Supporting Information

Synthesis and anti-tubercular activity of 1-and 3-substituted benzo[g]isoquinoline-5,10-diones

Robert J. Smets,^a Eveline Torfs^b, Filip Lemière^c, Paul Cos^b, Davie Cappoen^b and Kourosch Abbaspour Tehrani^{a*}

^a Organic Synthesis, Faculty of Sciences, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp Belgium.

^b Laboratory of Microbiology, Parasitology and Hygiene (LMPH), S7, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.

^c Biomolecular & Analytical Mass Spectrometry and Center for Proteomics, Department of Chemistry, University of Antwerp, B-2020 Antwerp, Belgium.

E-mail: Kourosch.AbbaspourTehrani@uantwerpen.be

Table of Contents

1. Table S1: Intramolecular Heck reaction of 19 to induce a 6- <i>endo-trig</i> ring closure ^a	S2
2. ¹ H, ¹³ C and 2D NMR spectra	S4
3. UPLC spectra	S130

	Pd source													
		OMe	O ligand		OMe	O	Ņ	Иe		OMe	Q			
			Additive	base	\sim							≥N		
				\rightarrow () N						
		Br	Argon				\sim	Ý F	<u>ر</u> ا		\sim			
		ÓMe	Δ		ÓMe		Ó	Me		ÓMe	Ö			
		19a R = H	(see tab	le)	20a R = H		24 a F	R = H		21	5			
	19b R = CH ₃		,	. ,		20b R = CH ₃		24b R = CH ₃						
Entry	R	Pd source	Ligand	Base	Additive	Solvent	T t	20	24	21	5	Rec. 19		
2,		(eq.)	(eq.)	(eq.)	(eq.)	oonent	(°C, h)	(%) ^b	(%) ^b	(%) ^b	(%) ^b	(%) ^b		
		(-4)	((-4)	((-,,	(,-)	(,-,	(, -)	()			
1	н	Pd(OAc) ₂	P(<i>o</i> -Tol) ₃	<i>i</i> PrNEt ₂	/	ACN	90, 24	4 ^f	0 ^f	O ^f	Of	Of		
		(0.05)	(0.1)	(1.5)			then							
							105, 24							
2	н	Pd(OAc) ₂	ТРР	K ₂ CO ₃	TBAB	DMF	100, 6	15 ^f	6 ^f	O ^f	Of	0 ^f		
		(0.2)	(0.3)	(2.0)	(2.0)									
3	н	Pd(OAc) ₂	/	NaOAc	/	NMP	135, 19	0 ^f	0 ^f	O ^f	O ^f	0 ^f		
		(0.00025)		(1.2)										
4	н	Pd(OAc) ₂	/	NaOAc	/	NMP	135, 19	0 ^f	0 ^f	O ^f	O ^f	0 ^f		
		(0.0005)		(1.2)										
5	н	Pd(OAc) ₂	/	NaOAc	/	NMP	135, 19	0 ^f	0 ^f	O ^f	O ^f	O ^f		
		(0.001)		(1.2)										
6	н	Pd(OAc) ₂	TPP	K ₂ CO ₃	TBAB	DMA	100, 16	10 ^f	8 ^f	O ^f	O ^f	0 ^f		
		(0.2)	(0.3)	(2.0)	(2.0)									
7	Н	Pd(OAc) ₂	ТРР	K ₂ CO ₃	TBAB	EtOH	100, 16	5 ^f	2 ^f	O ^f	O ^f	0 ^f		
		(0.2)	(0.3)	(2.0)	(2.0)									
8	Н	Pd(OAc) ₂	/	KOAc	TBAC	DMF	100, 16	5 ^f	4 ^f	O ^f	O ^f	0 ^f		
		(0.1)		(5.5)	(2.0)									
9	н	Pd(OAc) ₂	/	KOAc	TBAC	Toluene	100, 16	5 ^f	6 ^f	O ^f	O ^f	O ^f		
		(0.1)		(5.5)	(2.0)									
10	Н	Pd(OAc) ₂	ТРР	K_2CO_3	TBAB	DMF	100,	15	<6	0	0	0		
		(0.2)	(0.3)	(2.0)	(2.0)		6							
11	н	Pd(OAc) ₂	rac-BINAP	K_2CO_3	TBAB	DMF	100,	15	<20	0	0	0		
		(0.2)	(0.3)	(2.0)	(2.0)		16							
12	н	Pd(OAc) ₂	^t BuCy ₂ P.HBF ₄	Cs_2CO_3	/	DMF	130,	10	0	4	11	0		
		(0.1)	(0.2)	(5.0)			22.5							

