Supporting Information

Synthesis of A-ring quinolones, nine-membered oxolactams and spiroindoles by oxidative transformations of 2,3-indolotriterpenoids

Elmira F. Khusnutdinova,^a Oxana B. Kazakova,^{a*}Alexander N. Lobov,^a Olga S. Kukovinets,^a Kyrill Yu. Suponitsky,^b Craig B. Meyers,^c Mark N. Prichard^d

^aUfa Institute of Chemistry – Subdivision of the Ufa Federal Research Centre of Russian Academy of Sciences, Ufa 450054, Russian Federation. Fax: +73472356066.

^bA.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russian Federation.

^cPenn State College of Medicine, Hershey, PA 17033, USA.

^dUniversity of Alabama at Birmingham, Birmingham, AL 35233, USA.

E-mail: obf@anrb.ru;

Contents

1. Instrumentation	S3
2. NMR Spectra	S5
2.1 ¹ H NMR Spectra of Compound 3	
2.2 ¹³ C NMR Spectra of Compound 3	S8
2.3 HSQC NMR Spectra of Compound 3	S10
2.4 HMBC NMR Spectra of Compound 3	
2.5 COSY NMR Spectra of Compound 3	S13
2.6 NOESY NMR Spectra of Compound 3	S15
2.7 ¹ H NMR Spectra of Compound 4	S17
2.8 ¹³ C NMR Spectra of Compound 4	S20
2.9 HSQC NMR Spectra of Compound 4	
2.10 HMBC NMR Spectra of Compound 4	
2.11 COSY NMR Spectra of Compound 4	
2.12 NOESY NMR Spectra of Compound 4	S27
2.13 ¹ H NMR Spectra of Compound 5	S29
2.14 ¹³ C NMR Spectra of Compound 5	S31
2.15 HSQC NMR Spectra of Compound 5	S34
2.16 HMBC NMR Spectra of Compound 5	\$35
2.17 COSY NMR Spectra of Compound 5	
2.18 NOESY NMR Spectra of Compound 5	S39
2.19 ¹ H NMR Spectra of Compound 6	S41
2.20 ¹³ C NMR Spectra of Compound 6	S43
2.21 HSQC NMR Spectra of Compound 6	S46
2.22 HMBC NMR Spectra of Compound 6	S47
2.23 COSY NMR Spectra of Compound 6	S49
2.24 NOESY NMR Spectra of Compound 6	
2.25 ¹ H NMR Spectra of Compound 7	
2.26 ¹³ C NMR Spectra of Compound 7	
2.27 HSQC NMR Spectra of Compound 7	
2.28 HMBC NMR Spectra of Compound 7	
2.29 COSY NMR Spectra of Compound 7	S60
2.30 NOESY NMR Spectra of Compound 7	
2.31 ¹ H NMR Spectra of Compound 7 and 8	
2.32 ¹³ C NMR Spectra of Compound 7 and 8	
2.33 ¹ H NMR Spectra of Compound 9	S69
2.34 ¹³ C NMR Spectra of Compound 9	
2.35 HSQC NMR Spectra of Compound 9	
2.36 HMBC NMR Spectra of Compound 9	\$76
2.37 COSY NMR Spectra of Compound 9	
2.38 NOESY NMR Spectra of Compound 9	
2.39 ¹ H NMR Spectra of Compound 11	
2.40 ¹³ C NMR Spectra of Compound 11	

2.41 HSQC NMR Spectra of Compound 11	S86
2.42 HMBC NMR Spectra of Compound 11	S88
2.43 COSY NMR Spectra of Compound 11	S89
2.44 NOESY NMR Spectra of Compound 11	S91
2.45 ¹ H NMR Spectra of Compound 12	
2.46 ¹³ C NMR Spectra of Compound 12	S96
2.47 HSQC NMR Spectra of Compound 12	S98
2.48 HMBC NMR Spectra of Compound 12	S100
2.49 COSY NMR Spectra of Compound 12	S101
2.50 NOESY NMR Spectra of Compound 12	S103
3. X-Ray Crystal data for compound 11.	S105

1. Instrumentation

1D and 2D NMR spectra were recorded at 298 K on a Bruker *Avance III* 500 MHz instrument with PABBO X{¹H} direct detection probe in deuterated chloroform (Cambridge Isotope Laboratories, Inc., degree of deuteration 99.8%). Chemical shifts for carbon and proton are reported in parts per million (ppm) referenced to 0.0 ppm of tetramethylsilane as the internal standard.

The ¹H NMR spectra were acquired with a spectral width of 5.6 kHz and 32k data points and 8 scans, providing a digital resolution of ca. 0.5 Hz (¹H 90° pulse width = 11.5 μ s). For ¹³C{¹H} NMR spectra (WALTZ-16), a spectral width of 29.7 kHz was used with 64k data points and required quantity of scans (¹³C 90° pulse width = 9.7 μ s). Gradient selected {¹H, ¹³C} HSQC spectra were recorded using the Bruker sequence hsqcetgp. These data were collected with 4096 x 512 data points with 2 scans for each increment. The delay d4 was set to 1.72 ms. Gradient selected {¹H, ¹³C} HMBC spectra (hmbcgpndqf) were collected with 4096 x 512 data points with 4 scans for each increment. The delay d6 was set to 71.4 ms. Spectral widths of 6.0 and 29.7 kHz were used in the *F*2 (¹H) and *F*1 (¹³C) domains, respectively. {¹H, ¹³C} HSQC and HMBC data were processed using a sine window in the *F*2 and *F*1 dimensions. {¹H, ¹H} gs-COSY data were collected with 4K x 512 data points with 2 scans for each increment. For the {¹H, ¹H} NOESY NMR experiments, the solution was degassed to remove any dissolved oxygen. The following parameters and procedures are commonly employed: spectral width 6.0 kHz, 4K data matrix and 256 time increments of 2 transients each, mixing time 0.5s. Fourier transformations were carried out with zero-filling using the shifted sine-bell apodization function in both dimensions.

2. NMR Spectra

Figure S1. (a) Complete ¹H NMR spectrum of compound **3** in CDCl₃. (b) Detailed and annotated ¹H NMR spectrum of compound **3** in CDCl₃.

SI. Complete nume	erical listings of	t 'H NMR p	eaks of compou	and 3 in CDCl ₃ .
Peak	v(F1) [ppm]	v(F1) [Hz]	Intensity [rel]	Half width [Hz]
1	8.36	4179	0.39	1.8
2	8.35	4177.4	0.35	1.2
3	8.34	4171	0.38	3.4
4	8.34	4169.4	0.37	1.2
5	8.22	4111.3	0.14	0.6
6	7.52	3763	0.22	1.2
7	7.52	3761.6	0.21	1.2
8	7.51	3756	0.33	1.2
9	7.51	3754.7	0.43	3.7
10	7.5	3753.3	0.28	0.9
11	7.49	3747.8	0.27	1.8
12	7.49	3746.3	0.22	1.2
13	7.3	3651.5	0.37	1.2
14	7.3	3649.7	0.45	1.2
15	7.28	3642.5	0.62	1.5
16	7.28	3641	0.56	0.9
17	7.26	3632.4	4.4	1.2
18	7.25	3627	0.26	3.1
19	7.25	3625.7	0.24	0.9
20	3.7	1850.9	4.14	1.5
21	3.3	1648.9	0.14	2.7
22	3.29	1643.9	0.17	4
23	3.27	1637.9	0.25	4
24	3.27	1633	0.25	4.3
25	3.25	1626.3	0.17	0.6
26	3.24	1621.7	0.22	4
27	3.23	1616.2	0.17	0.6
28	3.21	1605.1	0.18	1.2
29	2.28	1141.6	0.29	3.4
30	2.27	1135.3	0.3	2.7
31	2.17	1083.9	3.89	1.8
32	2.08	1041.2	0.23	3.1
33	2.07	1035.1	0.28	2.7
34	2.06	1029.8	0.53	5.2
35	2.04	1022.3	0.36	1.8
36	2.04	1019	0.69	4.3
37	2.02	1008.3	0.32	4.3
38	1.99	997.6	0.44	7.3
39	1.98	992.6	0.29	3.4
40	1.97	985.9	0.23	2.7
41	1.96	980.6	0.14	1.2
42	1.95	977.7	0.12	0.9
43	1.89	943	0.26	3.4
44	1.87	935	0.24	3.4
45	1.86	930.7	0.3	3.7
46	1.85	923.1	0.23	3.1

Table S1. Com	nplete num	erical listings of	¹ H NMR p	eaks of compou	and 3 in CDCl ₃ .
	Peak	v(F1) [ppm]	v(F1) [Hz]	Intensity [rel]	Half width [Hz

47	1.79	892.9	0.09	0.9
48	1.77	887.1	0.09	0.6
49	1.76	880.1	0.15	1.2
50	1.75	874.4	0.17	2.1
51	1.73	866.7	0.17	2.7
52	1.72	861.6	0.17	1.5
53	1.71	854.3	0.12	2.1
54	1.7	847.7	0.11	0.6
55	1.61	807.3	1.06	3.7
56	1.6	798.8	1.97	11.9
57	1.54	772.2	0.66	10.4
58	1.52	760.4	0.64	9.2
59	1.5	750.3	0.55	5.8
60	1.49	745.9	0.55	4.6
61	1.48	741.5	0.55	6.1
62	1.46	730.9	1.22	7
63	1.44	722	0.98	6.1
64	1.42	710	0.28	0.6
65	1.36	679.5	2.86	2.4
66	1.29	644.4	3.63	1.8
67	1.25	626.2	0.83	4.6
68	1.18	590.8	0.38	1.8
69	1.17	585.6	0.45	1.5
70	1.16	578.2	0.7	4.6
71	1.14	567.8	3.64	2.1
72	1.03	513	2.96	2.7
73	0.98	487.7	3.03	2.1
74	0	0	12.46	2.1

Table S2. Complete numerical listings of ¹³C NMR peaks of compound 3 in CDCl₃.

mpiete	numerical insting		peaks of compound	a 5 m CDCl3.
Peak	v(F1) [ppm]	v(F1) [Hz]	Intensity [rel]	Half width [Hz]
1	212.52	26726.6	0.1	2.7
2	176.64	22214.2	0.14	0.9
3	176.29	22169.3	0.06	2.7
4	159.89	20107.9	0.06	2.7
5	138.72	17445.4	0.13	0.9
6	131.05	16481	0.26	1.8
7	127.3	16009	0.1	1.8
8	126.86	15954.2	0.19	1.8
9	123.21	15494.6	0.19	1.8
10	116.54	14656	0.16	1.8
11	77.27	9717	13.32	2.7
12	77.01	9685.1	13.5	2.7
13	76.76	9653.1	13.49	2.7
14	61.13	7687.2	0.22	0.9
15	56.33	7083.3	0.25	0.9
16	51.42	6466.9	0.21	0.9
17	51.04	6418.7	0.22	1.8
18	50.55	6357.6	0.23	0.9
19	50.18	6310.2	0.21	0.9
20	49.32	6202.4	0.23	1.8
21	43.1	5420.4	0.27	0.9

22	42.91	5395.8	0.27	0.9
23	42.87	5391.2	0.25	0.9
24	37.34	4695.5	0.23	1.8
25	36.83	4632.2	0.17	2.7
26	35.2	4426.2	0.18	2.7
27	31.74	3991.1	0.18	2.7
28	30.63	3851.4	0.21	0.9
29	29.89	3759.4	0.19	1.8
30	28.61	3597.8	0.18	1.8
31	27.2	3420.3	0.21	1.8
32	26.87	3378.7	0.26	0.9
33	24.25	3050	0.16	1.8
34	21.43	2695.6	0.3	0.9
35	18.4	2314	0.31	0.9
36	17.85	2245	0.3	0.9
37	16.73	2103.7	0.19	1.8
38	14.88	1871.8	0.28	0.9
39	0	0	1.29	0.9

Figure S4. Complete {¹H, ¹³C} HSQC NMR spectrum of compound 3 in CDCl₃.

Figure S5. Downfield area of $\{^{1}H, ^{13}C\}$ HSQC multiplicity edited NMR spectrum of compound **3** in CDCl₃.

Figure S6. Upfield area of $\{{}^{1}H, {}^{13}C\}$ HSQC multiplicity edited NMR spectrum of compound **3** in CDCl₃.

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 Figure S7. Complete $\{{}^{1}H, {}^{13}C\}$ HMBC NMR spectrum of compound 3 in CDCl₃.

Figure S8. Downfield area of annotated {¹H, ¹³C} HMBC NMR spectrum of compound 3 in CDCl₃.

Figure S10. Upfield area of {¹H, ¹H} COSY-DQF NMR spectrum of compound **3** in CDCl₃.

Figure S12. Detailed and annotated {¹H, ¹H} NOESY NMR spectrum of compound 3 in CDCl₃.

Figure S13. Upfield area of {¹H, ¹H} NOESY NMR spectrum of compound 3 in CDCl₃.

