C22	C23
C19	C24
C23	C24
C22	C25
C25	C26
C26	C27
C27	C2.8
C28	N4
C25	N5
N4	N5
C26	C29
C27	C29

		22233333 , 55555544441111665554N11N2112222423334H11H6733881331122222233333	791 22	ССОСО № 1225 С ННС НОС Н № С Н С С С С С С С С С С С С С С С	333346PP-555444111665H4NH2202222333311337881231+2222223333333	01 2	,	
	C N	:3 16	1	H H	3	6 7		
L	Lmpro C9 C2 C2 C3	25 28 28	er	3	C C N	1(22 2	2 7	

01 N5 H30 O3 S02

N2 C26

N4 04 N1

CN3

C2

B. New force field parameters used within the CHARMM-36- Gromacs parameter file "ffbonded.itp". The data were suggested by CGenFF^[5] and adjusted using 6-31G^{*} QM calculations (indicated).

[bondtyp	es]							
; i	i	func		b0	kb			
CG1T1	CG2R61	1 0	.143500	00 288696	5.00			
CG1T1	CG321	1 0	146500	00 343088	3 00			
CG201	CG2851	1 0	149500	00 251040) 00 ·6316s			
CC2P51	CG3C50	1 0	151000	00 202040	00 ,00100			
CG2R31	CC3C50	1 0	152000	00 202000	2 00			
CGJJI	NG2GE1	1 0	147000	00 100100	0.00			
CG3C50	NG3C51	1 0	.14/800	00 334/20	0.00			
NG3C51	OG312	1 0	.139000	00 259408	3.00 ;631Gs			
CG2R61	NN2B	1 0	.137900	00 317984	1.00			
CG2R63	NN2B	1 0	.138300	00 284512	2.00			
CG2DC1	CG3RC1	1 0	.148500	00 305432	2.00 ;631Gs			
NG2D1	NG2D1	1 0	.136600	00 267776	5.00 ;631Gs			
[anglety	mpes]							
; i	 i	k	func	theta0	ktheta	ub0	kub	
СG1Т1	CG1T1	CG2R61	5	180.000000	334,720000	0.0000000	0.00	
CG1T1	CG1T1	CG321	5	180 000000	158 992000	0 00000000	0.00	
CC2P51	CG201	NC2S1	5	116 500000	669 110000	0.00000000	0.00	
CC2DE1	CG201	00201	5	121 000000	251 040000	0.00000000	0.00	
CGZRJI	CG201	OGZDI CCOPE1	5	121.000000	202.0540000	0.00000000	0.00	(210)
CG2OI	CG2R51	CG2R51	5	120.000000	383.254400	0.00000000	0.00	;631GS
CG201	CG2R51	CG3C50	5	129.700000	543.920000	0.00000000	0.00	;631Gs
CG2R51	CG2R51	CG3C50	5	109.000000	962.320000	0.00000000	0.00	
CG3C50	CG2R51	HGR51	5	124.600000	242.672000	0.00000000	0.00	
CG1T1	CG2R61	CG2R61	5	120.000000	292.880000	0.00000000	0.00	
CG1T1	CG2R61	CG2RC0	5	120.000000	292.880000	0.00000000	0.00	
CG2RC0	CG2R63	SG2D1	5	125.100000	317.984000	0.00000000	0.00	
CG2R63	CG2RC0	SG2R50	5	123.700000	376.560000	0.00000000	0.00	
CG1T1	CG321	NG2S1	5	115.200000	443.504000	0.00000000	0.00	