13	CH_3	Pd(OAc) ₂	^t BuCy ₂ P.HBF ₄	Cs ₂ CO ₃	/	DMF	130,	49 ^c	6 ^c	4 ^c	1 ^c	0 ^c
		(0.1)	(0.2)	(5.0)			17.5					
14	CH₃	Pd(OAc)₂	^t BuCy ₂ P.HBF ₄	Cs_2CO_3	/	DMF	130,	58 ^d	1 ^d	0 <i>d</i>	2 ^d	0 <i>d</i>
		(0.1)	(0.2)	(4.0)			17.5			- 4	- 1	
15	CH ₃	Pd(OAc) ₂	'BuCy ₂ P.HBF ₄	Cs_2CO_3	/	DMF	130,	57 ^a	trace ^a	3 "	2 "	0 "
		(0.1)	(0.2)	(3.0)			16.5					
16	CH₃	Pd(OAc) ₂	^t BuCy ₂ P.HBF ₄	Cs ₂ CO ₃	/	DMF	130,	63 ^a	4 ^a	2 ^a	1 ^a	0 ª
		(0.1)	(0.2)	(2.0)			16.5					
17	CH₃	Pd(OAc) ₂	^t BuCy ₂ P.HBF ₄	Cs ₂ CO ₃	/	DMF	130,	75 ^d	6 ^d	trace ^d	trace ^d	0 <i>d</i>
		(0.1)	(0.2)	(1.2)			19					
18	CH₃	Pd(OAc) ₂	^t BuCy ₂ P.HBF ₄	CS ₂ CO ₃	/	DMF	130,	71 ^d	11 ^d	trace ^d	trace ^d	0 <i>d</i>
		(0.1)	(0.2)	(1.2)			16					
19	CH₃	Pd(OAc) ₂	Cy ₃ P.HBF ₄	Cs_2CO_3	/	DMF	130,	74 ^d	8 ^d	trace ^d	trace ^d	0 <i>d</i>
		(0.1)	(0.2)	(1.2)			16					
20	CH₃	Pd(OAc) ₂	^t Bu ₃ P.HBF ₄	Cs_2CO_3	/	DMF	130,	15 ^d	36 ^d	0 <i>d</i>	0 <i>d</i>	16 ^d
		(0.1)	(0.2)	(1.2)			16					
21	CH₃	Pd(OAc) ₂	TPP	Cs ₂ CO ₃	/	DMF	130,	48 ^d	29 ^d	0 ^d	0 ^d	0 <i>d</i>
		(0.1)	(0.2)	(1.2)			16					
22	CH₃	Pd(OAc) ₂	JohnPhos	Cs ₂ CO ₃	/	DMF	130,	29 ^d	38 ^d	0 ^d	0 ^{<i>d</i>}	0 <i>d</i>
		(0.1)	(0.2)	(1.2)			16					
23	CH_3	Pd(OAc) ₂	DPPP	Cs ₂ CO ₃	/	DMF	130,	45 ^d	29 ^d	0 <i>d</i>	0 <i>d</i>	0 <i>d</i>
		(0.1)	(0.1)	(1.2)			16					
24	CH₃	Pd(OAc) ₂	DPPF	Cs_2CO_3	/	DMF	130,	49 ^d	31 ^d	0 <i>d</i>	0 <i>d</i>	0 <i>d</i>
		(0.1)	(0.1)	(1.2)			16					
25	CH_3	Pd(OAc) ₂	DPPE	Cs_2CO_3	/	DMF	130,	41 ^d	32 ^d	0 ^d	0 ^d	0 ^d
		(0.1)	(0.1)	(1.2)			16					
26	CH_3	Pd(OAc) ₂	Xantphos	CS ₂ CO ₃	/	DMF	130,	17 ^d	34 ^d	0 <i>d</i>	0 <i>d</i>	15 ^d
		(0.1)	(0.1)	(1.2)			16					
27	CH_3	Pd(OAc) ₂	rac-BINAP	Cs_2CO_3	/	DMF	130,	26 ^d	44 ^d	0 <i>d</i>	0 ^d	0 <i>d</i>
		(0.1)	(0.1)	(1.2)			16					
28	CH_3	Pd_2dba_3	rac-BINAP	Cs_2CO_3	/	DMF	130,	36 ^d	44 ^d	0 ^d	0 ^d	0 <i>d</i>
		(0.05)	(0.1)	(1.2)			16					
29	CH_3	rac-BI	NAP-Pd-G3	Cs ₂ CO ₃	/	DMF	DMF	31 ^d	49 ^d	0 ^d	0 ^d	0 <i>d</i>
		Buchwal	d precat. (0.1)	(1.1)								
30	CH_3	rac-BI	NAP-Pd-G3	Et₃N	/	DMF	DMF	39 ^d	37 ^d	0 <i>d</i>	0 <i>d</i>	0 <i>d</i>
		Buchwald precat. (0.1)		(2.0)								
31 ^e	CH₃	rac-BI	NAP-Pd-G3	K_3PO_4	/	DMF	DMF	23 ^d	27 ^d	0 ^d	0 ^d	8 ^d
		Buchwald precat. (0.1)		(1.1)								
32	CH₃	rac-BI	NAP-Pd-G3	Na_2CO_3	/	DMF	DMF	31 ^d	42 ^d	0 ^d	0 ^d	0 ^d
		Buchwald precat. (0.1)		(1.1)								
33	CH₃	rac-Bl	NAP-Pd-G3	K ₂ CO ₃	1	DMF	130,	31 ^d	50 ^d	0 ^d	0 ^d	0 ^d