Figure S14. (a) Complete ¹H NMR spectrum of compound **4** in CDCl₃. (b) Detailed and annotated ¹H NMR spectrum of compound **4** in CDCl₃.

mplete numer	ical listings of	н мик р	eaks of compot	Ind 4 In CDCI3
Peak	v(F1) [ppm]	v(F1) [Hz]	Intensity [rel]	Half width [Hz]
1	7.73	3864.5	0.61	1.2
2	7.72	3863.1	0.69	1.2
3	7.71	3856.8	0.75	1.2
4	7.71	3855.3	0.75	1.8
5	7.55	3777.5	0.9	1.8
6	7.55	3775.9	0.7	1.2
7	7.54	3769.9	0.49	1.8
8	7.53	3768.4	0.39	1.2
9	7.49	3744.7	0.55	1.8
10	7.49	3744.1	0.47	1.8
11	7.49	3743.7	0.62	1.8
12	7.47	3737.1	0.79	2.4
13	7.47	3736.8	0.66	2.4
14	7.47	3736	0.75	2.4
15	7.46	3729.9	0.39	2.4
16	7.46	3728.8	0.37	2.4
17	7.3	3651.2	0.92	2.4
18	7.28	3643.3	0.92	3.1
19	7.28	3640.6	6.08	0.6
20	6.84	3422.5	1.01	3.1
21	3.67	1835.8	8.05	0.6
22	3.48	1742	0.85	1.2
23	3.45	1726.3	0.9	1.8
24	3.29	1645.5	0.25	1.8
25	3.28	1641	0.2	1.8
26	3.27	1634.2	0.31	3.1
27	3.26	1630.2	0.35	3.1
28	3.24	1622.8	0.18	3.1
29	3.24	1619.2	0.18	2.4
30	2.93	1467.2	0.77	1.8
31	2.9	1451.6	0.73	1.8
32	2.3	1149.7	0.22	4.3
33	2.29	1146.2	0.22	4.9
34	2.28	1140.9	0.2	2.4
35	2.27	1136.8	0.24	4.3
36	2.27	1133	0.22	5.5
37	2.22	1108.9	8.74	0.6
38	2.13	1066.9	0.42	3.1
39	2.11	1055.5	0.82	1.8
40	2.09	1044.5	0.59	1.8
41	2.03	1013	0.52	4.9
42	2.02	1008.9	0.46	3.7
43	2	1001	0.62	5.5
44	1.99	996.7	0.47	3.7
45	1.99	993.7	0.37	4.9
46	1.9	949.8	0.7	2.4

Table S3. Comp	lete nume	rical listings of	¹ H NMR p	eaks of compou	and 4 in CDCl ₃ .
	Peak	v(F1) [ppm]	v(F1) [Hz]	Intensity [rel]	Half width [Hz]

47	1.87	937.7	0.58	2.4
48	1.82	912.7	0.29	4.9
49	1.8	901.6	0.3	8.5
50	1.62	810.2	3.63	5.5
51	1.55	775.6	0.58	4.3
52	1.55	773.5	0.67	3.1
53	1.53	763.9	1.17	4.9
54	1.52	761.1	0.88	3.7
55	1.51	754.9	0.89	6.1
56	1.5	747.7	1.65	4.9
57	1.47	736.2	0.79	9.2
58	1.44	719.6	0.45	9.2
59	1.42	707.7	0.44	7.9
60	1.36	681.9	1.68	2.4
61	1.35	673.4	0.78	1.2
62	1.33	664.7	0.63	5.5
63	1.3	651.9	0.89	4.3
64	1.3	649.3	1.23	1.8
65	1.29	644.7	1.01	0.6
66	1.27	637.5	2.03	1.2
67	1.27	633.2	2.76	3.1
68	1.21	606.9	5.57	1.8
69	1.17	587	5.54	1.8
70	1.11	555	0.49	6.1
71	1.08	540.2	0.56	4.9
72	1.07	537.3	0.61	3.1
73	1.06	529.1	0.58	1.8
74	1.05	526.7	0.82	4.3
75	1	500.2	4.57	1.8
76	0.87	434.8	5.08	1.8
77	0.79	395.7	5.01	1.8
78	0	0	0.07	3.1

Figure S15. (a) Complete ${}^{13}C{}^{1}H$ NMR spectrum of compound **4** in CDCl₃. (b) Downfield area of annotated ${}^{13}C{}^{1}H$ NMR and DEPT-135, DEPT-90 spectra of compound **4** in CDCl₃.

compound 4 in CDCl₃.

Table S4. Complete numerical listings of ¹³C NMR peaks of compound 4 in CDCl₃.

Deel			· · · · · · · · · · · · · · · · · · ·	
Реак	v(FI) [ppm]	V(FI) [HZ]	Intensity [rel]	Haif width [Hz]
1	212.18	26683	0.41	2.7
2	202.38	25451.1	0.44	1.8
3	181.15	22781.4	0.38	0.9
4	176.46	22190.7	0.48	0.9
5	141.04	17737.4	0.43	0.9
6	135.47	17036	0.39	0.9
7	132.58	16673.2	0.55	2.7
8	130.91	16463.3	0.58	1.8
9	129.85	16329.6	0.64	1.8
10	129.16	16243.3	0.63	1.8
11	77.27	9717.7	12.97	1.8
12	77.02	9685.8	13.5	1.8
13	76.77	9653.9	13.45	1.8
14	56.41	7094.5	0.64	1.8
15	53.37	6712	0.5	1.8
16	51.45	6470.5	0.94	1.8
17	51.11	6426.9	0.76	1.8
18	50.9	6400.5	0.72	1.8
19	49.42	6214.5	0.65	0.9
20	47.15	5929.7	0.63	0.9
21	45.13	5675.6	0.76	0.9
		G Q 1		

22	44.01	5534.9	0.83	0.9
23	42.54	5349.4	0.73	0.9
24	40.78	5128	0.82	0.9
25	37.26	4685.4	0.7	0.9
26	36.61	4604.3	0.76	2.7
27	33.58	4222.5	0.56	1.8
28	31.28	3933.8	0.58	3.6
29	30.41	3824.3	0.71	0.9
30	29.57	3719.2	0.55	3.6
31	29.2	3671.8	0.76	1.8
32	28.43	3575.7	0.56	1.8
33	26.75	3364.2	0.55	1.8
34	22.2	2792.4	0.8	1.8
35	20.79	2613.9	0.6	1.8
36	20.07	2524.1	0.58	3.6
37	19.8	2490.2	0.52	2.7
38	15.82	1990	0.77	0.9
39	14.37	1807.4	0.88	1.8
40	0	0	0.4	0.9

Figure S17. Complete {¹H, ¹³C} HSQC NMR spectrum of compound 4 in CDCl₃.

Figure S19. Upfield area of {¹H, ¹³C} HSQC multiplicity edited NMR spectrum of compound **4** in CDCl₃.

Figure S20. Complete {¹H, ¹³C} HMBC NMR spectrum of compound 4 in CDCl₃.

Figure S21. Downfield area of annotated $\{{}^{1}H, {}^{13}C\}$ HMBC NMR spectrum of compound 4 in CDCl₃.

Figure S22. Complete {¹H, ¹H} COSY NMR spectrum of compound 4 in CDCl₃.

Figure S23. Upfield area of {¹H, ¹H} COSY-DQF NMR spectrum of compound 4 in CDCl₃.

Figure S24. Complete {¹H, ¹H} NOESY NMR spectrum of compound 4 in CDCl₃.

Figure S25. Detailed and annotated {¹H, ¹H} NOESY NMR spectrum of compound 4 in CDCl₃.

Figure S26. Upfield area of {¹H, ¹H} NOESY NMR spectrum of compound 4 in CDCl₃.

Figure S27. (a) Complete ¹H NMR spectrum of compound **5** in CDCl₃. (b) Detailed and annotated ¹H NMR spectrum of compound **5** in CDCl₃.

Table S5. Complete nume	rical listings	of ¹ H NMR	peaks of compo	und 5 in CDCl ₃ .
Peak	v(F1) [ppm]	v(F1) [Hz]	Intensity [rel]	Half width [Hz]
1	7.6	3799.7	0.11	3.3
2	7.27	3636.4	1.49	0.6
3	7.22	3612	0.08	0.9
4	7.22	3611.2	0.09	3.1
5	7.22	3610.7	0.08	1.3
6	7.21	3604.3	0.09	1.5
7	7.21	3603.7	0.09	3.1
8	7.2	3603.1	0.09	0.9
9	7.17	3585	0.05	1.1
10	7.17	3583.9	0.05	1.1
11	7.15	3577.4	0.1	1.1
12	7.15	3576.3	0.1	0.9
13	7.14	3569.7	0.06	1.1
14	7.14	3568.6	0.06	0.9
15	6.98	3492.8	0.06	1.1
	6.98	3491.8	0.06	1.1
17	6 97	3485.2	0.1	1 1
18	6.97	3484.2	0.1	0.9
19	6 95	3477.6	0.05	1 1
20	6.95	3476.6	0.03	0.9
20	6.82	3413 3	0.04	1 1
21	6.82	3/12 0	0.1	1 1
22	6.82	2/12.5	0.1	1.1
23	6.81	3412.0	0.05	1.1
24	6.81	3405.0	0.09	1.1
25	2.60	19/2 9	1 21	0.7
20	3.05	1627.2	1.21	0.7
27	2.27	1622.1	0.03	3.5
28	2.20	1626	0.04	2.0
29	5.25 2.24	1620	0.04	5.5 2.6
21	5.24 2.22	1021.2	0.03	2.0
21	5.25 2.25	1610	0.03	2.9
32	3.22	1120.2	0.02	2.4
33	2.20	1139.2	0.04	2.9
34	2.27	1120.7	0.05	5.5
35	2.20	1131.0	0.05	Z.4 E 1
	2.20	1130.2	0.05	J.1 2 7
37	2.25	1127.1	0.05	5.7
38	2.25	1124.9	0.03	1.3
39	2.17	1083.9	1.02	1.1
40	2.14	10/1.4	0.04	1.5
41	2.12	1060	0.08	2.4
42	2.1	1049	0.07	2.4
43	2.09	1045.9	0.07	3.1
44	2.06	1032.5	0.07	2.0
45	2.05	1023.3	0.04	3.5
46	2.04	1019./	0.05	4.4
4/	2.02	1011	0.07	4.6
48	2.02	1008	0.07	3.9
49	2	999.6	0.06	4.2

S31

complete numer	rical listings of	t ^{TC} NMR	peaks of compo	bund 5 in CDC
Peak	v(F1) [ppm]	v(F1) [Hz]	Intensity [rel]	Half width [Hz]
1	212.2	26686	1.03	0.9
2	184.37	23186	1.07	0.9
3	176.57	22205.1	1.53	1.8
4	141.18	17755	0.95	0.9
5	133.52	16790.8	1.04	0.9
6	127.23	16000.8	1.47	1.8
7	126.35	15889.4	1.37	0.9
8	121.49	15278.2	1.4	0.9
9	109.03	13710.9	1.41	1.8
10	77.29	9719.3	13.1	1.8
11	77.24	9713.1	1.23	2.7
12	77.03	9687.4	13.5	1.8
13	76.78	9655.5	13.18	1.8
14	62.07	7805.5	1.6	1.8
15	59.23	7449.3	1.93	1.8
16	56.42	7095.2	1.78	1.8
17	53.82	6768.4	1.89	1.8
18	51.43	6467.6	1.96	1.8
19	51.41	6464.9	2.16	2.7
20	50.68	6374	1.96	1.8
21	49.55	6231.3	1.96	1.8
22	48.35	6080.7	1.71	1.8
23	44.37	5580.4	1.65	1.8
24	42.4	5331.5	1.66	1.8
25	41.82	5259.1	1.64	0.9
26	37.63	4732	1.95	1.8
27	36.65	4608.7	1.98	1.8
28	34.24	4306.1	1.92	1.8
29	31.53	3965.4	2	1.8
30	30.05	3779.2	2.06	1.8
31	29.9	3760.1	1.78	0.9
32	28.23	3550.5	2.05	0.9
33	27.02	3398.4	1.91	1.8
34	26.31	3308.7	1.57	1.8
35	24.12	3033.6	1.75	0.9
36	23.42	2945.4	1.99	1.8
37	20.33	2556.8	1.74	0.9
38	18.48	2323.6	1.85	0.9
39	16.01	2013.4	1.8	0.9
40	15.22	1913.7	1.69	0.9
41	0	0	4.53	0.9

Table S6. Comple	te numei	rical listings of	¹³ C NMR	peaks of compo	ound 5 in CDCl ₃ .
	Dook	v(E1) [nnm]	v/E1)[H7]	Intensity [rel]	Half width [Hz]

Figure S31. Complete {¹H, ¹³C} HSQC NMR spectrum of compound **5** in CDCl₃.

Figure S32. Downfield area of {¹H, ¹³C} HSQC NMR spectrum of compound 5 in CDCl₃.

Figure S33. Upfield area of $\{^{1}H, ^{13}C\}$ HSQC multiplicity edited NMR spectrum of compound 5 in CDCl₃.

Figure S34. Complete {¹H, ¹³C} HMBC NMR spectrum of compound 5 in CDCl₃.

Figure S35. Downfield area of annotated $\{{}^{1}H, {}^{13}C\}$ HMBC NMR spectrum of compound 5 in CDCl₃.

Figure S38. Complete {¹H, ¹H} NOESY NMR spectrum of compound 5 in CDCl₃.

Figure S39. Detailed and annotated {¹H, ¹H} NOESY NMR spectrum of compound 5 in CDCl₃.

Figure S40. Upfield area of {¹H, ¹H} NOESY NMR spectrum of compound 5 in CDCl₃.

