Supporting Information

Direct halosulfenylation of benzo[b]furans: a metal-free

synthesis of 3-halo-2-thiobenzo[b]furans

Qianqian Zhen,^{a,†} Dayun Huang,^{a,b,†} Yinlin Shao,^a Tianxing Cheng,^a and Jiuxi Chen^{a,*}

^aCollege of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China. ^bDepartment of Chemistry, Lishui University, Lishui 323000, China. *E-mail: jiuxichen@wzu.edu.cn*

Table of Contents

1. Copies of ¹ H and ¹³ CNMR spect	raS1
--	------

[†] These authors contributed equally.

1. Copies of ¹H and ¹³CNMR spectra

Figure S1. ¹H NMR of 4a (500 MHz, CDCl₃) and ¹³C NMR of 4a (125 MHz, CDCl₃).

Figure S2. ¹H NMR of 4b (500 MHz, CDCl₃) and ¹³C NMR of 4b (125 MHz, CDCl₃).

Figure S3. ¹H NMR of 4c (500 MHz, CDCl₃) and ¹³C NMR of 4c (125 MHz, CDCl₃).

Figure S4. ¹H NMR of 4d (500 MHz, CDCl₃) and ¹³C NMR of 4d (125 MHz, CDCl₃).

Figure S5. ¹H NMR of 4e (500 MHz, CDCl₃) and ¹³C NMR of 4e (125 MHz, CDCl₃).

Figure S6. ¹H NMR of 4f (500 MHz, CDCl₃) and ¹³C NMR of 4f (125 MHz, CDCl₃).

Figure S7. ¹H NMR of 4g (500 MHz, CDCl₃) and ¹³C NMR of 4g (125 MHz, CDCl₃)

Figure S8. ¹H NMR of 4h (500 MHz, CDCl₃) and ¹³C NMR of 4h (125 MHz, CDCl₃).

Figure S9. ¹H NMR of 4i (500 MHz, CDCl₃) and ¹³C NMR of 4i (125 MHz, CDCl₃).

Figure S10. ¹H NMR of 4j (500 MHz, CDCl₃) and ¹³C NMR of 4j (125 MHz, CDCl₃).

Figure S11. ¹H NMR of 4k (500 MHz, CDCl₃) and ¹³C NMR of 4k (125 MHz, CDCl₃).

Figure S12. ¹H NMR of 4l (500 MHz, CDCl₃) and ¹³C NMR of 4l (125 MHz, CDCl₃).

Figure S13. ¹H NMR of 4m (500 MHz, CDCl₃) and ¹³C NMR of 4m (125 MHz, CDCl₃).

Figure S14. 1 H NMR of 4n (500 MHz, CDCl₃) and 13 C NMR of 4n (125 MHz, CDCl₃).

Figure S15. ¹H NMR of 40 (500 MHz, CDCl₃) and ¹³C NMR of 40 (125 MHz, CDCl₃)

Figure S16. ¹H NMR of 4p (500 MHz, CDCl₃) and ¹³C NMR of 4p (125 MHz, CDCl₃)

Figure S18. ¹H NMR of 4r (500 MHz, CDCl₃) and ¹³C NMR of 4r (125 MHz, CDCl₃)

Figure S19. ¹H NMR of 4s (500 MHz, CDCl₃) and ¹³C NMR of 4s (125 MHz, CDCl₃)

Figure S20. ¹H NMR of 5a (500 MHz, CDCl₃) and ¹³C NMR of 5a (125 MHz, CDCl₃).

Figure S21. ¹H NMR of I (500 MHz, CDCl3) and ¹³C NMR of I (125 MHz, CDCl3).

Figure S22. ¹H NMR of 7a (500 MHz, CDCl₃) and ¹³C NMR of 7a (125 MHz, CDCl₃).

2. X-ray Crystallographic Data for Product 5a

Figure S23 X-ray crystal structure of 5a

Table 1. Crystal data and structure refinement for mo_20110714A_0m.