Buchwald precat. (0.1)			(1.1)			16						
34	CH₃	³ <i>rac</i> -BINAP-Pd-G3 Buchwald precat. (0.1)		K ₂ CO ₃	TBAC	DMF	130,	25 ^d	45 ^d	0 ^{<i>d</i>}	0 <i>d</i>	0 ^d
				(1.1)	(1.0)		16					
35 ^g	CH₃	Pd(OAc) ₂	^t BuCy ₂ P.HBF ₄	Cs ₂ CO ₃	1	DMF	130,	92	0	0	0	0
		(0.05)	(0.1)	(1.1)			16.5					
36 ^h	CH₃	Pd(OAc)₂	Cy ₃ P.HBF ₄	Cs_2CO_3	/	DMF	130,	65	0	0	0	0
		(0.1)	(0.2)	(1.2)			16					
37	CH₃	Pd(OAc)₂	^t BuCy ₂ P.HBF ₄	Et₃N	/	DMF	130,	67 ^d	12 ^d	0 <i>d</i>	0 <i>d</i>	0 <i>d</i>
		(0.1)	(0.2)	(2.0)			16					
38	CH_3	Pd(OAc) ₂	^t BuCy ₂ P.HBF ₄	K ₃ PO ₄	/	DMF	130,	61 ^d	15 ^d	0 <i>d</i>	0 <i>d</i>	0 <i>d</i>
		(0.1)	(0.2)	(1.2)			16					
39 ⁱ	CH₃	Pd(OAc) ₂	^t BuCy ₂ P.HBF ₄	Ag_2CO_3	/	DMF	130,	trace ^d	0 <i>d</i>	0 <i>d</i>	0 <i>d</i>	0 <i>d</i>
		(0.1)	(0.2)	(1.2)			16					

^{*e*}**19** (0.28 mmol), Pd(OAc)₂, ligand, base and additive were dissolved in the suitable solvent (2.8 mL), stirred and heated to the indicated temperature during the indicated time under Ar. ^{*b*}Isolated yield. ^{c1}H NMR yield, calculated with 1,4-diacetylbenzene as internal standard. ^{d1}H NMR yield, calculated with dimethyl sulfon as internal standard. ^eAmong the other products, C-N bond cleavage of the vinyl functionality of the starting material by presumably hydrolysis was also observed in 4% (NMR yield) (structure not depicted). ^{f1}H NMR yield, calculated with 1,3,5-trimethoxybenzene as internal standard. ^gReaction performed on a 4.35 mmol scale. ^hReaction performed on a 20.70 mmol scale. ⁱ C-N bond cleavage of the vinyl functionality of the starting material by presumably hydrolysis was observed in 60% (NMR yield) (structure not depicted).

¹H, ¹³C & 2D NMR spectra of compounds

Figure 1 ¹H NMR spectrum of benzo[*g*]isoquinoline-5,10-dione (**5**) (CDCl₃, 400 MHz).

Figure 2¹H NMR spectrum of 2-bromo-3-(2-bromomethyl)-1,4-dimethoxynaphthalene (17) (CDCl₃, 400 MHz).

Figure 3 ¹H NMR spectrum of *N*-((3-bromo-1,4-dimethoxynaphthalen-2-yl)methyl)-*N*-vinylformamide (19a) (CDCl₃, 400 MHz).

Figure 4 ¹³C NMR spectrum of *N*-((3-bromo-1,4-dimethoxynaphthalen-2-yl)methyl)-*N*-vinylformamide (19a) (CDCl₃, 100 MHz).

Figure 5 ¹H NMR spectrum of *N*-((3-bromo-1,4-dimethoxynaphthalen-2-yl)methyl)-*N*-vinylacetamide (19b) (CDCl₃, 400 MHz).

Figure 6¹³C NMR spectrum of *N*-((3-bromo-1,4-dimethoxynaphthalen-2-yl)methyl)-*N*-vinylacetamide (19b) (CDCl₃, 400 MHz).