Figure S41. (a) Complete ¹H NMR spectrum of compound **6** in CDCl₃. (b) Detailed and annotated ¹H NMR spectrum of compound **6** in CDCl₃.

e S7. Complete nun	nerical listings	of 'H NMR I	peaks of compou	nd 6 in $CDCI_3$.
Peak	v(F1) [ppm]	v(F1) [Hz]	Intensity [rel]	Half width [Hz]
1	8.83	4418.3	0.08	2.1
2	8.48	4241.7	0.04	2.6
3	8.46	4233.4	0.04	2.4
4	7.72	3859.7	0.03	0.9
5	7.72	3859	0.03	1.5
6	7.71	3858.1	0.03	1.5
7	7.7	3851.8	0.03	1.3
8	7.7	3850.7	0.04	2.8
9	7.66	3833.1	0.02	1.1
10	7.66	3831.7	0.02	1.5
11	7.65	3825.7	0.02	1.1
12	7.65	3824.5	0.03	3.4
13	7.64	3823.5	0.02	1.1
14	7.63	3817.4	0.02	1.5
15	7.63	3816.2	0.02	1.5
16	7.26	3632.4	0.57	0.9
17	7.25	3625	0.05	2.6
18	7.23	3617.5	0.02	2.6
19	3.69	1844.8	0.38	1.3
20	3.28	1641.3	0.01	1.1
21	3.27	1636.6	0.01	1.5
22	3 26	1629.6	0.02	17
22	3 25	1625.3	0.02	3.4
23	3.25	1618 5	0.02	1 9
24	3.24	1614.4	0.01	1.5
25	2 29	1145 5	0.01	1.5
20	2.25	1131 5	0.02	4.5
27	2.20	1116 7	0.04	-4.7
20	2.25	1088.6	0.03	15
29	2.18	1038.0	0.34	1.5
21	2.10	1067.0	0.02	2.1
22	2.14	1056.9	0.04	2.0
22	2.11	1030.8	0.02	2.1
24	2.03	1020.1	0.01	1.5
54 2F	2.04	1021.5	0.01	1.1
30	2.03	1014.1	0.02	1.5
30 27	2.02	1010	0.03	5.2
57	1.95	977	0.03	2.4
38	1.92	962.3	0.04	3.8
39	1.9	951.7	0.02	0.4
40	1.9	947.9	0.03	4.1
41	1.88	941.1	0.03	3.4
42	1.86	931.5	0.02	2.4
43	1.82	907.8	0.02	5.3
44	1.79	896.4	0.02	2.8
45	1.58	791.9	0.14	1/.1
46	1.5/	/82.8	0.1	1./
47	1.54	//2.6	0.06	1.1
48	1.54	770	0.06	5.8
49	1.52	761.3	0.07	6.8
50	1.51	757.3	0.05	4.9

Table S7. Com	plete nu	merical listings	of ¹ H NMR p	eaks of compour	nd 6 in CDCl ₃ .
	Peak	v(F1) [ppm]	v(F1) [Hz]	Intensity [rel]	Half width [Hz

1.5	748.6	0.04	3
1.49	745	0.04	4.1
1.47	735	0.03	3.8
1.45	726.3	0.03	1.9
1.42	712.1	0.03	5.8
1.4	699.8	0.03	0.9
1.38	689	0.05	5.6
1.25	626.7	0.14	3.4
1.24	620.2	0.03	1.9
1.23	616.5	0.03	3.2
1.22	612.3	0.03	3.4
1.21	607.6	0.02	1.9
1.2	600.8	0.02	3.4
1.19	597.5	0.02	3.2
1.18	587.9	0.01	2.1
1.16	578.5	0.19	2.4
1.14	569.5	0.23	2.8
1.11	554.1	0.02	1.1
1.08	541	0.01	2.6
1.07	534	0.02	4.1
1.03	514.6	0.2	2.8
0.93	462.7	0.2	3.8
0.75	374.7	0.17	3
0	0	13.5	1.1
	1.5 1.49 1.47 1.45 1.42 1.4 1.38 1.25 1.24 1.23 1.22 1.21 1.2 1.19 1.18 1.16 1.14 1.11 1.08 1.07 1.03 0.93 0.75 0	1.5 748.6 1.49 745 1.47 735 1.45 726.3 1.45 726.3 1.42 712.1 1.4 699.8 1.38 689 1.25 626.7 1.24 620.2 1.23 616.5 1.22 612.3 1.21 607.6 1.2 600.8 1.19 597.5 1.18 587.9 1.16 578.5 1.14 569.5 1.11 554.1 1.08 541 1.07 534 1.03 514.6 0.93 462.7 0.75 374.7 0 0	1.5 748.6 0.04 1.49 745 0.04 1.47 735 0.03 1.45 726.3 0.03 1.42 712.1 0.03 1.42 712.1 0.03 1.4 699.8 0.05 1.25 626.7 0.14 1.24 620.2 0.03 1.23 616.5 0.03 1.23 616.5 0.03 1.22 612.3 0.03 1.21 607.6 0.02 1.2 600.8 0.02 1.19 597.5 0.02 1.18 587.9 0.01 1.16 578.5 0.19 1.14 569.5 0.23 1.11 554.1 0.02 1.08 541 0.01 1.07 534 0.02 1.03 514.6 0.2 0.93 462.7 0.2 0.75 374.7 0.17 0 0 13.5

Figure S44. Upfield area of annotated ${}^{13}C{}^{1}H$ NMR and DEPT-135, DEPT-90 spectra of compound 6 in CDCl₃.

S8. Comple	ete nume	rical listings o	f ¹³ C NMR p	eaks of compou	nd 6 in $CDCI_3$.
Р	eak v	v(F1) [ppm]	v(F1) [Hz]	Intensity [rel]	Half width [Hz]
	1	212.12	26675.8	0.16	1.8
	2	176.53	22199.6	0.17	3.6
	3	160.17	20142.6	0.3	1.8
	4	151.23	19018.2	0.17	0.9
	5	136.71	17191.9	0.29	1.8
	6	125.14	15737.5	0.28	1.8
	7	123.95	15587.2	0.15	0.9
	8	123.67	15552.4	0.32	1.8
	9	118.13	14856.1	0.28	0.9
	10	79.93	10051.7	0.24	0.9
	11	77.26	9716.3	12.94	2.7
	12	77.01	9684.3	13.46	1.8
	13	76.75	9652.4	13.5	1.8
	14	57.59	7241.8	0.32	0.9
	15	56.39	7091.5	0.33	2.7
	16	51.45	6470.7	0.33	1.8
	17	51.34	6456.1	0.29	1.8
	18	51.1	6426.6	0.25	3.6
	19	50.84	6394.2	0.29	1.8
	20	49.57	6233.5	0.39	0.9
	21	49.39	6211.5	0.29	0.9
	22	43.46	5466	0.35	0.9
	23	42.52	5347.6	0.35	0.9
	24	41.79	5255.5	0.3	0.9
	25	37.55	4722.6	0.32	1.8
	26	36.64	4607.4	0.24	2.7
	27	34.34	4318.1	0.25	1.8
	28	31.53	3965.2	0.25	2.7
	29	30	3772.3	0.34	1.8
	30	29.94	3764.8	0.29	1.8
	31	28.23	3550.7	0.31	2.7
	32	26.98	3392.4	0.28	1.8
	33	25.76	3239	0.29	1.8
	34	23.49	2954.6	0.26	1.8
	35	22.64	2847	0.27	2.7
	36	20.35	2559.1	0.34	0.9
	37	17.72	2228.1	0.25	1.8
	38	16.31	2051.1	0.38	0.9
	39	15.13	1902.3	0.37	0.9
	40	0	0	3.45	0.9

Table S8.	Complete	e num	nerical l	istings	of ¹³ C	NMR	peaks	of c	comp	ound	6 in	CD	Cl ₃ .	
	-		((= 4)			• •	F 13				F	1

Figure S45. Complete {¹H, ¹³C} HSQC NMR spectrum of compound 6 in CDCl₃.

Figure S46. Downfield area of $\{^{1}H, ^{13}C\}$ HSQC multiplicity edited NMR spectrum of compound 6 in CDCl₃.

Figure S47. Upfield area of $\{^{1}H, ^{13}C\}$ HSQC multiplicity edited NMR spectrum of compound 6 in CDCl₃.

Figure S48. Complete {¹H, ¹³C} HMBC NMR spectrum of compound 6 in CDCl₃.

Figure S49. Annotated {¹H, ¹³C} HMBC NMR spectrum of compound 6 in CDCl₃.

Figure S50. Complete {¹H, ¹H} COSY NMR spectrum of compound 6 in CDCl₃.

Figure S51. Upfield area of {¹H, ¹H} COSY-DQF NMR spectrum of compound 6 in CDCl₃.

Figure S53. Detailed and annotated {¹H, ¹H} NOESY NMR spectrum of compound 6 in CDCl₃.

Figure S54. Upfield area of {¹H, ¹H} NOESY NMR spectrum of compound 6 in CDCl₃.

Figure S55. (a) Complete ¹H NMR spectrum of compound **7** in CDCl₃. (b) Detailed and annotated ¹H NMR spectrum of compound **7** in CDCl₃.

comple	ie numericai	instings of 1	I MININ PEAKS	n compound 7 m CDC
Peak	v(F1) [ppm]	v(F1) [Hz]	Intensity [rel]	Half width [Hz]
1	10.55	5275.4	0.11	0.6
2	8.35	4176.7	0.55	1.5
3	8.35	4175.9	0.56	1.7
4	8.34	4168.6	0.61	1.7
5	8.33	4167.7	0.59	1.3
6	7.58	3790.9	0.47	3.4
7	7.56	3782.6	0.64	3.4
8	7.47	3737.3	0.39	1.3
9	7.47	3736	0.39	1.7
10	7.46	3730.3	0.52	1.3
11	7.46	3729	0.67	2.6
12	7.45	3727.8	0.43	1.1
13	7.44	3722.1	0.38	1.5
14	7.44	3720.7	0.37	1.3
15	7.28	3639.1	2.84	0.2
16	7.24	3620.5	0.44	1.1
17	7.24	3619.8	0.45	1.5
18	7.23	3613.6	0.55	11
19	7.20	3612.6	0.33	3
20	7.22	3611.6	0.73	11
20	7.22	3605.4	0.43	13
22	7.21	3604.6	0.43	13
22	5 3	2652.4	0.45	0.2
23	3 91	1954 4	1 27	2.2
25	3.51	1783.4	0.2	6.6
25	3.57	1703.4	0.2	10.9
20	2.18	1092.2	13 5	0.2
28	2.10	1085	0.4	2.6
29	2 16	1082 3	0.36	3.4
30	2 14	1072 3	0.5	4 1
31	2.14	1069.9	0.34	2.6
32	1.88	938.8	0.35	10
33	1.86	930.8	0.42	47
34	1 74	870.9	0.64	2.8
35	1 72	859.8	0.73	3
36	1.65	823	0.68	11.8
37	1 55	777 1	0.95	12.4
38	1 54	771 1	0.94	3.8
39	1 53	766.8	0.99	2.6
40	1.52	759.2	0.98	5.3
41	1 51	754 3	1 17	85
42	1 43	714 5	4 31	3.6
43	13	650.5	4 89	19
44	1 22	608	0.56	6.6
45	1 21	605.2	0.50	43
46	1.21	599.9	0.33	 2
40	1 15	576.2	4 77	17
47 48	1.13	511 2	4.12	3.4
40 20	1.02	504 6	3 76	3.4
-r5 50	0.91	456 Q	3.70	2.4 2.4
50	0.89	400.5 400 A	3 94	2.7
52	0	۰ ۱	8.19	0.4
-	-	-	0.20	

Table S9. Comp	lete numerical	listings of ¹	H NMR peaks o	f compound 7 in C	CDCl ₃ .
Peak	v(F1) [ppm]	v(F1) [Hz]	Intensity [rel]	Half width [Hz]	

Figure S56. (a) Complete ${}^{13}C{}^{1}H$ NMR spectrum of compound **7** in CDCl₃. (b) Downfield area of annotated ${}^{13}C{}^{1}H$ NMR and DEPT-135, DEPT-90 spectra of compound **7** in CDCl₃.

compound **7** in $CDCl_3$.

Table S10, Con	nplete numerical lis	tings of ¹³ C NMR	neaks of com	nound 7 in CDCl ₂
	inproto inamoritour ins		peaks of comp	

	1	0	1	1
Peak	v(F1) [ppm]	v(F1) [Hz]	Intensity [rel]	Half width [Hz]
1	180.4	22687.1	0.8	0.9
2	175.78	22105.9	0.52	2.7
3	161.94	20364.8	0.34	5.4
4	139.48	17540.2	0.84	1.8
5	131.05	16480.8	0.8	1.8
6	130.83	16452.8	0.73	2.7
7	126.97	15967.7	0.53	2.7
8	126.27	15879.7	0.78	2.7
9	123.09	15479.4	0.76	3.6
10	117.6	14789.3	0.69	3.6
11	86.28	10850.7	1	2.7
12	77.31	9721.7	13.39	2.7
13	77.05	9689.7	13.5	2.7
14	76.8	9657.7	13.45	1.8
15	61.46	7729.3	1.02	1.8
16	50.68	6374	1.31	0.9
17	49.65	6244.5	0.96	2.7
18	46.76	5880.1	1.09	2.7
19	46.05	5791	1.49	1.8
20	43.27	5441.8	1.39	0.9

21	42.82	5385	1.53	1.8
22	40.65	5111.4	1.41	0.9
23	35.69	4488.7	0.98	1.8
24	34.63	4354.9	0.68	3.6
25	33.42	4202.6	1.67	1.8
26	32.3	4062.6	0.88	4.5
27	31.96	4019.8	0.72	4.5
28	28.73	3612.5	1.61	2.7
29	27.93	3511.9	0.72	4.5
30	26.97	3392.2	1.5	1.8
31	26.44	3325	0.76	3.6
32	25.64	3224.1	0.74	4.5
33	24.22	3045.7	0.74	4.5
34	23.86	3000.5	1.59	2.7
35	21.2	2666.2	1.57	1.8
36	19.12	2404	1.51	1.8
37	17.28	2173	1.42	1.8
38	16.62	2090	0.72	3.6
39	13.55	1704.1	1.46	1.8
40	0	0	1.02	1.8

Figure S58. Complete {¹H, ¹³C} HSQC NMR spectrum of compound 7 in CDCl₃.

Figure S59. Upfield area of {¹H, ¹³C} HSQC multiplicity edited NMR spectrum of compound **7** in CDCl₃.

Figure S60. Complete {¹H, ¹³C} HMBC NMR spectrum of compound 7 in CDCl₃.

Figure S62. Complete {¹H, ¹H} COSY NMR spectrum of compound 7 in CDCl₃.

Figure S64. Complete {¹H, ¹H} ROESY NMR spectrum of compound 7 in CDCl₃.

Figure S65. Detailed and annotated {¹H, ¹H} ROESY NMR spectrum of compound 7 in CDCl₃.

Figure S66. Upfield area of {¹H, ¹H} ROESY NMR spectrum of compound 7 in CDCl₃.

Figure S67. Complete ¹H NMR spectrum of compound 8 in CDCl₃.

Table S11.