CG1T1	CG321	HGA2	5	111 500000	393 296000	0 00000000	0 00	
CG3C50	CG331	HGA 3	5	110 100000	289 532800	0 21790000	18853 10	
CC2DE1	CC3CEO	00221	5	112 000000	E10 016000	0.21790000	10000.10	.62100
CG2RJI CC2DE1	CG3C50	NC2CE1	5	100 100000	J10.010000	0.00000000	0.00	;031GS
CGZR51	CG3C50	NG3C51	5	100.100000	585.760000	0.00000000	0.00	;031GS
CG331	CG3C50	CG331	5	113.500000	488.2/2800	0.25610000	9338.69	
CG331	CG3C50	NG3C51	5	111.500000	376.560000	0.00000000	0.00	
CG2RC0	CG2R63	NN2B	5	107.800000	585.760000	0.00000000	0.00	
NN2B	CG2R61	HGR62	5	115.000000	276.144000	0.00000000	0.00	
CG2R61	CG2R61	NN2B	5	120.000000	1046.000000	0.00000000	0.00	
CN7B	NN2B	CG2R61	5	119.600000	376.560000	0.00000000	0.00	
CN7B	NN2B	CG2R63	5	118.400000	376.560000	0.00000000	0.00	
CG2R61	NN2B	CG2R63	5	123.900000	83.680000	0.00000000	0.00	
CG3C50	NG3C51	CG3C50	5	110 000000	500 520000	0 00000000	0 00	
CG3C50	NG3C51	0G312	5	121 000000	393 296000	0 000000000	0.00	
NN2D	CC2D63	C2D1	5	123 000000	169 609000	0.00000000	0.00	
	CG2R03	GG2D1	5	120.200000	400.000000	0.00000000	0.00	. (210-
CGZROI	CGZDCI	CG3RCI	5	120.300000	401.004000	0.00000000	0.00	;031GS-
Cgenii			-					
CG3RCI	CG2DC1	NG2D1	5	122.800000	401.664000	0.00000000	0.00	;631Gs-
Cgenff								
CG3RC1	CG2DC1	HGA4	5	118.400000	334.720000	0.00000000	0.00	;631Gs-
Cgenff								
CG3C31	CG321	OG302	5	110.100000	633.457600	0.00000000	0.00	;Cgenff
CG321	CG3C31	CG3RC1	5	120.800000	563.584800	0.00000000	0.00	;631Gs-
Cgenff								
CG3RC1	CG3C31	HGA1	5	115.000000	288,696000	0.21790000	18853.10	:631Gs-
Coenff								,
CG2DC1	CG3RC1	CG331	5	114 500000	488 270000	0 25610000	9338 69	·6316s-
Cashf	CGDICT	09001	5	114.300000	400.270000	0.23010000	5550.05	,05165
cyenii acapai	002001	002021	F	100 00000	E 0 E 7 C 0 0 0 0	0 0000000	0 00	. (210-
CGZDCI	CG3RCI	CG3C31	5	120.000000	585.760000	0.00000000	0.00	;631GS-
Cgenii			_					
CG2DC1	CG3RC1	CG3RC1	5	112.800000	585.760000	0.00000000	0.00	;631Gs-
Cgenff								
CG2DC1	CG3RC1	HGA1	5	116.000000	418.400000	0.0000000	0.00	;631Gs-
Cgenff								
CG331	CG3RC1	CG3C31	5	122.100000	447.699000	0.25610000	6694.40	;631Gs-
Cgenff								
CG2DC1	NG2D1	NG2D1	5	121.300000	585.760000	0.00000000	0.00	;631Gs-
Cgenff								