Figure 7 COSY spectrum of N-((3-bromo-1,4-dimethoxynaphthalen-2-yl)methyl)-N-vinylacetamide (19b) (CDCl₃, 400 MHz).

Figure 8 HSQC spectrum of *N*-((3-bromo-1,4-dimethoxynaphthalen-2-yl)methyl)-*N*-vinylacetamide (**19b**) (CDCl₃, 400 MHz).

Figure 9 HMBC spectrum of *N*-((3-bromo-1,4-dimethoxynaphthalen-2-yl)methyl)-*N*-vinylacetamide (**19b**) (CDCl₃, 400 MHz).

Figure 10 ¹H NMR spectrum of 5,10-dimethoxybenzo[*g*]isoquinoline-2(1*H*)-carbaldehyde (**20a**) (CDCl₃, 400 MHz).

Figure 11 ¹³C NMR spectrum of 5,10-dimethoxybenzo[g]isoquinoline-2(1H)-carbaldehyde (20a) (CDCl₃, 100 MHz).

Figure 12 ¹H NMR spectrum of 1-(5,10-dimethoxybenzo[*g*]isoquinolin-2(1*H*)-yl)ethanone (**20b**) (CDCl₃, 400 MHz).

Figure 13 ¹³C NMR spectrum of 1-(5,10-dimethoxybenzo[*g*]isoquinolin-2(1*H*)-yl)ethanone (**20b**) (CDCl₃, 100 MHz).

Figure 14 APT spectrum of 1-(5,10-dimethoxybenzo[g]isoquinolin-2(1H)-yl)ethanone (20b) (CDCl₃, 100 MHz).

Figure 15 DEPT 135 spectrum of 1-(5,10-dimethoxybenzo[g]isoquinolin-2(1H)-yl)ethanone (20b) (CDCl₃, 100 MHz).

Figure 16 COSY spectrum of 1-(5,10-dimethoxybenzo[*g*]isoquinolin-2(1*H*)-yl)ethanone (**20b**) (CDCl₃, 400 MHz).

Figure 17 HSQC spectrum of 1-(5,10-dimethoxybenzo[g]isoquinolin-2(1*H*)-yl)ethanone (**20b**) (CDCl₃, 400 MHz).

Figure 18 HMBC spectrum of 1-(5,10-dimethoxybenzo[g]isoquinolin-2(1*H*)-yl)ethanone (**20b**) (CDCl₃, 400 MHz).

Figure 19 ¹H NMR spectrum of 1-(5,10-dimethoxybenzo[g]isoquinolin-2(1*H*)-yl)ethanone (**20b**) (DMSO-d₆, 400 MHz). Traces of **21** are present due to limited stability of **20b** in DMSO-d6.

Figure 20 ¹³C NMR spectrum of 1-(5,10-dimethoxybenzo[g]isoquinolin-2(1*H*)-yl)ethanone (20b) (DMSO-d₆, 100 MHz).

Figure 21 DEPT-135 spectrum of 1-(5,10-dimethoxybenzo[g]isoquinolin-2(1H)-yl)ethanone (DMSO-d₆, 100 MHz).

Figure 22 COSY spectrum of 1-(5,10-dimethoxybenzo[*g*]isoquinolin-2(1*H*)-yl)ethanone (DMSO-d₆, 400 MHz).

Figure 23 HSQC spectrum of 1-(5,10-dimethoxybenzo[*g*]isoquinolin-2(1*H*)-yl)ethanone (DMSO-d₆, 400 MHz).

Figure 24 HMBC spectrum of 1-(5,10-dimethoxybenzo[*g*]isoquinolin-2(1*H*)-yl)ethanone (DMSO-d₆, 400 MHz).

Figure 25 NOESY spectrum of 1-(5,10-dimethoxybenzo[g]isoquinolin-2(1*H*)-yl)ethanone (DMSO-d₆, 400 MHz).

Figure 26 VT-¹H NMR spectrum of 1-(5,10-dimethoxybenzo[*g*]isoquinolin-2(1*H*)-yl)ethanone (**20b**) (DMSO-d₆, 400 MHz, rt-130 °C). Traces of **21** are present due to limited stability of **20b** in DMSO-d6.

Figure 27 ¹H NMR spectrum of 5,10-dimethoxybenzo[*g*]isoquinoline (**21**) (CDCl₃, 400 MHz).

Figure 28 ¹H NMR spectrum of 5,10-dimethoxybenzo[g]isoquinoline (21) (DMSO-d6, 400 MHz).

Figure 29¹³C NMR spectrum of 5,10-dimethoxybenzo[*g*]isoquinoline (**21**) (CDCl₃, 100 MHz).

Figure 30 DEPT-135 spectrum of 5,10-dimethoxybenzo[*g*]isoquinoline (**21**) (CDCl₃, 100 MHz).