Complete nun	nerical listings	of ¹ H NMR	peaks of compo	und 8 in CDCl ₃ .
Peak	v(F1) [ppm]	v(F1) [Hz]	Intensity [rel]	Half width [Hz]
1	8.57	4284.6	0.01	1.8
2	8.55	4276.3	0.01	2.1
3	8.4	4200.4	0.08	3.7
4	8.38	4192.4	0.09	3.7
5	7.78	3889.2	0.03	1.5
6	7.77	3887.6	0.03	1.8
7	7.76	3881.5	0.03	1.8
8	7.76	3879.9	0.04	1.5
9	7.69	3847.6	0.02	2.4
10	7.68	3839.8	0.02	4
11	7.58	3788.8	0.04	2.4
12	7.56	3782.8	0.06	2.4
13	7.56	3781.3	0.07	4
14	7.55	3773.7	0.06	3.1
15	7.51	3755.6	0.07	3.4
16	7.49	3748.4	0.1	4.6
17	7.48	3740.1	0.07	4.9
18	7.46	3731.9	0.05	3.4
19	7.45	3724.5	0.03	4.9
20	7.37	3683.8	0.06	0.9
21	7.31	3657.8	0.05	3.4
22	7.29	3644.1	0.07	4.6
23	7.27	3634.1	0.85	0.9

24	7.26	3628.5	0.07	4
25	6.96	3482.6	0.05	4.3
26	6.87	3438.3	0.02	3.7
27	3.97	1983.1	0.31	2.1
28	3.58	1788.1	0.04	1.8
29	3.54	1772.8	0.04	2.1
30	3.46	1731.2	0.03	0.9
31	3.44	1718	0.04	3.4
32	2.98	1489.9	0.03	2.4
33	2.95	1474.8	0.03	2.4
34	2.15	1076.5	0.06	2.7
35	2.15	1074.5	0.05	0.6
36	2.13	1064.3	0.06	4
37	2.12	1061.2	0.05	2.4
38	1.94	968.5	0.03	2.7
39	1.92	962.5	0.04	4.6
40	1 92	958.4	0.05	3 1
41	1.9	951.8	0.06	2.4
42	1 89	946.9	0.09	3.4
43	1.85	936.2	0.08	5.1
44	1.86	928.3	0.04	2.4
45	1.80	918.6	0.04	2.4
46	1.81	907 5	0.00	3.4
40	1.01	884 3	0.00	2.4 2.1
47 //8	1.77	873 1	0.12	2.1
40 /10	1.75	855 1	0.14	7 9
4J 50	1.71	873.8	0.1	5.2
50	1.05	823.8 81 <i>1</i>	0.04	J.Z
52	1.05	772 9	0.08	4.0
52	1.55	767.2	0.22	0.5
53	1.53	760.2	0.18	70
54	1.52	700.2	0.29	7.5
55	1.31	737	0.24	4.5
57	1.44	715	0.01	76
50	1.42	711.0	0.37	7.0
50	1.41	702.9 602.2	0.23	0.2
59	1.57	003.2 675 7	0.11	4
60 61	1.55	620.2	0.15	4.5
62	1.20	626 5	0.72	2.1
62	1.23	020.3 605 4	0.14	0.4
64	1.21		0.27	4.5
04 65	1.15	570.2	0.72	2.1
05	1.15	573.1	0.31	1.8
60	1.05	525.9	0.69	2.7
67	1.04	518.5	0.51	4.3
00	1.03	514.4	0.89	4.3
69 70	1.02	509.6	0.27	3.1
/U 74	0.97	480.9	0.46	3.1
/1 72	0.95	475.6	0.23	4.6
12	0.93	405.5	0.84	2.4
/3	0.89	446.5	0.82	2.1
/4 75	0.88	439.8	0.32	2.7
/5	0	0	13.5	0.6

Figure S70. Upfield area of ¹³C{¹H} NMR spectrum of compound 8 in CDCl₃.

Table S12. Com	plete numerical list	tings of ¹³ C NMR	peaks of com	pound 8 in CDCl ₃ .

Peak	v(F1) [ppm]	v(F1) [Hz]	Intensity [rel]	Half width [Hz]
1	202.3	25440 5	0.36	Λ Q
2	101.12	23440.3	0.30	0.5
2	101.13	22770.1	0.33	0.9
<u>з</u>	100.15	22052.1	1.15	0.9
4	1/9.88	22621.8	0.25	2.7
5	140.45	1/662.4	0.3	1.8
6	138.98	17477.9	0.85	0.9
7	135.87	17086.2	0.4	0.9
8	132.94	16717.9	0.39	1.8
9	131.21	16500.2	0.96	2.7
10	131.19	16497.7	0.74	1.8
11	131.11	16488	0.91	2.7
12	129.65	16304.8	0.42	2.7
13	129.06	16229.9	0.48	1.8
14	128.33	16138.7	0.19	6.4
15	126.44	15901.3	0.63	7.3
16	124.31	15632.4	0.2	8.2
17	123.5	15531.3	0.47	6.4
18	117.37	14760.7	0.3	8.2
19	86.18	10837.5	1.34	1.8
20	85.88	10799.9	0.41	2.7
21	77.27	9717.6	13.16	1.8
22	77.02	9685.7	13.5	1.8
23	76.77	9653.8	13.21	1.8
24	76.51	9622.2	0.07	2.7
25	61.44	7726.6	1.46	1.8