Identification code	mo_20110714a_0m	
Empirical formula	C15 H11 Br O3 S	
Formula weight	351.21	
Temperature	298(2) K	
Wavelength	0.71073 A	
Crystal system, space group	Triclinic, P-1	
Unit cell dimensions $a = 7$	7.7178(7) A alpha = 84.587(2) deg.	
	b = 9.2215(9) A beta = 86.687(3)	
deg.		
	c = 9.9594(10) A gamma =	
78.032(3) deg.		
Volume	689.78(12) A^3	
Z, Calculated density	2, 1.691 Mg/m^3	
Absorption coefficient	3.134 mm^-1	
F(000)	352	
Crystal size	0.23 x 0.15 x 0.11 mm	
Theta range for data collection	2.06 to 25.50 deg.	
Limiting indices	-7<=h<=9, -11<=k<=11, -12<=l<=12	
Reflections collected / unique	5705 / 2509 [R(int) = 0.0240]	
Completeness to theta $= 25.50$	98.0 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7243 and 0.5326	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	2509 / 0 / 182	
Goodness-of-fit on F^2	1.034	
Final R indices [I>2sigma(I)]	R1 = 0.0394, $wR2 = 0.1266$	
R indices (all data)	R1 = 0.0496, $wR2 = 0.1643$	
Largest diff. peak and hole	0.680 and -0.532 e.A^-3	

	x	у	Z	U(eq)
$\mathbf{Br}(1)$	4431(1)	4128(1)	3588(1)	53(1)
$\mathbf{S}(1)$	2868(1)	4128(1) 8225(1)	2619(1)	39(1)
O(1)	2158(4)	6968(3)	500(3)	41(1)
O(2)	3830(4)	7726(4)	3809(3)	54(1)
O(3)	3433(4)	9302(3)	1670(4)	56(1)
C(1)	526(8)	7093(7)	5092(6)	68(1)
C(2)	-301(6)	8317(5)	4105(4)	45(1)
C(3)	-2111(7)	8921(6)	4285(6)	59(1)
C(4)	-2997(8)	10036(6)	3386(6)	63(1)
C(5)	-2054(7)	10596(6)	2287(6)	59(1)
C(6)	-291(6)	10023(5)	2098(5)	50(1)
C(7)	564(6)	8895(5)	3010(4)	43(1)
C(8)	2855(5)	6652(4)	1761(4)	37(1)
C(9)	3397(5)	5148(4)	2059(4)	37(1)
C(10)	2997(5)	4463(5)	908(4)	41(1)
C(11)	2259(5)	5612(5)	-2(4)	40(1)
C(12)	1687(7)	5416(7)	-1257(5)	58(1)
C(13)	1921(7)	3965(8)	-1554(6)	66(2)
C(14)	2719(8)	2761(7)	-660(7)	70(2)
C(15)	3240(6)	2986(5)	584(6)	54(1)

Table 2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² x 10³) for mo_20110714A_0m. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Br(1)-C(9)	1.843(4)
S(1)-O(3)	1.423(3)
S(1)-O(2)	1.423(4)
S(1)-C(8)	1.754(4)
S(1)-C(7)	1.791(5)
O(1)-C(8)	1.376(5)
O(1)-C(11)	1.376(5)
C(1)-C(2)	1.488(7)
C(1)-H(1A)	0.9600
C(1)-H(1B)	0.9600
C(1)-H(1C)	0.9600
C(2)-C(7)	1.369(6)
C(2)-C(3)	1.401(7)
C(3)-C(4)	1.390(8)
C(3)-H(3)	0.9300
C(4)-C(5)	1.397(8)
C(4)-H(4)	0.9300
C(5)-C(6)	1.363(7)
C(5)-H(5)	0.9300
C(6)-C(7)	1.396(7)
C(6)-H(6)	0.9300
C(8)-C(9)	1.372(6)
C(9)-C(10)	1.438(6)
C(10)-C(11)	1.377(6)
C(10)-C(15)	1.401(6)
C(11)-C(12)	1.389(6)
C(12)-C(13)	1.371(8)
C(12)-H(12)	0.9300
C(13)-C(14)	1.414(10)
C(13)-H(13)	0.9300
C(14)-C(15)	1.371(8)
C(14)-H(14)	0.9300
C(15)-H(15)	0.9300
O(3)-S(1)-O(2)	119.6(2)
O(3)-S(1)-C(8)	107.3(2)
O(2)-S(1)-C(8)	107.2(2)
O(3)-S(1)-C(7)	107.2(2)
O(2)-S(1)-C(7)	111.4(2)
C(8)-S(1)-C(7)	102.73(19)

Table 3. Bond lengths [A] and angles [deg] for mo_20110714A_0m.