Figure 31 COSY spectrum of 5,10-dimethoxybenzo[*g*]isoquinoline (**21**) (CDCl₃, 400 MHz).

Figure 32 HSQC spectrum of 5,10-dimethoxybenzo[*g*]isoquinoline (**21**) (CDCl₃, 400 MHz).

Figure 33 HMBC spectrum of 5,10-dimethoxybenzo[g]isoquinoline (21) (CDCl₃, 400 MHz).

Figure 34 NOESY spectrum of 5,10-dimethoxybenzo[*g*]isoquinoline (**21**) (CDCl₃, 400 MHz).

Figure 35 ¹H NMR spectrum of 5,10-dioxo-5,10-dihydrobenzo[g]isoquinoline 2-oxide (22) (CDCl₃, 400 MHz).

Figure 36 ¹³C NMR spectrum of 5,10-dioxo-5,10-dihydrobenzo[g]isoquinoline 2-oxide (22) (CDCl₃, 400 MHz).

Figure 37 DEPT-135 spectrum of 5,10-dioxo-5,10-dihydrobenzo[g]isoquinoline 2-oxide (22) (CDCl₃, 100 MHz).

Figure 38 COSY spectrum of 5,10-dioxo-5,10-dihydrobenzo[g]isoquinoline 2-oxide (**22**) (CDCl₃, 400 MHz).

Figure 39 HSQC spectrum of 5,10-dioxo-5,10-dihydrobenzo[g]isoquinoline 2-oxide (22) (CDCl₃, 400 MHz).

Figure 40 HMBC spectrum of 5,10-dioxo-5,10-dihydrobenzo[g]isoquinoline 2-oxide (22) (CDCl₃, 400 MHz).

Figure 41 ¹H NMR spectrum of 1-chlorobenzo[*g*]isoquinoline-5,10-dione (**23a**) (CDCl₃, 400 MHz).

Figure 42¹³C NMR spectrum of 1-chlorobenzo[g]isoquinoline-5,10-dione (23a) (CDCl₃, 100 MHz).

Figure 43 APT spectrum of 1-chlorobenzo[g]isoquinoline-5,10-dione (23a) (CDCl₃, 100 MHz).

Figure 44 DEPT 135 spectrum of 1-chlorobenzo[*g*]isoquinoline-5,10-dione (**23a**) (CDCl₃, 100 MHz).

Figure 45 COSY spectrum of 1-chlorobenzo[*g*]isoquinoline-5,10-dione (**23a**) (CDCl₃, 400 MHz).

Figure 46 HSQC spectrum of 1-chlorobenzo[g]isoquinoline-5,10-dione (**23a**) (CDCl₃, 400 MHz).

Figure 47 HMBC spectrum of 1-chlorobenzo[*g*]isoquinoline-5,10-dione (**23a**) (CDCl₃, 400 MHz).

Figure 48 NOESY spectrum of 1-chlorobenzo[g]isoquinoline-5,10-dione (23a) (CDCl₃, 400 MHz).

Figure 49¹H NMR spectrum of 3-chlorobenzo[*g*]isoquinoline-5,10-dione (**23b**) (CDCl₃, 400 MHz).

S53

Figure 50 ¹³C NMR spectrum of 3-chlorobenzo[g]isoquinoline-5,10-dione (23b) (CDCl₃, 100 MHz).

Figure 51 APT spectrum of 3-chlorobenzo[g]isoquinoline-5,10-dione (23b) (CDCl₃, 100 MHz).

Figure 52 DEPT 135 spectrum of 3-chlorobenzo[g]isoquinoline-5,10-dione (23b) (CDCl₃, 100 MHz).

Figure 53 COSY spectrum of 3-chlorobenzo[*g*]isoquinoline-5,10-dione (**23b**) (CDCl₃, 400 MHz).

Figure 54 HSQC spectrum of 3-chlorobenzo[g]isoquinoline-5,10-dione (**23b**) (CDCl₃, 400 MHz).

Figure 55 HMBC spectrum of 3-chlorobenzo[*g*]isoquinoline-5,10-dione (**23b**) (CDCl₃, 400 MHz).

Figure 56 NOESY spectrum of 3-chlorobenzo[*g*]isoquinoline-5,10-dione (**23b**) (CDCl₃, 400 MHz).

Figure 57 ¹H NMR spectrum of 4-chlorobenzo[*g*]isoquinoline-5,10-dione (**23c**) (CDCl₃, 400 MHz).

Figure 58 ¹³C NMR spectrum of 4-chlorobenzo[g]isoquinoline-5,10-dione (23c) (CDCl₃, 100 MHz).

Figure 59 APT spectrum of 4-chlorobenzo[g]isoquinoline-5,10-dione (23c) (CDCl₃, 100 MHz).