[dihedra	ltypes]		-	-			
; 1 NG2S1	CG201	K CG2R51	CG2R51	func 9	phi0 180 000000	kphi 4 184000	mult 2
NG2S1	CG201	CG2R51	CG3C50	9	180.000000	4.184000	2
OG2D1	CG201	CG2R51	CG2R51	9	180.000000	4.184000	2
OG2D1	CG201	CG2R51	CG3C50	9	180.000000	4.184000	2
CG2R51	CG201	NG2S1	CG321	9	0.000000	6.694400	1
CG2R51	CG201	NGZSI NC291	CG321	9	180.000000	16./36000	2
CG2R51 CG201	CG2R51	CG2R51	CG3C50	9	180.000000	16.736000	2
CG201	CG2R51	CG2R51	HGR51	9	180.000000	4.184000	2
CG3C50	CG2R51	CG2R51	CG3C50	9	180.000000	50.208000	2
CG3C50	CG2R51	CG2R51	HGR51	9	180.000000	12.133600	2
CG201	CG2R51	CG3C50	CG331	9	180.000000	0.209200	3
CG201	CG2R51 CG2R51	CG3C50	CG331	9	180.000000	2.928800	3
CG2R51	CG2R51	CG3C50	NG3C51	9	180.000000	2.928800	3
HGR51	CG2R51	CG3C50	CG331	9	180.000000	8.368000	2
HGR51	CG2R51	CG3C50	NG3C51	9	180.000000	12.970400	2
CG1T1	CG2R61	CG2R61	NN2B	9	180.000000	4.184000	2
CGITI	CG2R61	CG2R61	HGR62	9	180.000000	10.041600	2
CG2RCU CG1T1	CG2R61 CG2R61	CG2R61	CG2R51	9	180.000000	16 736000	2
CG1T1	CG2R61	CG2RC0	CG2RC0	9	180.000000	12.970400	2
CG2R61	CG2R61	NN2B	CN7B	9	180.000000	46.024000	2
HGR62	CG2R61	NN2B	CN7B	9	180.000000	1.255200	2
NN2B	CG2R63	CG2RC0	SG2R50	9	180.000000	0.000000	2
SG2D1	CG2R63	CG2RC0	CG2RC0	9	180.000000	18.828000	2
CG2BCO	CG2R63	CG2RCU NN2B	CG2R61	9	180.000000	0.000000	2
CG2RC0	CG2R63	NN2B	CG2R01 CN7B	9	180.000000	46.024000	2
SG2D1	CG2R63	NN2B	CN7B	9	180.000000	6.694400	2
CG2R51	CG2RC0	CG2RC0	CG2R63	9	180.000000	6.276000	2
CG2R61	CG2RC0	CG2RC0	CG2R63	9	180.000000	12.552000	2
CG2R63	CG2RC0	SG2R50	CG2R51	9	180.000000	35.564000	2
CGITI CGITI	CG321	NG2S1 NG2S1	CG201	9	0.000000	0.062760	1
CG1T1 CG1T1	CG321	NG2S1	CG201	9	180.000000	0.317984	3
CG1T1	CG321	NG2S1	CG201	9	0.000000	2.589896	4
CG1T1	CG321	NG2S1	CG201	9	0.00000	0.619232	6
CG1T1	CG321	NG2S1	HGP1	9	0.00000	0.00000	1
HGA3	CG331	CG3C50	CG2R51	9	0.000000	0.669440	3
HGA 3	CG331	CG3C50	NG3C51	9	0.000000	0.669440	3
CG2R51	CG3C50	NG3C51	CG3C50	9	180.000000	8.577200	3
CG2R51	CG3C50	NG3C51	OG312	9	180.000000	8.577200	3
CG331	CG3C50	NG3C51	CG3C50	9	0.00000	0.753120	3
CG331	CG3C50	NG3C51	OG312	9	0.000000	3.765600	3
ON6B	CN7B CN7B	NN2B	CG2R63	9	180 000000	2.928800	3
ON6B	CN7B	NN2B	CG2R05	9	0.000000	3.765600	1
HN7	CN7B	NN2B	CG2R63	9	0.000000	0.000000	3
HN7	CN7B	NN2B	CG2R61	9	0.00000	0.815880	3
CN7B	CN7B	NN2B	CG2R63	9	180.000000	0.836800	3
CN7B	CN7B	NN2B	CG2R61	9	180.000000	0.000000	3
HGR62	CG2R61 CG2R61	NN2B	CG2R63	9	180.000000	19 246400	2
NN2B	CG2R63	CG2RC0	CG2RC0	9	180.000000	0.836800	2
SG2D1	CG2R63	NN2B	CG2R61	9	180.000000	6.694400	2
CG3RC1	CG2DC1	CG2R61	CG2R61	9	180.000000	6.694400	2
CG2R61	CG2DC1	CG3RC1	CG3C31	9	0.00000	1.255200	3
CG2R61	CG2DC1	CG3RC1	CG3RC1	9	0.000000	1.255200	3
NG2D1	CG2DC1	CG3RC1	CG331	9	180.000000	2.092000	2
NG2D1	CG2DC1	CG3RC1	CG331	9	0.000000	1.255200	3
NG2D1	CG2DC1	CG3RC1	CG3C31	9	0.00000	2.092000	2
NG2D1	CG2DC1	CG3RC1	CG3C31	9	0.00000	1.255200	3
NG2D1	CG2DC1	CG3RC1	CG3RC1	9	0.000000	2.092000	2
NG2D1	CG2DC1	CG3RCI CG3PC1	UG3KCI HCN1	9 a		1.255200 0 125520	3
HGA4	CG2DC1	CG3RC1	CG331	9	0.000000	0.836800	י ר
HGA4	CG2DC1	CG3RC1	CG3C31	9	0.000000	0.836800	3
HGA4	CG2DC1	CG3RC1	CG3RC1	9	0.000000	0.836800	3
CG2R61	CG2DC1	NG2D1	NG2D1	9	180.000000	50.208000	2
CG3RC1	CG2DC1	NG2D1	NG2D1	9	180.000000	50.208000	2
nga4 Ng302	CG2DC1 CG321	CG3C31	CG3RC1	9 9	0.000000	0.815880	∠ २
OG302	CG321	CG3C31	HGA1	9	0.000000	0.836800	3