_

C(8)-O(1)-C(11)	105.6(3)
C(2)-C(1)-H(1A)	109.5
C(2)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
C(2)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
C(7)-C(2)-C(3)	116.7(5)
C(7)-C(2)-C(1)	125.1(4)
C(3)-C(2)-C(1)	118.2(5)
C(4)-C(3)-C(2)	121.8(5)
C(4)-C(3)-H(3)	119.1
C(2)-C(3)-H(3)	119.1
C(3)-C(4)-C(5)	119.3(5)
C(3)-C(4)-H(4)	120.3
C(5)-C(4)-H(4)	120.3
C(6)-C(5)-C(4)	119.6(5)
C(6)-C(5)-H(5)	120.2
C(4)-C(5)-H(5)	120.2
C(5)-C(6)-C(7)	119.9(5)
C(5)-C(6)-H(6)	120.1
C(7)-C(6)-H(6)	120.1
C(2)-C(7)-C(6)	122.6(4)
C(2)-C(7)-S(1)	122.3(4)
C(6)-C(7)-S(1)	115.0(3)
C(9)-C(8)-O(1)	111.5(3)
C(9)-C(8)-S(1)	134.3(3)
O(1)-C(8)-S(1)	114.3(3)
C(8)-C(9)-C(10)	105.8(4)
C(8)-C(9)-Br(1)	129.4(3)
C(10)-C(9)-Br(1)	124.7(3)
C(11)-C(10)-C(15)	120.2(4)
C(11)-C(10)-C(9)	106.0(4)
C(15)-C(10)-C(9)	133.8(4)
O(1)-C(11)-C(10)	111.1(3)
O(1)-C(11)-C(12)	124.8(4)
C(10)-C(11)-C(12)	124.1(4)
C(13)-C(12)-C(11)	115.0(5)
C(13)-C(12)-H(12)	122.5
C(11)-C(12)-H(12)	122.5
C(12)-C(13)-C(14)	122.4(5)
C(12)-C(13)-H(13)	118.8
C(14)-C(13)-H(13)	118.8
C(15)-C(14)-C(13)	121.3(5)

C(15)-C(14)-H(14)	119.3
C(13)-C(14)-H(14)	119.3
C(14)-C(15)-C(10)	117.0(5)
C(14)-C(15)-H(15)	121.5
C(10)-C(15)-H(15)	121.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for mo_20110714A_0m. The anisotropic displacement factor exponent takes the form: $-2 \text{ pi}^2 [h^2 a^{*} 2 U11 + ... + 2 h k a^* b^* U12]$

	U11	U22	U33	U	23	U13	U12
Br(1)	58(1)	41(1)	56(1)	9(1)	-14(1)	-1(1)	
S (1)	39(1)	31(1)	50(1)	-7(1)	-1(1)	-9(1)	
O(1)	48(2)	34(1)	38(1)	1(1)	-4(1)	-4(1)	
O(2)	54(2)	56(2)	56(2)	-14(2)	-17(2)	-12(2)	
O(3)	49(2)	37(2)	83(2)	-2(2)	10(2)	-15(1)	
C(1)	68(3)	74(4)	57(3)	7(3)	-3(3)	-7(3)	
C(2)	45(2)	40(2)	50(2)	-9(2)	-2(2)	-11(2)	
C(3)	45(3)	54(3)	77(3)	-18(2)	6(2)	-10(2)	
C(4)	55(3)	49(3)	84(4)	-12(3)	6(3)	-7(2)	
C(5)	53(3)	44(2)	76(3)	3(2)	-12(2)	-5(2)	
C(6)	52(3)	38(2)	59(3)	-3(2)	-2(2)	-7(2)	
C(7)	48(2)	37(2)	47(2)	-12(2)	1(2)	-14(2)	
C(8)	38(2)	32(2)	40(2)	-3(2)	-4(2)	-3(2)	
C(9)	31(2)	33(2)	44(2)	-2(2)	-2(2)	-6(2)	
C(10)	34(2)	36(2)	52(2)	-9(2)	4(2)	-7(2)	
C(11)	28(2)	47(2)	46(2)	-10(2)	1(2)	-9(2)	
C(12)	61(3)	74(3)	43(2)	-13(2)	-1(2)	-21(3)	
C(13)	51(3)	92(4)	64(3)	-41(3)	6(2)	-24(3)	
C(14)	63(3)	63(3)	94(4)	-44(3)	13(3)	-25(3)	
C(15)	41(2)	41(2)	82(3)	-20(2)	8(2)	-12(2)	