27 51.55 6482.8 0.5 0.9 28 50.69 6375.2 1.64 0.9 29 49.7 6249.8 1.36 1.8 30 47.23 5339.3 0.6 0.9 31 46.8 5885.3 1.37 0.9 32 46.55 5854.6 0.78 0.9 33 46.14 5802.3 0.67 1.8 34 46.06 5792.1 0.77 0.9 35 45.99 5784.2 1.61 0.9 38 43.3 5571.2 0.46 0.9 38 43.3 5545.9 1.08 1.8 39 42.86 5390.1 1.55 0.9 40 40.68 5115.7 1.58 1.8 41 40.3 5068.2 0.6 0.9 42 36 4527.7 0.5 1.8 43 35.67 4485.9 1.09 3.6 44 34.61 4351.9 1 2.7 42	26	53.15	6684	0.5	1.8
2850.696375.21.640.92949.76249.81.361.83047.235939.30.60.93146.85585.40.780.93246.55585.40.770.93346.145802.30.671.83446.065792.10.770.93545.995784.21.610.93645.657340.511.83744.35571.20.460.93843.35445.91.081.83942.865390.11.550.94040.68515.71.581.84140.35068.20.60.942364527.70.51.84335.674485.21.40.94434.614351.912.74533.55428.91.093.64633.4742092.330.94732.34062.51.286.448324024.61.181.85029.033650.60.541.85128.743614.82.034.55228.013522.20.062.75327.923511.31.212.75427.743488.80.523.655273395.11.841.85626.47322912.7	27	51.55	6482.8	0.5	0.9
2949.76249.81.361.83047.235939.30.60.93146.85885.31.370.93246.555854.60.780.93346.145802.30.671.83446.065792.10.770.93545.995784.21.610.93645.657340.511.83744.35571.20.460.93843.35445.91.081.83942.865390.11.550.94040.685115.71.581.84140.35068.20.60.942364527.70.51.84335.674485.21.40.94434.614351.912.74533.554218.91.093.64633.4742092.330.94732.34062.51.286.448324024.61.181.85128.743614.82.034.55228.01352.20.062.75327.923511.31.212.75427.743488.80.523.65527395.11.841.85626.4732912.75726.133286.10.423.65825.653226.21.122.7	28	50.69	6375.2	1.64	0.9
30 47.23 5939.3 0.6 0.9 31 46.8 5885.3 1.37 0.9 32 46.55 5854.6 0.78 0.9 33 46.14 5802.3 0.67 1.8 34 46.06 5792.1 0.77 0.9 35 45.99 5784.2 1.61 0.9 36 45.6 5734 0.51 1.8 37 44.3 5571.2 0.46 0.9 38 43.3 5445.9 1.08 1.8 39 42.86 5390.1 1.55 0.9 40 40.68 5115.7 1.58 1.8 41 40.3 5068.2 0.6 0.9 42 36 4527.7 0.5 1.8 43 35.67 4485.2 1.4 0.9 44 34.61 4351.9 1 2.7 45 33.55 4218.9 1.09 3.6 46 33.47 4209 2.33 0.9 47 32.3 4062.5 1.28 6.4 48 32 4024.6 1.18 1.8 51 28.74 3614.8 2.03 4.5 52 28.01 3522.2 0.06 2.7 53 27.92 3511.3 1.21 2.7 54 27.74 3488.8 0.52 3.6 55 27 3395.1 1.84 1.8 56 26.47 3329 <td>29</td> <td>49.7</td> <td>6249.8</td> <td>1.36</td> <td>1.8</td>	29	49.7	6249.8	1.36	1.8
3146.85885.31.370.93246.555854.60.780.93346.145802.30.671.83446.065792.10.770.93545.995784.21.610.93645.657340.511.83744.35571.20.460.93843.35445.91.081.83942.865390.11.550.94040.685115.71.581.84140.35068.20.60.942364527.70.51.84335.674485.21.40.94434.614351.912.74533.554218.91.093.64633.4742092.330.94732.34062.51.286.448324024.61.181.85029.033650.60.541.85128.743614.82.034.55228.013522.20.062.75327.923511.31.212.75427.743488.80.523.655273395.11.841.85626.47332912.75726.133286.10.423.65825.653226.21.122.75925.463201.60.71.8<	30	47.23	5939.3	0.6	0.9
32 46.55 5854.6 0.78 0.9 33 46.14 5802.3 0.67 1.8 34 46.06 5792.1 0.77 0.9 35 45.99 5784.2 1.61 0.9 36 45.6 5734 0.51 1.8 37 44.3 5571.2 0.46 0.9 38 43.3 5445.9 1.08 1.8 39 42.86 5390.1 1.55 0.9 40 40.68 5115.7 1.58 1.8 41 40.3 5068.2 0.6 0.9 42 36 4527.7 0.5 1.8 43 35.67 4485.2 1.4 0.9 44 34.61 4351.9 1 2.7 45 33.55 4218.9 1.09 3.6 46 33.47 4209 2.33 0.9 47 32.3 4062.5 1.28 6.4 50 29.03 3650.6 0.54 1.8 51 28.74 3614.8 2.03 4.5 52 28.01 3522.2 0.06 2.7 54 27.74 3488.8 0.52 3.6 55 27 3395.1 1.84 1.8 56 26.47 3229 1 2.7 57 26.13 3286.1 0.42 3.6 58 25.65 3226.2 1.12 2.7 57 26.13 3286.1 </td <td>31</td> <td>46.8</td> <td>5885.3</td> <td>1.37</td> <td>0.9</td>	31	46.8	5885.3	1.37	0.9
33 46.14 5802.3 0.67 1.8 34 46.06 5792.1 0.77 0.9 35 45.99 5784.2 1.61 0.9 36 45.6 5734 0.51 1.8 37 44.3 5571.2 0.46 0.9 38 43.3 5445.9 1.08 1.8 39 42.86 5390.1 1.55 0.9 40 40.68 5115.7 1.58 1.8 41 40.3 5068.2 0.6 0.9 42 36 4527.7 0.5 1.8 43 35.67 4485.2 1.4 0.9 44 34.61 4351.9 1 2.7 45 33.55 4218.9 1.09 3.6 46 33.47 4209 2.33 0.9 47 32.3 4062.5 1.28 6.4 48 32 4024.6 1.18 1.8 49 31.91 4012.7 0.88 6.4 50 29.03 3650.6 0.54 1.8 51 28.74 3614.8 2.03 4.5 52 28.01 3522.2 0.06 2.7 53 27.92 3511.3 1.21 2.7 54 27.74 3488.8 0.52 3.6 55 27 3395.1 1.84 1.8 66 26.47 3329 1 2.7 59 25.46 3201.6 0.7 1.8 61 <t< td=""><td>32</td><td>46.55</td><td>5854.6</td><td>0.78</td><td>0.9</td></t<>	32	46.55	5854.6	0.78	0.9
34 46.06 5792.1 0.77 0.9 35 45.99 5784.2 1.61 0.9 36 45.6 5734 0.51 1.8 37 44.3 5571.2 0.46 0.9 38 43.3 5445.9 1.08 1.8 39 42.86 5390.1 1.55 0.9 40 40.68 5115.7 1.58 1.8 41 40.3 5068.2 0.6 0.9 42 36 4527.7 0.5 1.8 43 35.67 4485.2 1.4 0.9 44 34.61 4351.9 1 2.7 45 33.55 4218.9 1.09 3.6 46 33.47 4209 2.33 0.9 47 32.3 4062.5 1.28 6.4 48 32 4024.6 1.18 1.8 49 31.91 4012.7 0.88 6.4 50 29.03 3650.6 0.54 1.8 51 28.74 3614.8 2.03 4.5 52 28.01 3522.2 0.06 2.7 53 27.92 3511.3 1.21 2.7 54 27.74 3488.8 0.52 3.6 55 27 3329.1 1.4 1.8 56 26.47 3329 1 2.7 57 26.13 3286.1 0.42 3.6 58 25.65 3226.2 <	33	46.14	5802.3	0.67	1.8
35 45.99 5784.2 1.61 0.9 36 45.6 5734 0.51 1.8 37 44.3 5571.2 0.46 0.9 38 43.3 5445.9 1.08 1.8 39 42.86 5390.1 1.55 0.9 40 40.68 5115.7 1.58 1.8 41 40.3 5068.2 0.6 0.9 42 36 4527.7 0.5 1.8 43 35.67 4485.2 1.4 0.9 44 34.61 4351.9 1 2.7 45 33.55 4218.9 1.09 3.6 46 33.47 4209 2.33 0.9 47 32.3 4062.5 1.28 6.4 8 32 4024.6 1.18 1.8 49 31.91 4012.7 0.88 6.4 50 29.03 3650.6 0.54 1.8 51 28.74 3614.8 2.03 4.5 52 28.01 3522.2 0.06 2.7 53 27.92 3511.3 1.21 2.7 54 27.74 3488.8 0.52 3.6 55 27 3395.1 1.84 1.8 56 26.47 3329 1 2.7 57 26.13 3286.1 0.42 3.6 58 25.65 3226.2 1.12 2.7 59 25.46 3201.6 <	34	46.06	5792.1	0.77	0.9
36 45.6 5734 0.51 1.8 37 44.3 5571.2 0.46 0.9 38 43.3 5445.9 1.08 1.8 39 42.86 5390.1 1.55 0.9 40 40.68 5115.7 1.58 1.8 41 40.3 5068.2 0.6 0.9 42 36 4527.7 0.5 1.8 43 35.67 4485.2 1.4 0.9 44 34.61 4351.9 1 2.7 45 33.55 4218.9 1.09 3.6 46 3.47 4209 2.33 0.9 47 32.3 4062.5 1.28 6.4 50 29.03 3650.6 0.54 1.8 51 28.74 3614.8 2.03 4.5 52 28.01 3522.2 0.06 2.7 53 27.92 3511.3 1.21 2.7 54 27.74 3488.8 0.52 3.6 55 27 3395.1 1.84 1.8 56 26.47 3329 1 2.7 57 26.13 3286.1 0.42 3.6 58 25.65 3226.2 1.12 2.7 59 25.46 3201.6 0.7 1.8 60 24.2 3042.7 1.06 2.7 64 22.32 2806.6 0.67 0.9 65 21.28 2676.7	35	45.99	5784.2	1.61	0.9
37 44.3 5571.2 0.46 0.9 38 43.3 5445.9 1.08 1.8 39 42.86 5390.1 1.55 0.9 40 40.68 5115.7 1.58 1.8 41 40.3 5068.2 0.6 0.9 42 36 4527.7 0.5 1.8 43 35.67 4485.2 1.4 0.9 44 34.61 4351.9 1 2.7 45 33.55 4218.9 1.09 3.6 46 33.47 4209 2.33 0.9 47 32.3 4062.5 1.28 6.4 48 32 4024.6 1.18 1.8 49 31.91 4012.7 0.88 6.4 50 29.03 3650.6 0.54 1.8 51 28.74 3614.8 2.03 4.5 52 28.01 352.2 0.06 2.7 53 27.92 3511.3 1.21 2.7 54 27.74 3488.8 0.52 3.6 55 27 3395.1 1.84 1.8 56 26.47 3329 1 2.7 57 26.13 3226.2 1.12 2.7 59 25.46 3201.6 0.7 1.8 56 22.32 2806.6 0.67 0.9 62 23.94 3010.6 1 4.5 63 23.89 3004.9 <t< td=""><td>36</td><td>45.6</td><td>5734</td><td>0.51</td><td>1.8</td></t<>	36	45.6	5734	0.51	1.8
38 43.3 5445.9 1.08 1.8 39 42.86 5390.1 1.55 0.9 40 40.68 5115.7 1.58 1.8 41 40.3 5068.2 0.6 0.9 42 36 4527.7 0.5 1.8 43 35.67 4485.2 1.4 0.9 44 34.61 4351.9 1 2.7 45 33.55 4218.9 1.09 3.6 46 33.47 4209 2.33 0.9 47 32.3 4062.5 1.28 6.4 48 32 4024.6 1.18 1.8 49 31.91 4012.7 0.88 6.4 50 29.03 3650.6 0.54 1.8 51 28.74 3614.8 2.03 4.5 52 28.01 3522.2 0.06 2.7 53 27.92 3511.3 1.21 2.7 54 27.74 3488.8 0.52 3.6 55 27 3329 1 2.7 57 26.13 3286.1 0.42 3.6 58 25.65 3226.2 1.12 2.7 59 25.46 3201.6 0.7 1.8 60 24.2 3042.7 1.06 2.7 61 24.07 3027.3 0.07 4.5 62 23.94 3010.6 1 4.5 63 23.89 3004.9 <	37	44.3	5571.2	0.46	0.9
39 42.86 5390.1 1.55 0.9 40 40.68 5115.7 1.58 1.8 41 40.3 5068.2 0.6 0.9 42 36 4527.7 0.5 1.8 43 35.67 4485.2 1.4 0.9 44 34.61 4351.9 1 2.7 45 33.55 4218.9 1.09 3.6 46 33.47 4209 2.33 0.9 47 32.3 4062.5 1.28 6.4 48 32 4024.6 1.18 1.8 49 31.91 4012.7 0.88 6.4 50 29.03 3650.6 0.54 1.8 51 28.74 3614.8 2.03 4.5 52 28.01 3522.2 0.06 2.7 53 27.92 3511.3 1.21 2.7 54 27.74 3488.8 0.52 3.6 55 27 3395.1 1.84 1.8 56 26.47 329 1 2.7 59 25.46 3201.6 0.7 1.8 60 24.2 3042.7 1.06 2.7 61 24.07 3027.3 0.07 4.5 62 23.94 3010.6 1 4.5 63 23.89 3004.9 2.07 2.7 64 22.32 2806.6 0.67 0.9 65 21.28 2676.7 <	38	43.3	5445.9	1.08	1.8
40 40.68 5115.7 1.58 1.8 41 40.3 5068.2 0.6 0.9 42 36 4527.7 0.5 1.8 43 35.67 4485.2 1.4 0.9 44 34.61 4351.9 1 2.7 45 33.55 4218.9 1.09 3.6 46 33.47 4209 2.33 0.9 47 32.3 4062.5 1.28 6.4 48 32 4024.6 1.18 1.8 49 31.91 4012.7 0.88 6.4 50 29.03 3650.6 0.54 1.8 51 28.74 3614.8 2.03 4.5 52 28.01 3522.2 0.06 2.7 53 27.92 3511.3 1.21 2.7 54 27.74 3488.8 0.52 3.6 55 27 3395.1 1.84 1.8 56 26.47 3229 1 2.7 57 26.13 3286.1 0.42 3.6 58 25.65 3226.2 1.12 2.7 59 25.46 3201.6 0.7 1.8 60 24.2 3042.7 1.06 2.7 64 22.32 2806.6 0.67 0.9 65 21.28 2676.7 2.05 0.9 66 20.88 2625.7 0.44 2.7 67 20.27 2548.5 </td <td>39</td> <td>42.86</td> <td>5390.1</td> <td>1.55</td> <td>0.9</td>	39	42.86	5390.1	1.55	0.9
4140.35068.20.60.942364527.70.51.84335.674485.21.40.94434.614351.912.74533.554218.91.093.64633.4742092.330.94732.34062.51.286.448324024.61.181.84931.914012.70.886.45029.033650.60.541.85128.743614.82.034.55228.013522.20.062.75327.923511.31.212.75427.743488.80.523.655273395.11.841.85626.4732912.75726.133286.10.423.65825.653226.21.122.75925.463201.60.71.86024.23042.71.062.76124.073027.30.074.56223.943010.614.56323.893004.92.072.76422.322806.60.670.96521.282676.72.050.96620.882625.70.442.76720.272548.50.481.86819.752484.30.421.8	40	40.68	5115.7	1.58	1.8
4236 4527.7 0.51.8 43 35.67 4485.2 1.4 0.9 44 34.61 4351.9 1 2.7 45 33.55 4218.9 1.09 3.6 46 33.47 4209 2.33 0.9 47 32.3 4062.5 1.28 6.4 48 32 4024.6 1.18 1.8 49 31.91 4012.7 0.88 6.4 50 29.03 3650.6 0.54 1.8 51 28.74 3614.8 2.03 4.5 52 28.01 3522.2 0.06 2.7 53 27.92 3511.3 1.21 2.7 54 27.74 3488.8 0.52 3.6 55 27 3395.1 1.84 1.8 56 26.47 3329 1 2.7 57 26.13 3286.1 0.42 3.6 58 25.65 322.62 1.12 2.7 59 25.46 3201.6 0.7 1.8 60 24.2 3042.7 1.06 2.7 61 24.07 3027.3 0.07 4.5 62 23.94 3010.6 1 4.5 63 23.89 3004.9 2.07 2.7 64 22.32 2806.6 0.67 0.9 65 21.28 2676.7 2.05 0.9 66 20.88 2625.7	41	40.3	5068.2	0.6	0.9
4335.674485.21.40.94434.614351.912.74533.554218.91.093.64633.4742092.330.94732.34062.51.286.448324024.61.181.84931.914012.70.886.45029.033650.60.541.85128.743614.82.034.55228.013522.20.062.75327.923511.31.212.75427.743488.80.523.655273395.11.841.85626.47322912.75726.133286.10.423.65825.653226.21.122.75925.463201.60.71.86024.23042.71.062.76124.073027.30.074.56223.943010.614.56323.893004.92.072.76422.322806.60.670.96521.282676.72.050.96620.882625.70.442.76720.272548.50.481.86819.752484.30.421.869192388.91.930.97116.620880.852.7 <td>42</td> <td>36</td> <td>4527.7</td> <td>0.5</td> <td>1.8</td>	42	36	4527.7	0.5	1.8
44 34.61 4351.9 1 2.7 45 33.55 4218.9 1.09 3.6 46 33.47 4209 2.33 0.9 47 32.3 4062.5 1.28 6.4 48 32 4024.6 1.18 1.8 49 31.91 4012.7 0.88 6.4 50 29.03 3650.6 0.54 1.8 51 28.74 3614.8 2.03 4.5 52 28.01 3522.2 0.06 2.7 53 27.92 3511.3 1.21 2.7 54 27.74 3488.8 0.52 3.6 55 27 3395.1 1.84 1.8 56 26.47 329 1 2.7 57 26.13 3286.1 0.42 3.6 58 25.65 3226.2 1.12 2.7 59 25.46 3201.6 0.7 1.8 60 24.2 3042.7 1.06 2.7 61 24.07 3027.3 0.07 4.5 62 23.94 3010.6 1 4.5 63 23.89 3004.9 2.07 2.7 64 22.32 2806.6 0.67 0.9 65 21.28 2676.7 2.05 0.9 66 20.88 2625.7 0.44 2.7 67 20.27 2548.5 0.48 1.8 69 19 2388.9 <td>43</td> <td>35.67</td> <td>4485.2</td> <td>1.4</td> <td>0.9</td>	43	35.67	4485.2	1.4	0.9