	HGA2	CG321	CG3C31	CG3RC1	9	0.00000	0.041840	1
	HGA2	CG321	CG3C31	CG3RC1	9	0.00000	0.083680	3
	CG3C31	CG321	OG302	CG206	9	180.000000	0.418400	1
	CG3C31	CG321	OG302	CG206	9	0.00000	2.510400	2
	CG3C31	CG321	OG302	CG206	9	180.000000	0.418400	3
	HGA3	CG331	CG3C50	CG2R51	9	0.00000	0.669440	3
	HGA3	CG331	CG3C50	CG331	9	0.00000	0.669440	3
	HGA3	CG331	CG3C50	NG3C51	9	0.00000	0.669440	3
	HGA3	CG331	CG3RC1	CG2DC1	9	0.00000	0.669440	3
	HGA3	CG331	CG3RC1	CG3C31	9	0.00000	0.815880	3
	CG321	CG3C31	CG3RC1	CG2DC1	9	0.00000	2.928800	3
	CG321	CG3C31	CG3RC1	CG331	9	0.00000	0.627600	3
	CG321	CG3C31	CG3RC1	CG3RC1	9	0.00000	0.627600	3
	CG321	CG3C31	CG3RC1	HGA1	9	0.00000	0.627600	3
	CG3RC1	CG3C31	CG3RC1	CG2DC1	9	0.00000	2.928800	3
	CG3RC1	CG3C31	CG3RC1	CG331	9	0.00000	0.627600	3
	HGA1	CG3C31	CG3RC1	CG2DC1	9	0.00000	0.627600	3
	HGA1	CG3C31	CG3RC1	CG331	9	0.00000	0.815880	3
	HGA1	CG3C31	CG3RC1	CG3RC1	9	0.00000	0.627600	3
	HGA1	CG3C31	CG3RC1	HGA1	9	0.00000	0.627600	3
	CG2DC1	CG3RC1	CG3RC1	CG2DC1	9	0.00000	0.627600	3
	CG2DC1	CG3RC1	CG3RC1	CG331	9	0.00000	0.209200	3
	CG2DC1	CG3RC1	CG3RC1	CG3C31	9	0.00000	0.627600	3
	CG2DC1	CG3RC1	CG3RC1	HGA1	9	0.00000	0.627600	3
	CG331	CG3RC1	CG3RC1	CG3C31	9	0.00000	0.627600	3
	CG2DC1	NG2D1	NG2D1	CG2DC1	9	180.000000	50.208000	2
	CG3C50	NG3C51	OG311	HGP1	9	0.00000	1.158968	3
;	CG3C31	CG321	OG302	CG206	9	180.000000	0.418400	3
	CG1T1	CG321	NG2S1	CG206	9	0.00000	0.062760	1
	CG1T1	CG321	NG2S1	CG206	9	0.00000	1.246832	2
	CG1T1	CG321	NG2S1	CG206	9	180.000000	0.317984	3
	CG1T1	CG321	NG2S1	CG206	9	0.00000	2.589896	4
	CG1T1	CG321	NG2S1	CG206	9	0.00000	0.619232	6
[dihedra	ltypes]						
;	'improp	er' dihed	rals					
	CG201	CG2R51	NG2S1	OG2D1	2	0.00000	1004.160000	
	CG2R63	CG2RC0	NN2B	SG2D1	2	0.00000	259.408000	
	CG2DC1	CG2R61	CG3RC1	NG2D1	2	0.00000	1004.160000	
	CG2DC1	CG3RC1	NG2D1	HGA4	2	0.00000	251.040000	