	Х	У	Z	U(eq)
H(1A)	1225	6300	4617	102
H(1B)	-385	6727	5637	102
H(1C)	1271	7461	5661	102
H(3)	-2738	8566	5026	70
H(4)	-4205	10406	3514	76
H(5)	-2626	11355	1687	70
H(6)	342	10383	1362	60
H(12)	1184	6211	-1851	69
H(13)	1540	3765	-2374	79
H(14)	2895	1798	-921	84
H(15)	3732	2195	1185	64

Table 5. Hydrogen coordinates (x 10^4) and isotropicdisplacement parameters (A^2 x 10^3) for mo_20110714A_0m.

C(7)-C(2)-C(3)-C(4)	1.0(7)
C(1)-C(2)-C(3)-C(4)	-178.1(5)
C(2)-C(3)-C(4)-C(5)	-1.4(8)
C(3)-C(4)-C(5)-C(6)	1.2(8)
C(4)-C(5)-C(6)-C(7)	-0.7(7)
C(3)-C(2)-C(7)-C(6)	-0.5(6)
C(1)-C(2)-C(7)-C(6)	178.5(5)
C(3)-C(2)-C(7)-S(1)	-178.9(3)
C(1)-C(2)-C(7)-S(1)	0.1(6)
C(5)-C(6)-C(7)-C(2)	0.4(7)
C(5)-C(6)-C(7)-S(1)	178.9(4)
O(3)-S(1)-C(7)-C(2)	-164.6(3)
O(2)-S(1)-C(7)-C(2)	-32.0(4)
C(8)-S(1)-C(7)-C(2)	82.5(4)
O(3)-S(1)-C(7)-C(6)	16.8(4)
O(2)-S(1)-C(7)-C(6)	149.5(3)
C(8)-S(1)-C(7)-C(6)	-96.0(3)
C(11)-O(1)-C(8)-C(9)	0.4(4)
C(11)-O(1)-C(8)-S(1)	-179.9(3)
O(3)-S(1)-C(8)-C(9)	136.8(4)
O(2)-S(1)-C(8)-C(9)	7.1(5)
C(7)-S(1)-C(8)-C(9)	-110.4(5)
O(3)-S(1)-C(8)-O(1)	-42.8(3)
O(2)-S(1)-C(8)-O(1)	-172.5(3)
C(7)-S(1)-C(8)-O(1)	70.0(3)
O(1)-C(8)-C(9)-C(10)	-0.6(5)
S(1)-C(8)-C(9)-C(10)	179.7(3)
O(1)-C(8)-C(9)-Br(1)	179.4(3)
S(1)-C(8)-C(9)-Br(1)	-0.2(7)
C(8)-C(9)-C(10)-C(11)	0.6(4)
Br(1)-C(9)-C(10)-C(11)	-179.5(3)
C(8)-C(9)-C(10)-C(15)	179.2(4)
Br(1)-C(9)-C(10)-C(15)	-0.9(7)
C(8)-O(1)-C(11)-C(10)	0.0(4)
C(8)-O(1)-C(11)-C(12)	179.7(4)
C(15)-C(10)-C(11)-O(1)	-179.2(4)
C(9)-C(10)-C(11)-O(1)	-0.4(4)
C(15)-C(10)-C(11)-C(12)	1.1(6)
C(9)-C(10)-C(11)-C(12)	179.9(4)
O(1)-C(11)-C(12)-C(13)	179.8(4)

Table 6. Torsion angles [deg] for mo_20110714A_0m.

C(10)-C(11)-C(12)-C(13)	-0.5(7)
C(11)-C(12)-C(13)-C(14)	-1.3(7)
C(12)-C(13)-C(14)-C(15)	2.7(8)
C(13)-C(14)-C(15)-C(10)	-2.0(7)
C(11)-C(10)-C(15)-C(14)	0.2(6)
C(9)-C(10)-C(15)-C(14)	-178.2(5)

Symmetry transformations used to generate equivalent atoms:Table 7.Hydrogen bonds for mo_20110714A_0m [A and deg.].

D-H...A

d(D-H)

d(H...A)

<(DHA)

d(D...A)