Figure 60 HSQC spectrum of 4-chlorobenzo[g]isoquinoline-5,10-dione (**23c**) (CDCl₃, 400 MHz).

Figure 61 HMBC spectrum of 4-chlorobenzo[*g*]isoquinoline-5,10-dione (**23c**) (CDCl₃, 400 MHz).

Figure 62 NOESY spectrum of 4-chlorobenzo[*g*]isoquinoline-5,10-dione (**23c**) (CDCl₃, 400 MHz).

Figure 63 ¹H NMR spectrum of 4,9-dimethoxy-1-methylene-1,3-dihydro-2*H*-benzo[*f*]isoindole-2-carbaldehyde (**24a**) (CDCl₃, 400 MHz). Due to limited stability of **24a** no clearer spectrum could be measured.

Figure 64 ¹³C NMR spectrum of 4,9-dimethoxy-1-methylene-1,3-dihydro-2*H*-benzo[*f*]isoindole-2-carbaldehyde (**24a**) (CDCl₃, 100 MHz). Due to limited stability of **24a** no clearer spectrum could be measured.

Figure 65 ¹H NMR spectrum of 1-phenylbenzo[g]isoquinoline-5,10-dione (25a) (CDCl₃, 400 MHz).

S69

Figure 66 ¹³C NMR spectrum of 1-phenylbenzo[g]isoquinoline-5,10-dione (25a) (CDCl₃, 100 MHz).

Figure 67 APT spectrum of 1-phenylbenzo[*g*]isoquinoline-5,10-dione (**25a**) (CDCl₃, 100 MHz).

Figure 68 DEPT 135 spectrum of 1-phenylbenzo[*g*]isoquinoline-5,10-dione (**25a**) (CDCl₃, 100 MHz).

Figure 69 COSY spectrum of 1-phenylbenzo[*g*]isoquinoline-5,10-dione (**25a**) (CDCl₃, 400 MHz).

Figure 70 HSQC spectrum of 1-phenylbenzo[*g*]isoquinoline-5,10-dione (**25a**) (CDCl₃, 400 MHz).

Figure 71 HMBC spectrum of 1-phenylbenzo[g]isoquinoline-5,10-dione (25a) (CDCl₃, 400 MHz).

Figure 72 NOESY spectrum of 1-phenylbenzo[*g*]isoquinoline-5,10-dione (**25a**) (CDCl₃, 400 MHz).

Figure 73 ¹H NMR spectrum of 1-*p*-tolylbenzo[*g*]isoquinoline-5,10-dione (**25b**) (CDCl₃, 400 MHz).

Figure 74 ¹³C NMR spectrum of 1-*p*-tolylbenzo[*g*]isoquinoline-5,10-dione (25b) (CDCl₃, 100 MHz).

Figure 75 ¹H NMR spectrum of 1-*o*-tolylbenzo[*g*]isoquinoline-5,10-dione (**25c**) (CDCl₃, 400 MHz).

Figure 76 ¹³C NMR spectrum of 1-*o*-tolylbenzo[*g*]isoquinoline-5,10-dione (25c) (CDCl₃, 100 MHz).

Figure 77 ¹H NMR spectrum of 1-(*p*-(trifluoromethyl)phenyl)benzo[*g*]isoquinoline-5,10-dione (**25d**) (CDCl₃, 400 MHz).

Figure 78 ¹³C NMR spectrum of 1-(p-(trifluoromethyl)phenyl)benzo[g]isoquinoline-5,10-dione (25d) (CDCl₃, 100 MHz).

Figure 79 ¹H NMR spectrum of 1-(*p*-ethoxyphenyl)benzo[*g*]isoquinoline-5,10-dione (**25e**) (CDCl₃, 400 MHz).

Figure 80¹³C NMR spectrum of 1-(*p*-ethoxyphenyl)benzo[*g*]isoquinoline-5,10-dione (25e) (CDCl₃, 100 MHz).

Figure 81 ¹H NMR spectrum of 1-(*o*-ethoxyphenyl)benzo[*g*]isoquinoline-5,10-dione (25f) (CDCl₃, 400 MHz).

Figure 82 ¹³C NMR spectrum of 1-(*o*-ethoxyphenyl)benzo[*g*]isoquinoline-5,10-dione (25f) (CDCl₃, 100 MHz).

Figure 83 ¹H NMR spectrum of (*E*)-1-styrylbenzo[*g*]isoquinoline-5,10-dione (25g) (CDCl₃, 400 MHz).

Figure 84¹³C NMR spectrum of (*E*)-1-styrylbenzo[*g*]isoquinoline-5,10-dione (**25g**) (CDCl₃, 100 MHz).