NMR spectra

Figure S13. ¹H-NMR spectrum (DMSO-d₆, 500 MHz, r.t.) of **Tet^{NO}** (**3**); *H₂O, **DMSO residual signal.

Figure S14. ¹H-NMR spectrum (DMSO-d₆, 700 MHz, r.t.) of **Tet^{NO}** (**3**), in situ reduced by phenyl hydrazine; *H₂O, **DMSO residual signal.

Figure S15. HSQC spectrum (DMSO-d₆, 700/176 MHz, r.t.) of **Tet^{NO} (3)**, in situ reduced by phenyl hydrazine; *H₂O, **DMSO residual signal.

Figure S16. HMBC spectrum (DMSO-d₆, 700/176 MHz, r.t.) of **Tet^{NO} (3)**, in situ reduced by phenyl hydrazine; *H₂O, **DMSO residual signal.

Literature

 Fulmer, G. R., Miller, A. J. M., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B.
 M., Goldberg, K. I., NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist, *Organometallics* **2010**, *29* (9), 2176-2179.

[2] Eggert, F., Kath-Schorr, S., A cyclopropene-modified nucleotide for site-specific RNA labeling using genetic alphabet expansion transcription *Chem. Commun.* **2016**, *52*, 7284-7287.

[3] Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Wheeler, D. L. (2005).
 GenBank. Nucleic Acids Research, 33 (Database Issue), D34–D38.
 http://doi.org/10.1093/nar/gki063

[4] Jeschke, G., Chechik, V., Ionita, P., Godt, A., Zimmermann, H., Banham, J., Timmel,C., Hilger, D., Jung, H. *Appl. Magn. Reson.* **2006**, 30, 473-498.

[5] Gromacs:

a) H. J. C. Berendsen, D. van der Spoel, R. van Drunen, *Computer Physics Commun.*, **1995**, *91*, 43-56.

b) D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C. Berendsen, GROMACS: Fast, Flexible and Free, *J. Comp. Chem.* **2005**, *26*, 1701-1719

c) S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess, E. Lindahl, GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit, *Bioinformatics* **2013**, *29*, 845-54

d) M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindahl, "GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, *SoftwareX* **2015**, *1*, 19-25

[6] CHARMM

a) R. B. Best, X. Zhu, J. Shim, P. E. Lopes, J. Mittal, M. Feig and A. D. Mackerell, Jr., J *Chem Theory Comput.* **2012**, *8*, 3257-3273.

b) Denning, E.J., Priyakumar, U.D., Nilsson, L., and MacKerell Jr., A.D., Impact of 2'-hydroxyl sampling on the conformational properties of RNA: Update of the CHARMM all-atom additive force field for RNA, *J Comput. Chem.* **2011**, *32*, 1929-43.

c). E. Prabhu Raman, Justin A. Lemkul, Robert Best, Alexander D. MacKerell, Jr., CHARMM36 port: http://mackerell.umaryland.edu/charmm_ff.shtml

24

[7] CGenFF:

a) A. K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A. D. MacKerell Jr., CHARMM General Force Field: A Force field for Drug-Like Molecules Compatible with the CHARMM All-Atom Additive Biological Force Field, *J. Comput. Chem.* **2010**, 31, 671-690.

b) B. W. Yu, X. He, K. Vanommeslaeghe, A. D. MacKerell Jr., Extension of the CHARMM General Force Field to Sulfonyl-Containing Compounds and Its Utility in Biomolecular Simulations, *J. Comput. Chem.* **2012**, 33, 2451-2468.

c) H. Yu, Y. Mu, L. Nordenskiold and G. Stock, Influence of Nitroxide Spin Labels on RNA Structure: A Molecular Dynamics Simulation Study, *J Chem Theory Comput.*, **2008**, *4*, 1781-1787.

d) K. Vanommeslaeghe, A. D. MacKerell Jr., Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing, *J. Chem. Inf. Model.* **2012**, *52*, 3144-3154.

e) K. Vanommeslaeghe, E. P. Raman, A. D. MacKerell Jr., Automation of the CHARMM General Force Field (CGenFF) II: Assignment of bonded parameters and partial atomic charges, *J. Chem. Inf. Model.* **2012**, *52*, 3155-3168.

f) CGenFF interface at paramchem.org: https://cgenff.umaryland.edu