45 33.55 4218.9 1.09 3.6 46 33.47 4209 2.33 0.9 47 32.3 4062.5 1.28 6.4 48 32 4024.6 1.18 1.8 49 31.91 4012.7 0.88 6.4 50 29.03 3650.6 0.54 1.8 51 28.74 3614.8 2.03 4.5 52 28.01 3522.2 0.06 2.7 53 27.92 3511.3 1.21 2.7 54 27.74 3488.8 0.52 3.6 55 27 3395.1 1.84 1.8 56 26.47 3329 1 2.7 57 26.13 3286.1 0.42 3.6 58 25.65 3226.2 1.12 2.7 59 25.46 3201.6 0.7 1.8 60 24.2 3042.7 1.06 2.7 61 24.07 3027.3 0.07 4.5 62 23.94 3010.6 1 4.5 63 23.89 3004.9 2.07 2.7 64 22.32 2806.6 0.67 0.9 65 21.28 2676.7 2.05 0.9 66 20.88 2625.7 0.44 2.7 67 20.27 2484.3 0.42 1.8 68 19.75 2484.3 0.42 1.8 69 19 238.9	44	34.61	4351.9	1	2.7
46 33.47 4209 2.33 0.9 47 32.3 4062.5 1.28 6.4 48 32 4024.6 1.18 1.8 49 31.91 4012.7 0.88 6.4 50 29.03 3650.6 0.54 1.8 51 28.74 3614.8 2.03 4.5 52 28.01 3522.2 0.06 2.7 53 27.92 3511.3 1.21 2.7 54 27.74 3488.8 0.52 3.6 55 27 3395.1 1.84 1.8 56 26.47 3329 1 2.7 57 26.13 3286.1 0.42 3.6 58 25.65 3226.2 1.12 2.7 59 25.46 3201.6 0.7 1.8 60 24.2 3042.7 1.06 2.7 61 24.07 3027.3 0.07 4.5 62 23.94 3010.6 1 4.5 63 23.89 3004.9 2.07 2.7 64 22.32 2806.6 0.67 0.9 65 21.28 2676.7 2.05 0.9 66 20.88 2625.7 0.44 2.7 67 20.27 2548.5 0.48 1.8 68 19.75 2484.3 0.42 1.8 69 19 238.9 1.93 0.9 71 16.6 2088 </td <td>45</td> <td>33.55</td> <td>4218.9</td> <td>1.09</td> <td>3.6</td>	45	33.55	4218.9	1.09	3.6
47 32.3 4062.5 1.28 6.4 48 32 4024.6 1.18 1.8 49 31.91 4012.7 0.88 6.4 50 29.03 3650.6 0.54 1.8 51 28.74 3614.8 2.03 4.5 52 28.01 3522.2 0.06 2.7 53 27.92 3511.3 1.21 2.7 54 27.74 3488.8 0.52 3.6 55 27 3395.1 1.84 1.8 56 26.47 3329 1 2.7 57 26.13 3286.1 0.42 3.6 58 25.65 3226.2 1.12 2.7 59 25.46 3201.6 0.7 1.8 60 24.2 3042.7 1.06 2.7 61 24.07 3027.3 0.07 4.5 62 23.94 3010.6 1 4.5 63 23.89 3004.9 2.07 2.7 64 22.32 2806.6 0.67 0.9 65 21.28 2676.7 2.05 0.9 66 20.88 2625.7 0.44 2.7 67 20.27 2548.5 0.48 1.8 69 19 2388.9 1.93 0.9 70 17.32 2177.8 1.82 0.9 71 16.6 2088 0.85 2.7 72 15.68 1972 <	46	33.47	4209	2.33	0.9
48 32 4024.6 1.18 1.8 49 31.91 4012.7 0.88 6.4 50 29.03 3650.6 0.54 1.8 51 28.74 3614.8 2.03 4.5 52 28.01 3522.2 0.06 2.7 53 27.92 3511.3 1.21 2.7 54 27.74 3488.8 0.52 3.6 55 27 3395.1 1.84 1.8 56 26.47 3229 1 2.7 57 26.13 3286.1 0.42 3.6 58 25.65 3226.2 1.12 2.7 59 25.46 3201.6 0.7 1.8 60 24.2 3042.7 1.06 2.7 61 24.07 3027.3 0.07 4.5 62 23.94 3010.6 1 4.5 63 23.89 3004.9 2.07 2.7 64 22.32 2806.6 0.67 0.9 65 21.28 2676.7 2.05 0.9 66 20.88 2625.7 0.44 2.7 67 20.27 2548.5 0.48 1.8 68 19.75 2484.3 0.42 1.8 69 19 2388.9 1.93 0.9 70 17.32 2177.8 1.82 0.9 71 16.6 2088 0.85 2.7 72 15.68 1972	47	32.3	4062.5	1.28	6.4
49 31.91 4012.7 0.88 6.4 50 29.03 3650.6 0.54 1.8 51 28.74 3614.8 2.03 4.5 52 28.01 3522.2 0.06 2.7 53 27.92 3511.3 1.21 2.7 54 27.74 3488.8 0.52 3.6 55 27 3395.1 1.84 1.8 56 26.47 3229 1 2.7 57 26.13 3286.1 0.42 3.6 58 25.65 3226.2 1.12 2.7 59 25.46 3201.6 0.7 1.8 60 24.2 3042.7 1.06 2.7 61 24.07 3027.3 0.07 4.5 62 23.94 3010.6 1 4.5 63 23.89 3004.9 2.07 2.7 64 22.32 2806.6 0.67 0.9 65 21.28 2676.7 2.05 0.9 66 20.88 2625.7 0.44 2.7 67 20.27 2548.5 0.48 1.8 68 19.75 2484.3 0.42 1.8 69 19 2388.9 1.93 0.9 70 17.32 2177.8 1.82 0.9 71 16.6 2088 0.85 2.7 72 15.68 1972 0.666 1.8 73 13.54 170	48	32	4024.6	1.18	1.8
5029.033650.60.541.85128.743614.82.034.55228.013522.20.062.75327.923511.31.212.75427.743488.80.523.655273395.11.841.85626.47332912.75726.133286.10.423.65825.653226.21.122.75925.463201.60.71.86024.23042.71.062.76124.073027.30.074.56223.943010.614.56323.893004.92.072.76422.322806.60.670.96521.282676.72.050.96620.882625.70.442.76720.272548.50.481.86819.752484.30.421.869192388.91.930.97017.322177.81.820.97116.620880.852.77215.6819720.661.87313.541702.81.790.97413.31672.10.680.975003.40.9	49	31.91	4012.7	0.88	6.4
51 28.74 3614.8 2.03 4.5 52 28.01 3522.2 0.06 2.7 53 27.92 3511.3 1.21 2.7 54 27.74 3488.8 0.52 3.6 55 27 3395.1 1.84 1.8 56 26.47 3329 1 2.7 57 26.13 3286.1 0.42 3.6 58 25.65 3226.2 1.12 2.7 59 25.46 3201.6 0.7 1.8 60 24.2 3042.7 1.06 2.7 61 24.07 3027.3 0.07 4.5 62 23.94 3010.6 1 4.5 63 23.89 3004.9 2.07 2.7 64 22.32 2806.6 0.67 0.9 65 21.28 2676.7 2.05 0.9 66 20.88 2625.7 0.44 2.7 67 20.27 2548.5 0.48 1.8 68 19.75 2484.3 0.42 1.8 69 19 2388.9 1.93 0.9 70 17.32 2177.8 1.82 0.9 71 16.6 2088 0.85 2.7 72 15.68 1972 0.666 1.8 73 13.54 1702.8 1.79 0.9 74 13.3 1672.1 0.68 0.9	50	29.03	3650.6	0.54	1.8
52 28.01 3522.2 0.06 2.7 53 27.92 3511.3 1.21 2.7 54 27.74 3488.8 0.52 3.6 55 27 3395.1 1.84 1.8 56 26.47 3329 1 2.7 57 26.13 3286.1 0.42 3.6 58 25.65 3226.2 1.12 2.7 59 25.46 3201.6 0.7 1.8 60 24.2 3042.7 1.06 2.7 61 24.07 3027.3 0.07 4.5 62 23.94 3010.6 1 4.5 63 23.89 3004.9 2.07 2.7 64 22.32 2806.6 0.67 0.9 65 21.28 2676.7 2.05 0.9 66 20.88 2625.7 0.44 2.7 67 20.27 2548.5 0.48 1.8 69 19 2388.9 1.93 0.9 70 17.32 2177.8 1.82 0.9 71 16.6 2088 0.85 2.7 72 15.68 1972 0.66 1.8 73 13.54 1702.8 1.79 0.9 74 13.3 1672.1 0.68 0.9	51	28.74	3614.8	2.03	4.5
53 27.92 3511.3 1.21 2.7 54 27.74 3488.8 0.52 3.6 55 27 3395.1 1.84 1.8 56 26.47 329 1 2.7 57 26.13 3286.1 0.42 3.6 58 25.65 3226.2 1.12 2.7 59 25.46 3201.6 0.7 1.8 60 24.2 3042.7 1.06 2.7 61 24.07 3027.3 0.07 4.5 62 23.94 3010.6 1 4.5 63 23.89 3004.9 2.07 2.7 64 22.32 2806.6 0.67 0.9 65 21.28 2676.7 2.05 0.9 66 20.88 2625.7 0.44 2.7 67 20.27 2548.5 0.48 1.8 69 19 2388.9 1.93 0.9 70 17.32 2177.8 1.82 0.9 71 16.6 2088 0.85 2.7 72 15.68 1972 0.66 1.8 73 13.54 1702.8 1.79 0.9 74 13.3 1672.1 0.68 0.9	52	28.01	3522.2	0.06	2.7
54 27.74 3488.8 0.52 3.6 55 27 3395.1 1.84 1.8 56 26.47 3329 1 2.7 57 26.13 3286.1 0.42 3.6 58 25.65 3226.2 1.12 2.7 59 25.46 3201.6 0.7 1.8 60 24.2 3042.7 1.06 2.7 61 24.07 3027.3 0.07 4.5 62 23.94 3010.6 1 4.5 63 23.89 3004.9 2.07 2.7 64 22.32 2806.6 0.67 0.9 65 21.28 2676.7 2.05 0.9 66 20.88 2625.7 0.44 2.7 67 20.27 2548.5 0.48 1.8 68 19.75 2484.3 0.42 1.8 69 19 2388.9 1.93 0.9 70 17.32 2177.8 1.82 0.9 71 16.6 2088 0.85 2.7 72 15.68 1972 0.66 1.8 73 13.54 1702.8 1.79 0.9 74 13.3 1672.1 0.68 0.9	53	27.92	3511.3	1.21	2.7
51 27 3395.1 1.84 1.8 56 26.47 3329 1 2.7 57 26.13 3286.1 0.42 3.6 58 25.65 3226.2 1.12 2.7 59 25.46 3201.6 0.7 1.8 60 24.2 3042.7 1.06 2.7 61 24.07 3027.3 0.07 4.5 62 23.94 3010.6 1 4.5 63 23.89 3004.9 2.07 2.7 64 22.32 2806.6 0.67 0.9 65 21.28 2676.7 2.05 0.9 66 20.88 2625.7 0.44 2.7 67 20.27 2548.5 0.48 1.8 68 19.75 2484.3 0.42 1.8 69 19 2388.9 1.93 0.9 70 17.32 2177.8 1.82 0.9 71 16.6 2088 0.85 2.7 72 15.68 1972 0.66 1.8 73 13.54 1702.8 1.79 0.9 74 13.3 1672.1 0.68 0.9	54	27.74	3488.8	0.52	3.6
56 26.47 3329 1 2.7 57 26.13 3286.1 0.42 3.6 58 25.65 3226.2 1.12 2.7 59 25.46 3201.6 0.7 1.8 60 24.2 3042.7 1.06 2.7 61 24.07 3027.3 0.07 4.5 62 23.94 3010.6 1 4.5 63 23.89 3004.9 2.07 2.7 64 22.32 2806.6 0.67 0.9 65 21.28 2676.7 2.05 0.9 66 20.88 2625.7 0.44 2.7 67 20.27 2548.5 0.48 1.8 68 19.75 2484.3 0.42 1.8 69 19 2388.9 1.93 0.9 70 17.32 2177.8 1.82 0.9 71 16.6 2088 0.85 2.7 72 15.68 1972 0.666 1.8 73 13.54 1702.8 1.79 0.9 74 13.3 1672.1 0.68 0.9	55	27	3395.1	1.84	1.8
57 26.13 3286.1 0.42 3.6 58 25.65 3226.2 1.12 2.7 59 25.46 3201.6 0.7 1.8 60 24.2 3042.7 1.06 2.7 61 24.07 3027.3 0.07 4.5 62 23.94 3010.6 1 4.5 63 23.89 3004.9 2.07 2.7 64 22.32 2806.6 0.67 0.9 65 21.28 2676.7 2.05 0.9 66 20.88 2625.7 0.44 2.7 67 20.27 2548.5 0.48 1.8 68 19.75 2484.3 0.42 1.8 69 19 2388.9 1.93 0.9 70 17.32 2177.8 1.82 0.9 71 16.6 2088 0.85 2.7 72 15.68 1972 0.666 1.8 73 13.54 1702.8 1.79 0.9 74 13.3 1672.1 0.68 0.9	56	26.47	3329	1	2.7
5.7 25.65 3226.2 1.12 2.7 59 25.46 3201.6 0.7 1.8 60 24.2 3042.7 1.06 2.7 61 24.07 3027.3 0.07 4.5 62 23.94 3010.6 1 4.5 63 23.89 3004.9 2.07 2.7 64 22.32 2806.6 0.67 0.9 65 21.28 2676.7 2.05 0.9 66 20.88 2625.7 0.44 2.7 67 20.27 2548.5 0.48 1.8 68 19.75 2484.3 0.42 1.8 69 19 2388.9 1.93 0.9 70 17.32 2177.8 1.82 0.9 71 16.6 2088 0.85 2.7 72 15.68 1972 0.66 1.8 73 13.54 1702.8 1.79 0.9 74 13.3 1672.1 0.68 0.9	57	26.13	3286.1	0.42	3.6
59 25.46 3201.6 0.7 1.8 60 24.2 3042.7 1.06 2.7 61 24.07 3027.3 0.07 4.5 62 23.94 3010.6 1 4.5 63 23.89 3004.9 2.07 2.7 64 22.32 2806.6 0.67 0.9 65 21.28 2676.7 2.05 0.9 66 20.88 2625.7 0.44 2.7 67 20.27 2548.5 0.48 1.8 68 19.75 2484.3 0.42 1.8 69 19 2388.9 1.93 0.9 70 17.32 2177.8 1.82 0.9 71 16.6 2088 0.85 2.7 72 15.68 1972 0.66 1.8 73 13.54 1702.8 1.79 0.9 74 13.3 1672.1 0.68 0.9	58	25.65	3226.2	1.12	2.7
60 24.2 3042.7 1.06 2.7 61 24.07 3027.3 0.07 4.5 62 23.94 3010.6 1 4.5 63 23.89 3004.9 2.07 2.7 64 22.32 2806.6 0.67 0.9 65 21.28 2676.7 2.05 0.9 66 20.88 2625.7 0.44 2.7 67 20.27 2548.5 0.48 1.8 68 19.75 2484.3 0.42 1.8 69 19 2388.9 1.93 0.9 70 17.32 2177.8 1.82 0.9 71 16.6 2088 0.85 2.7 72 15.68 1972 0.66 1.8 73 13.54 1702.8 1.79 0.9 74 13.3 1672.1 0.68 0.9	59	25.46	3201.6	0.7	1.8
61 24.07 3027.3 0.07 4.5 62 23.94 3010.6 1 4.5 63 23.89 3004.9 2.07 2.7 64 22.32 2806.6 0.67 0.9 65 21.28 2676.7 2.05 0.9 66 20.88 2625.7 0.44 2.7 67 20.27 2548.5 0.48 1.8 68 19.75 2484.3 0.42 1.8 69 19 2388.9 1.93 0.9 70 17.32 2177.8 1.82 0.9 71 16.6 2088 0.85 2.7 72 15.68 1972 0.66 1.8 73 13.54 1702.8 1.79 0.9 74 13.3 1672.1 0.68 0.9	60	24.2	3042.7	1.06	2.7
62 23.94 3010.6 1 4.5 63 23.89 3004.9 2.07 2.7 64 22.32 2806.6 0.67 0.9 65 21.28 2676.7 2.05 0.9 66 20.88 2625.7 0.44 2.7 67 20.27 2548.5 0.48 1.8 68 19.75 2484.3 0.42 1.8 69 19 2388.9 1.93 0.9 70 17.32 2177.8 1.82 0.9 71 16.6 2088 0.85 2.7 72 15.68 1972 0.66 1.8 73 13.54 1702.8 1.79 0.9 74 13.3 1672.1 0.68 0.9	61	24.07	3027.3	0.07	4.5
63 23.89 3004.9 2.07 2.7 64 22.32 2806.6 0.67 0.9 65 21.28 2676.7 2.05 0.9 66 20.88 2625.7 0.44 2.7 67 20.27 2548.5 0.48 1.8 68 19.75 2484.3 0.42 1.8 69 19 2388.9 1.93 0.9 70 17.32 2177.8 1.82 0.9 71 16.6 2088 0.85 2.7 72 15.68 1972 0.66 1.8 73 13.54 1702.8 1.79 0.9 74 13.3 1672.1 0.68 0.9 75 0 0 3.4 0.9	62	23.94	3010.6	1	4.5
64 22.32 2806.6 0.67 0.9 65 21.28 2676.7 2.05 0.9 66 20.88 2625.7 0.44 2.7 67 20.27 2548.5 0.48 1.8 68 19.75 2484.3 0.42 1.8 69 19 2388.9 1.93 0.9 70 17.32 2177.8 1.82 0.9 71 16.6 2088 0.85 2.7 72 15.68 1972 0.66 1.8 73 13.54 1702.8 1.79 0.9 74 13.3 1672.1 0.68 0.9 75 0 0 3.4 0.9	63	23.89	3004.9	2.07	2.7
6521.282676.72.050.96620.882625.70.442.76720.272548.50.481.86819.752484.30.421.869192388.91.930.97017.322177.81.820.97116.620880.852.77215.6819720.661.87313.541702.81.790.97413.31672.10.680.975003.40.9	64	22.32	2806.6	0.67	0.9
66 20.88 2625.7 0.44 2.7 67 20.27 2548.5 0.48 1.8 68 19.75 2484.3 0.42 1.8 69 19 2388.9 1.93 0.9 70 17.32 2177.8 1.82 0.9 71 16.6 2088 0.85 2.7 72 15.68 1972 0.66 1.8 73 13.54 1702.8 1.79 0.9 74 13.3 1672.1 0.68 0.9 75 0 0 3.4 0.9	65	21.28	2676.7	2.05	0.9
6720.272548.50.481.86819.752484.30.421.869192388.91.930.97017.322177.81.820.97116.620880.852.77215.6819720.661.87313.541702.81.790.97413.31672.10.680.975003.40.9	66	20.88	2625.7	0.44	2.7
68 19.75 2484.3 0.42 1.8 69 19 2388.9 1.93 0.9 70 17.32 2177.8 1.82 0.9 71 16.6 2088 0.85 2.7 72 15.68 1972 0.66 1.8 73 13.54 1702.8 1.79 0.9 74 13.3 1672.1 0.68 0.9 75 0 0 3.4 0.9	67	20.27	2548.5	0.48	1.8
69 19 2388.9 1.93 0.9 70 17.32 2177.8 1.82 0.9 71 16.6 2088 0.85 2.7 72 15.68 1972 0.66 1.8 73 13.54 1702.8 1.79 0.9 74 13.3 1672.1 0.68 0.9 75 0 0 3.4 0.9	68	19 75	2484 3	0.42	1.8
7017.322177.81.820.97116.620880.852.77215.6819720.661.87313.541702.81.790.97413.31672.10.680.975003.40.9	69	19	2388.9	1.93	0.9
71 16.6 2088 0.85 2.7 72 15.68 1972 0.66 1.8 73 13.54 1702.8 1.79 0.9 74 13.3 1672.1 0.68 0.9 75 0 0 3.4 0.9	70	17.32	2177.8	1.82	0.9
72 15.68 1972 0.66 1.8 73 13.54 1702.8 1.79 0.9 74 13.3 1672.1 0.68 0.9 75 0 0 3.4 0.9	71	16.6	2088	0.85	27
73 13.54 1702.8 1.79 0.9 74 13.3 1672.1 0.68 0.9 75 0 0 3.4 0.9	72	15 68	1972	0.66	2., 1
74 13.3 1672.1 0.68 0.9 75 0 0 3.4 0.9	73	13 54	1702.8	1.79	1.0 N Q
75 0 0 3.4 0.9	74	13.3	1672.1	0.68	0.9
	75	0	0	3.4	0.9