Figure 85 ¹H NMR spectrum of 1-(*p*-nitrophenyl)benzo[*g*]isoquinoline-5,10-dione (**25h**) (CDCl₃, 400 MHz).

Figure 86 ¹³C NMR spectrum of 1-(*p*-nitrophenyl)benzo[*g*]isoquinoline-5,10-dione (25h) (CDCl₃, 100 MHz).

Figure 87 ¹H NMR spectrum of 1-(*p*-hydroxyphenyl)benzo[*g*]isoquinoline-5,10-dione (**25i**) (DMSO-d6, 400 MHz).

Figure 88 ¹³C NMR spectrum of 1-(*p*-hydroxyphenyl)benzo[*g*]isoquinoline-5,10-dione (25i) (DMSO-d6, 100 MHz).

Figure 89 APT spectrum of 1-(p-hydroxyphenyl)benzo[g]isoquinoline-5,10-dione (25i) (DMSO-d6, 100 MHz).

Figure 90 DEPT 135 spectrum of 1-(*p*-hydroxyphenyl)benzo[*g*]isoquinoline-5,10-dione (25i) (DMSO-d6, 100 MHz).

Figure 91 COSY spectrum of 1-(*p*-hydroxyphenyl)benzo[*g*]isoquinoline-5,10-dione (25i) (DMSO-d6, 400 MHz).

Figure 92 HSQC spectrum of 1-(*p*-hydroxyphenyl)benzo[*g*]isoquinoline-5,10-dione (25i) (DMSO-d6, 400 MHz).

Figure 93 HMBC spectrum of 1-(*p*-hydroxyphenyl)benzo[*g*]isoquinoline-5,10-dione (**25i**) (DMSO-d6, 400 MHz).

Figure 94 ¹H NMR spectrum of 1-methoxybenzo[g]isoquinoline-5,10-dione (26) (CDCl₃, 400 MHz).

Figure 95 ¹³C NMR spectrum of 1-methoxybenzo[g]isoquinoline-5,10-dione (26) (CDCl₃, 100 MHz).

Figure 96¹H NMR spectrum of 3-(*o*-tolyl)benzo[*g*]isoquinoline-5,10-dione (27a) (CDCl₃, 400 MHz).

Figure 97 ¹³C NMR spectrum of 3-(*o*-tolyl)benzo[*g*]isoquinoline-5,10-dione (**27a**) (CDCl₃, 100 MHz).

Figure 98 ¹H NMR spectrum of 3-(*p*-ethoxyphenyl)benzo[*g*]isoquinoline-5,10-dione (**27b**) (CDCl₃, 400 MHz).

Figure 99 ¹³C NMR spectrum of 3-(*p*-ethoxyphenyl)benzo[*g*]isoquinoline-5,10-dione (**27b**) (CDCl₃, 100 MHz).

Figure 100 ¹H NMR spectrum of (*E*)-3-styrylbenzo[*g*]isoquinoline-5,10-dione (27c) (CDCl₃, 400 MHz).

Figure 101 ¹³C NMR spectrum of (*E*)-3-styrylbenzo[*g*]isoquinoline-5,10-dione (27c) (CDCl₃, 100 MHz).

Figure 102 ¹H NMR spectrum of 1-(*p*-tolylamino)benzo[*g*]isoquinoline-5,10-dione (**28a**) (CDCl₃, 400 MHz).

Figure 103 ¹³C NMR spectrum of 1-(*p*-tolylamino)benzo[*g*]isoquinoline-5,10-dione (28a) (CDCl₃, 100 MHz).

Figure 104 DEPT 135 spectrum of 1-(p-tolylamino)benzo[g]isoquinoline-5,10-dione (28a) (CDCl₃, 100 MHz).

Figure 105 APT spectrum of 1-(*p*-tolylamino)benzo[*g*]isoquinoline-5,10-dione (28a) (CDCl₃, 100 MHz).

Figure 106 COSY spectrum of 1-(*p*-tolylamino)benzo[*g*]isoquinoline-5,10-dione (**28a**) (CDCl₃, 400 MHz).

Figure 107 HSQC spectrum of 1-(*p*-tolylamino)benzo[*g*]isoquinoline-5,10-dione (**28a**) (CDCl₃, 400 MHz).

Figure 108 HMBC spectrum of 1-(*p*-tolylamino)benzo[*g*]isoquinoline-5,10-dione (**28a**) (CDCl₃, 400 MHz).

Figure 109 NOESY spectrum of 1-(*p*-tolylamino)benzo[*g*]isoquinoline-5,10-dione (**28a**) (CDCl₃, 400 MHz).

Figure 110 ¹H NMR spectrum of 1-((*p*-methoxyphenyl)amino)benzo[*g*]isoquinoline-5,10-dione (**28b**) (CDCl₃, 400 MHz).