Figure S71. (a) Complete ¹H NMR spectrum of compound **9** in CDCl₃. (b) Detailed and annotated ¹H NMR spectrum of compound **9** in CDCl₃.

c 515. Com	piele numerica	i lisungs of Ti	NINIX peaks of	compound 9 m CDC
Peak	v(F1) [ppm]	v(F1) [Hz]	Intensity [rel]	Half width [Hz]
1	7.46	3733.1	0.11	3.6
2	7.28	3639.8	0.11	2.6
3	7.26	3633.4	0.87	0.4
4	7.22	3612.4	0.06	1.1
5	7.22	3611.3	0.06	1.1
6	7.21	3604.7	0.14	1.1
7	7.21	3603.6	0.13	1.1
8	7.19	3597.1	0.09	1.1
9	7.19	3595.9	0.08	0.9
10	7.02	3508.9	0.08	1.1
11	7.01	3507.8	0.08	0.9
12	7	3501.2	0.13	0.9
13	7	3500.2	0.13	1.1
14	6.99	3493.6	0.06	1.1
15	6.98	3492.5	0.06	0.9
16	6.84	3423.1	0.12	1.1
17	6.84	3422.6	0.12	1.1
18	6.83	3415.5	0.12	1.1
19	6.83	3414.9	0.11	0.9
20	3.98	1990.2	0.27	2.1
21	2.88	1442.5	0.02	3
22	2.87	1435.1	0.05	4.3
23	2.87	1434.9	0.05	4.3
24	2.86	1428.9	0.05	3.2
25	2.85	1427.8	0.05	3.4
26	2.84	1421.1	0.02	3
27	2.69	1347.1	0.04	4.7
28	2.67	1333.7	0.04	6.4
29	2.02	1010.1	0.02	4.7
30	2.02	1007.9	0.02	2.6
31	1.99	995.5	0.04	2.8
32	1.99	993.2	0.06	2.8
33	1.98	990	0.06	3.2
34	1.97	987.6	0.06	6.4
35	1.95	977	0.04	2.4
36	1.95	975.4	0.04	2.6
37	1.95	973.3	0.04	2.6
38	1.92	960.9	0.2	2.8
39	1.9	949.6	0.21	2.8
40	1.77	884.2	0.04	3.2
41	1.76	881	0.04	4.1
42	1.75	877.6	0.03	2.4
43	1.75	874.9	0.03	2.8
44	1.74	871.4	0.05	3.8
45	1.74	868.3	0.05	5.6
46	1.65	826.9	0.05	3.6

Table S13. Con	mplete numerical	listings of ¹ H	NMR peaks of	compound 9 in Cl	DCl ₃ .
Peak	v(F1) [ppm]	v(F1)[H7]	Intensity [rel]	Half width [Hz]	

47	1.63	817	0.12	8.8
48	1.59	796.3	0.06	5.1
49	1.58	790.6	0.08	4.1
50	1.57	783.5	0.16	3.6
51	1.56	781.9	0.16	1.7
52	1.56	778.1	0.26	7.1
53	1.55	773.4	0.13	2.1
54	1.54	769.7	0.13	3.8
55	1.52	762.6	0.08	5.6
56	1.51	757.6	0.06	4.7
57	1.5	748.9	0.13	6.6
58	1.48	742.4	0.09	4.3
59	1.47	737.4	0.11	6.8
60	1.45	726.7	0.22	5.1
61	1.44	719.6	0.1	1.9
62	1.44	717.9	0.1	1.5
63	1.43	716	0.1	1.9
64	1.43	713.9	0.13	6.2
65	1.39	694	0.05	3.6
66	1.38	690.2	0.05	3.8
67	1.36	681	0.06	4.1
68	1.35	677.1	0.04	3.2
69	1.31	656.5	0.04	4.7
70	1.31	653	0.04	3.8
71	1.3	649.2	0.03	4.3
72	1.28	642.2	0.07	3.8
73	1.28	638.1	0.07	4.1
74	1.27	635.8	0.05	2.1
75	1.26	628.7	0.1	2.1
76	1.25	627.6	0.1	2.6
77	1.1	551.2	0.45	1.3
78	1.09	544	0.46	1.5
79	1.07	535.9	0.64	1.7
80	1.05	526.5	0.06	1.5
81	1.04	519.3	0.86	1.7
82	1.03	513.9	0.05	1.1
83	1.02	509.9	0.01	1.9
84	0.98	489.4	0.88	1.7
85	0.91	453.4	0.86	1.9
86	0.89	446.5	1.01	1.7
87	0.89	444.9	0.91	1.9
88	0	0	13.5	0.4

Figure S72. (a) Complete ¹³C{¹H} NMR spectrum of compound **9** in CDCl₃. (b) Downfield area of annotated ¹³C{¹H} NMR and DEPT-135, DEPT-90 spectra of compound **9** in CDCl₃.

compound **9** in CDCl₃.

Table S14. Complete numerical listings of ¹³C NMR peaks of compound 9 in CDCl₃.

	L	0	I I I I I I I I I I I I I I I I I I I	r r
Peak	v(F1) [ppm]	v(F1) [Hz]	Intensity [rel]	Half width [Hz]
1	182.02	22890.4	0.44	0.9
2	180.02	22639.3	0.49	0.9
3	141.35	17776.4	0.48	0.9
4	138.28	17389.6	0.58	0.9
5	137.66	17312.3	0.56	0.9
6	129.22	16250.6	0.47	0.9
7	128.7	16184.5	0.85	0.9
8	127.5	16034.6	0.75	1.8
9	121.04	15221.6	0.82	0.9
10	108.94	13700.3	0.74	0.9
11	85.92	10804.5	0.83	0.9
12	77.27	9717.1	13.16	2.7
13	77.01	9685.1	13.49	2.7
14	76.76	9653.2	13.5	1.8
15	64.6	8123.6	0.6	0.9
16	50.97	6409.7	0.91	0.9
17	46.54	5852.9	0.89	0.9
18	46.43	5839.4	0.93	1.8
19	46.3	5822	0.99	1.8
20	40.93	5147.4	0.8	0.9

21	39.25	4936.4	1.2	0.9
22	38.47	4837.3	1.1	0.9
23	36.49	4588.4	0.92	0.9
24	33.6	4225.2	1.24	0.9
25	32.33	4066.2	0.86	1.8
26	31.92	4013.7	0.86	1.8
27	28.79	3620.1	1.12	2.7
28	28.76	3616.7	1.05	2.7
29	28.71	3610.8	0.75	2.7
30	26.64	3350.7	0.77	1.8
31	26.27	3303.4	0.76	1.8
32	25.99	3268	0.75	1.8
33	25.49	3205.2	0.83	1.8
34	24.02	3020.1	1.21	0.9
35	22.12	2781.2	0.8	1.8
36	19.29	2426.3	0.7	1.8
37	18.88	2373.7	0.84	0.9
38	13.28	1670.4	1.72	1.8
39	0	0	4.15	0.9

Figure S75. Downfield area of {¹H, ¹³C} HSQC NMR spectrum of compound 9 in CDCl₃.

Figure S76. Upfield area of $\{^{1}H, ^{13}C\}$ HSQC multiplicity edited NMR spectrum of compound 9 in CDCl₃.

Figure S77. Complete {¹H, ¹³C} HMBC NMR spectrum of compound 9 in CDCl₃.

Figure S78. Annotated {¹H, ¹³C} HMBC NMR spectrum of compound 9 in CDCl₃.

Figure S79. Complete {¹H, ¹H} COSY NMR spectrum of compound 9 in CDCl₃.

Figure S80. Upfield area of {¹H, ¹H} COSY-DQF NMR spectrum of compound 9 in CDCl₃.

Figure S82. Detailed and annotated {¹H, ¹H} NOESY NMR spectrum of compound 9 in CDCl₃.

Figure S83. Upfield area of {¹H, ¹H} NOESY NMR spectrum of compound 9 in CDCl₃.

Figure S84. (a) Complete ¹H NMR spectrum of compound **11** in CDCl₃. (b) Detailed and annotated ¹H NMR spectrum of compound **11** in CDCl₃.

e bie. compr	ete numerieur	instings of 1	ri runn peaks or	
Peak	v(F1) [ppm]	v(F1) [Hz]	Intensity [rel]	Half width [Hz]
1	7.55	3776.3	2.75	0.6
2	7.55	3775.7	3.38	0.6
3	7.55	3775.1	3.66	0.8
4	7.55	3774.4	3.1	0.6
5	7.54	3768.7	2.95	0.6
6	7.53	3768	3.72	0.8
7	7.53	3767.4	3.72	0.8
8	7.53	3766.7	3.08	0.6
9	7.41	3706.6	2.47	0.6
10	7.41	3705.3	2.49	0.6
11	7.4	3699.5	2.83	0.8
12	7.39	3698.3	4.49	0.8
13	7.39	3697.1	2.85	0.8
14	7.38	3691.3	2.82	0.6
15	7.38	3690	2.73	0.6
16	7.27	3633.5	51.12	0.3
17	6.81	3403.8	3.09	0.5
18	6.8	3403.1	5.81	1.1
19	6.8	3402.4	3.58	0.6
20	6.79	3395.6	3.07	0.5
21	6.79	3394.9	5.58	1.1
22	6.79	3394.2	3.35	0.6
23	6.77	3387.7	3	0.8
24	6.77	3387	2.89	0.6
25	6.76	3380.6	3.48	0.5
26	6.76	3379.9	5.15	0.9
27	6.76	3379.3	3.49	0.6
28	6.74	3372.9	2.9	0.8
29	6.74	3372.2	2.73	0.6
30	4.99	2494.7	1.37	0.6
31	3.93	1965.8	7.45	1.8
32	2.18	1088.6	19.36	0.2
33	1.93	965.3	2.68	3.2
34	1.91	952.9	3.5	1.5
35	1.88	938.9	1.61	2.7
36	1.87	936.4	2.26	2.7
37	1.86	929.1	1.34	1.8
38	1.85	926.5	2.5	3.2
39	1.83	914.3	4.43	1.7
40	1.81	903.2	4.74	1.5
41	1.78	891.6	6.12	1.2
42	1.76	878.8	4.49	1.2
43	1.7	848.1	2.25	3.1
44	1.69	845	2.18	3.1
45	1.67	835.5	2.56	4

Table S15.	Comple	ete numerical	listings of	¹ H NMR	peaks of	f compound	11 in	CDCl ₃ .
1	Poak	v(F1) [nnm]	v(E1) [Hz	l Inten	sity [rol]	Half width	[H2]	

46	1.66	832.2	2.32	3.2
47	1.63	815.3	2.5	3.7
48	1.62	812	1.73	2.4
49	1.62	808.4	1.56	2.4
50	1.59	797.6	7.69	7.5
51	1.56	778.4	2.82	3.7
52	1.54	771.2	5.48	4.4
53	1.53	765.8	6.71	2.9
54	1.48	742.2	3.54	5.3
55	1.48	738.4	3.85	4.9
56	1.47	732.8	3.62	3.5
57	1.46	729.7	4.03	3.4
58	1.45	724.9	4.39	5
59	1.44	720.3	5.27	4
60	1.43	714.9	5.29	2.6
61	1.42	712.2	4.74	1.7
62	1.41	703.4	7.47	5.5
63	1.4	701.3	10.7	2.9
64	1.4	698.4	10.86	4.9
65	1.38	687.8	4.07	2.9
66	1.35	675.9	3.53	4.6
67	1.33	664.6	3.32	3.2
68	1.3	651.1	1.67	0.9
69	1.28	642.5	1.11	2.1
70	1.25	626.4	3.04	3.7
71	1.23	614.2	2.7	3.4
72	1.22	611.4	2.02	2.9
73	1.21	604.8	1.69	2.7
74	1.2	602.2	1.59	2.4
75	1.04	521.4	26.62	2.1
76	1.02	512.1	34.17	1.4
77	0.99	497	22.95	1.7
78	0.96	482	28.17	1.2
79	0.96	480.9	31.8	3.1
80	0.95	473.8	31.21	1.5
81	0.91	454.2	29.19	1.2
82	0	0	100	0.3

Figure S85. (a) Complete ¹³C{¹H} NMR spectrum of compound **11** in CDCl₃. (b) Downfield area of annotated ¹³C{¹H} NMR and DEPT-135, DEPT-90 spectra of compound **11** in CDCl₃.

compound **11** in CDCl₃.

Table S16. Com	plete numerical listi	ngs of ¹³ C NMR pea	ks of compoun	d 11 in CDCl ₃ .

Peak	v(F1) [ppm]	v(F1) [Hz]	Intensity [rel]	Half width [Hz]
1	205.48	25841	6.32	1.8
2	179.93	22627	6.91	0.9
3	160.49	20182.6	7.45	0.9
4	136.77	17199.7	11.26	1.8
5	124.45	15650.2	13.15	1.8
6	120.16	15111.6	6.72	0.9
7	118.34	14881.5	10.97	1.8
8	111.33	14000.4	12.65	0.9
9	86.15	10833.5	13.54	1.8
10	78.24	9838.8	11.08	0.9
11	77.27	9717.5	98.37	1.8
12	77.02	9685.6	100	1.8
13	76.76	9653.6	98.1	2.7
14	61.63	7750.5	12.95	0.9
15	56.53	7109.1	11.49	1.8
16	51.07	6422.1	13.62	0.9
17	47.27	5944.9	12.07	0.9
18	46.75	5879	13.08	1.8
19	46.14	5802	17.98	1.8
20	44.48	5593.2	12.57	0.9
21	41.51	5219.8	13.6	0.9
		~ ~~		

22	10 12	5046 4	12 74	10
22	40.13	5040.4	12.74	1.8
23	36.22	4555.6	13.64	1.8
24	33.61	4226.4	13.81	1.8
25	33.56	4220.1	17.62	0.9
26	32.31	4062.6	11.69	3.6
27	31.95	4017.5	12.32	3.6
28	28.76	3616.4	12.5	4.5
29	28.24	3551	11.52	1.8
30	27.46	3453.2	11.16	1.8
31	26.26	3302.3	11.85	1.8
32	25.54	3211.9	11.42	2.7
33	23.98	3015.4	14.11	1.8
34	23.5	2955	10.83	2.7
35	22.52	2832.5	12.12	2.7
36	19.2	2414.2	15.42	0.9
37	18.56	2333.5	12.2	1.8
38	15.48	1947.1	13.92	0.9
39	13.98	1758.2	14.02	0.9
40	0	0	11.83	1.8

Figure S87. Complete {¹H, ¹³C} HSQC NMR spectrum of compound 11 in CDCl₃.

Figure S88. Downfield area of {¹H, ¹³C} HSQC NMR spectrum of compound 11 in CDCl₃.

Figure S89. Upfield area of {¹H, ¹³C} HSQC multiplicity edited NMR spectrum of compound **11** in CDCl₃.

Figure S90. Complete {¹H, ¹³C} HMBC NMR spectrum of compound 11 in CDCl₃.

Figure S91. Annotated {¹H, ¹³C} HMBC NMR spectrum of compound 11 in CDCl₃.

Figure S92. Complete {¹H, ¹H} COSY NMR spectrum of compound 11 in CDCl₃.

Figure S93. Upfield area of {¹H, ¹H} COSY-DQF NMR spectrum of compound **11** in CDCl₃.

{¹H, ¹H} NOESY

Figure S95. Detailed and annotated {¹H, ¹H} NOESY NMR spectrum of compound 11 in CDCl₃.

Figure S96. Upfield area of {¹H, ¹H} NOESY NMR spectrum of compound 11 in CDCl₃.

Figure S97. (a) Complete ¹H NMR spectrum of compound **12** in CDCl₃. (b) Detailed and annotated ¹H NMR spectrum of compound **12** in CDCl₃.

517. Coll	ipiete numerica	i insungs of	II INIMIN PEAKS OF	
Peak	v(F1) [ppm]	v(F1) [Hz]	Intensity [rel]	Half width [Hz]
1	7.26	3632.3	7.47	0.3
2	7.24	3623.2	0.48	2.6
3	7.23	3615.6	0.55	2.6
4	7.17	3588	0.34	0.9
5	7.17	3586.9	0.38	1.1
6	7.17	3583.6	0.26	4.1
7	7.16	3580.4	0.81	1.1
8	7.16	3579.2	0.79	0.9
9	7.14	3572.7	0.55	1.1
10	7.14	3571.5	0.49	0.9
11	7.01	3503.5	0.37	0.8
12	7	3502.4	0.4	0.9
13	6.99	3495.9	0.65	0.8
14	6.99	3494.8	0.68	0.9
15	6.97	3488.3	0.3	0.9
16	6.97	3487.2	0.3	0.9
17	6.81	3407	0.57	0.8
18	6.81	3406.5	0.59	1.2
19	6.8	3399.3	0.54	0.9
20	6.8	3398.8	0.53	1.2
21	3.94	1970.2	1.09	2
22	2.15	1074.7	0.4	2.4
23	2.12	1061.5	0.48	2.4
24	1.89	943.3	0.19	3.2
25	1.88	941.3	0.19	2.7
26	1.86	931.5	0.33	2.3
27	1.86	928.1	0.49	2.4
28	1.85	925.3	1.1	2
29	1.83	916.4	0.86	3.5
30	1.82	912.2	1.15	2.1
31	1.81	905.4	0.74	1.5
32	1.65	825	0.09	1.7
33	1.64	821	0.17	3.4
34	1.64	818.3	0.18	2.4
35	1.63	814.9	0.14	1.8
36	1.62	812.1	0.13	2.3
37	1.62	809.2	0.17	2
38	1.61	805.9	0.2	1.2
39	1.61	803.2	0.13	0.8
40	1.57	786.9	3.89	1.4
41	1.57	785.2	3.51	1.4
42	1.54	772.3	0.55	4.9
43	1.53	767.3	0.69	5.8
44	1.52	761	0.27	4.1
45	1.51	754.7	0.31	1.5
46	1.5	752.1	0.3	3.1

Table S17. Com	plete numerical	listings of	¹ H NMR peaks of	compound 12 in C	DCl ₃ .
Peak	v(F1) [ppm]	v(F1) [Hz]	Intensity [rel]	Half width [Hz]	

47	1.5	748.2	0.28	4.6
48	1.48	740.9	0.46	4.6
49	1.46	730.5	1.11	7.2
50	1.44	722.2	0.52	4.1
51	1.44	718.2	0.78	4.6
52	1.43	715	0.59	3.5
53	1.41	707.4	0.76	3.1
54	1.41	705.9	0.7	4.3
55	1.4	699.8	0.61	7.2
56	1.37	687	0.39	3.2
57	1.37	684	0.38	4.9
58	1.35	675.6	0.44	4.7
59	1.35	673.2	0.7	3.1
60	1.25	622.9	0.22	1.2
61	1.24	621.4	0.38	3.2
62	1.24	619.6	0.3	0.5
63	1.24	618.2	0.27	1.4
64	1.22	611.5	3.57	1.7
65	1.21	607.3	0.23	0.6
66	1.21	605.9	0.21	0.2
67	1.13	567.3	0.09	4.1
68	1.13	562.8	0.1	2.6
69	1.11	554.3	0.21	3.4
70	1.1	550.1	0.22	3.4
71	1.08	541.6	0.21	3.5
72	1.07	537.4	0.2	2.7
73	1.06	528.9	0.18	2
74	1.05	524.6	0.12	2.9
75	1.02	512.5	3.79	1.5
76	0.98	489.8	4.28	1.4
77	0.96	478.5	5.5	0.6
78	0.96	478.1	6.55	1.8
79	0.93	467.2	4.27	1.4
80	0.88	438.3	3.59	1.5
81	0	0	100	0.3

Figure S98. (a) Complete ¹³C{¹H} NMR spectrum of compound **12** in CDCl₃. (b) Downfield area of annotated ¹³C{¹H} NMR and DEPT-135, DEPT-90 spectra of compound **12** in CDCl₃.

compound **12** in CDCl₃.

Table S18. Complete numerical listings of ¹³C NMR peaks of compound 12 in CDCl₃.

	complete numeri	cui instings of	C I WIII POURD OF C	
Peak	v(F1) [ppm]	v(F1) [Hz]	Intensity [rel]	Half width [Hz]
1	184.24	23169.1	2.6	0.9
2	179.96	22630.8	2.33	0.9
3	140.94	17723.9	2.76	0.9
4	133.44	16781.1	2.63	0.9
5	127.3	16009	4.44	1.8
6	126.47	15904.5	4.25	1.8
7	121.68	15302.2	4.33	1.8
8	108.92	13697.3	4.03	1.8
9	86.14	10833	5	0.9
10	77.27	9717.3	99.17	2.7
11	77.02	9685.3	100	2.7
12	76.76	9653.3	98.46	2.7
13	62.11	7811	4.34	0.9
14	59.43	7473.4	4.75	0.9
15	54.21	6817.3	4.45	1.8
16	51.55	6483	4.79	0.9
17	48.48	6097.1	5.32	0.9
18	46.81	5886.5	5.03	1.8
19	46.15	5804.1	4.82	1.8
20	44.45	5590.4	4.97	1.8

Figure S100. Complete {¹H, ¹³C} HSQC NMR spectrum of compound 12 in CDCl₃.

Figure S101. Downfield area of {¹H, ¹³C} HSQC NMR spectrum of compound **12** in CDCl₃.

Figure S102. Upfield area of $\{{}^{1}H, {}^{13}C\}$ HSQC multiplicity edited NMR spectrum of compound 12 in CDCl₃.

Figure S103. Complete {¹H, ¹³C} HMBC NMR spectrum of compound 12 in CDCl₃.

Figure S104. Annotated {¹H, ¹³C} HMBC NMR spectrum of compound 12 in CDCl₃.

Figure S108. Detailed and annotated {¹H, ¹H} NOESY NMR spectrum of compound 12 in CDCl₃.

Figure S109. Upfield area of {¹H, ¹H} NOESY NMR spectrum of compound 12 in CDCl₃.

3. X-Ray Crystal data for compound 11

Table 1. Crystal data and structure refinement for F103 (compound 1)	and structure refinement for F103 (compound 11).
--	--

Identification code	f103	
Empirical formula	C36 H49 N O3	
Formula weight	543.76	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 7.3603(7) Å	$\alpha = 90^{\circ}$.
	b = 16.4621(16) Å	β=90°.
	c = 24.344(2) Å	$\gamma = 90^{\circ}.$
Volume	2949.6(5) Å ³	

Z	4
Density (calculated)	1.224 Mg/m ³
Absorption coefficient	0.076 mm ⁻¹
F(000)	1184
Crystal size	0.19 x 0.08 x 0.03 mm ³
Theta range for data collection	1.49 to 31.00°.
Index ranges	-10<=h<=10, -23<=k<=23, -35<=l<=35
Reflections collected	39595
Independent reflections	5247 [R(int) = 0.0878]
Completeness to theta = 31.00°	99.8 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5247 / 0 / 368
Goodness-of-fit on F ²	1.049
Final R indices [for 4156 rfln with I>2sigma(I)]	R1 = 0.0443, wR2 = 0.0947
R indices (all data)	R1 = 0.0664, wR2 = 0.1043
Largest diff. peak and hole	0.322 and -0.251 e.Å ⁻³
Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent	nt isotropic displacement parameters (Å ² x 10 ³)

for F103.	U(eq) is defined as one third of	the trace of the orthogonalized U ^{ij} tensor.

	х	У	Z	U(eq)
O(1)	8075(2)	9545(1)	1036(1)	26(1)
O(2)	11087(2)	9714(1)	1037(1)	40(1)
O(3)	3315(2)	15519(1)	1825(1)	22(1)

S	1	06
D	T	00

N(1)	3937(2)	15444(1)	396(1)	18(1)
C(1)	4314(3)	14227(1)	1014(1)	18(1)
C(2)	3459(3)	15661(1)	1333(1)	17(1)
C(3)	4621(3)	15153(1)	929(1)	17(1)
C(4)	6770(3)	15303(1)	1025(1)	17(1)
C(5)	7392(2)	14445(1)	1199(1)	14(1)
C(6)	6171(3)	13828(1)	904(1)	15(1)
C(7)	9394(3)	14217(1)	1181(1)	16(1)
C(8)	9617(3)	13397(1)	1476(1)	17(1)
C(9)	8435(3)	12702(1)	1241(1)	14(1)
C(10)	6408(2)	12998(1)	1201(1)	14(1)
C(11)	5137(3)	12328(1)	995(1)	19(1)
C(12)	5246(3)	11568(1)	1356(1)	20(1)
C(13)	7207(3)	11260(1)	1402(1)	15(1)
C(14)	8498(3)	11927(1)	1633(1)	15(1)
C(15)	10448(3)	11568(1)	1653(1)	21(1)
C(16)	10584(3)	10803(1)	2010(1)	24(1)
C(17)	9234(3)	10158(1)	1831(1)	20(1)
C(18)	7286(3)	10462(1)	1735(1)	16(1)
C(19)	6564(3)	9732(1)	1416(1)	21(1)
C(20)	6207(3)	8980(1)	1780(1)	20(1)
C(21)	8025(3)	8730(1)	2045(1)	23(1)
C(22)	9171(3)	9450(1)	2249(1)	23(1)
C(23)	7730(3)	15628(1)	512(1)	22(1)
C(24)	7185(3)	15906(1)	1494(1)	23(1)

C(25)	6459(3)	13777(1)	276(1)	21(1)
C(26)	9221(3)	12483(1)	673(1)	19(1)
C(27)	7966(3)	12144(1)	2227(1)	20(1)
C(28)	9656(3)	9799(1)	1270(1)	26(1)
C(29)	5474(4)	8282(1)	1430(1)	31(1)
C(30)	4772(3)	9189(1)	2210(1)	24(1)
C(31)	2569(3)	16293(1)	1016(1)	16(1)
C(32)	1515(3)	16963(1)	1177(1)	20(1)
C(33)	814(3)	17461(1)	775(1)	22(1)
C(34)	1131(3)	17282(1)	218(1)	21(1)
C(35)	2154(3)	16624(1)	54(1)	19(1)
C(36)	2904(3)	16132(1)	462(1)	17(1)