Figure 111 ¹³C NMR spectrum of 1-((*p*-methoxyphenyl)amino)benzo[*g*]isoquinoline-5,10-dione (28b) (CDCl₃, 100 MHz).

Figure 112 ¹H NMR spectrum of 1-((*p*-(trifluoromethyl)phenyl)amino)benzo[*g*]isoquinoline-5,10-dione (**28c**) (CDCl₃, 400 MHz).

Figure 113 ¹³C NMR spectrum of 1-((p-(trifluoromethyl)phenyl)amino)benzo[g]isoquinoline-5,10-dione (28c) (CDCl₃, 100 MHz).

Figure 114 ¹H NMR spectrum of 1-((*p*-chlorophenyl)amino)benzo[*g*]isoquinoline-5,10-dione (**28d**) (CDCl₃, 400 MHz).

Figure 115 ¹³C NMR spectrum of 1-((*p*-chlorophenyl)amino)benzo[*g*]isoquinoline-5,10-dione (28d) (CDCl₃, 100 MHz).

Figure 116 ¹H NMR spectrum of 1-((*p*-nitrophenyl)amino)benzo[*g*]isoquinoline-5,10-dione (**28e**) (CDCl₃, 400 MHz).

Figure 117 ¹³C NMR spectrum of 1-((*p*-nitrophenyl)amino)benzo[*g*]isoquinoline-5,10-dione (**28e**) (CDCl₃, 100 MHz).

Figure 118 ¹H NMR spectrum of 3,3'-(*p*-tolylazanediyl)bis(benzo[*g*]isoquinoline-5,10-dione) (30a) (CDCl₃, 400 MHz).

Figure 119 ¹³C NMR spectrum of 3,3'-(*p*-tolylazanediyl)bis(benzo[*g*]isoquinoline-5,10-dione) (**30a**) (CDCl₃, 100 MHz).

Figure 120 APT spectrum of 3,3'-(*p*-tolylazanediyl)bis(benzo[*g*]isoquinoline-5,10-dione) (**30a**) (CDCl₃, 100 MHz).

Figure 121 DEPT 135 spectrum of 3,3'-(*p*-tolylazanediyl)bis(benzo[*g*]isoquinoline-5,10-dione) (30a) (CDCl₃, 100 MHz).

Figure 122 COSY spectrum of 3,3'-(*p*-tolylazanediyl)bis(benzo[*g*]isoquinoline-5,10-dione) (**30a**) (CDCl₃, 400 MHz).

Figure 123 HSQC spectrum of 3,3'-(*p*-tolylazanediyl)bis(benzo[*g*]isoquinoline-5,10-dione) (**30a**) (CDCl₃, 400 MHz).

Figure 124 HMBC spectrum of 3,3'-(*p*-tolylazanediyl)bis(benzo[*g*]isoquinoline-5,10-dione) (**30a**) (CDCl₃, 400 MHz).

Figure 125 ¹H NMR spectrum of 3,3'-(*o*-tolylazanediyl)bis(benzo[*g*]isoquinoline-5,10-dione) (**30b**) (CDCl₃, 400 MHz).

Figure 126 ¹³C NMR spectrum of 3,3'-(o-tolylazanediyl)bis(benzo[g]isoquinoline-5,10-dione) (30b) (CDCl₃, 100 MHz).

UPLC spectra of compounds

Figure 127 UPLC spectrum of benzo[*g*]isoquinoline-5,10-dione (5).

Figure 128 UPLC spectrum of 2-bromo-3-(2-bromomethyl)-1,4-dimethoxynaphthalene (17).

Figure 129 UPLC spectrum of *N*-((3-bromo-1,4-dimethoxynaphthalen-2-yl)methyl)-*N*-vinylacetamide (19b).

Figure 130 UPLC spectrum of 1-(5,10-dimethoxybenzo[*g*]isoquinolin-2(1*H*)-yl)ethanone (**20b**).

Figure 131 UPLC spectrum of 5,10-dimethoxybenzo[*g*]isoquinoline (**21**).

Figure 132 UPLC spectrum of 5,10-dioxo-5,10-dihydrobenzo[*g*]isoquinoline 2-oxide (**22**).

Figure 133 UPLC spectrum of 1-chlorobenzo[*g*]isoquinoline-5,10-dione (**23a**).

Figure 134 UPLC spectrum of 3-chlorobenzo[*g*]isoquinoline-5,10-dione (**23b**).

Figure 135 UPLC spectrum of 4-chlorobenzo[*g*]isoquinoline-5,10-dione (**23c**).

Figure 136 UPLC spectrum of 1-phenylbenzo[*g*]isoquinoline-5,10-dione (**25a**).

Figure 137 UPLC spectrum of 1-*p*-tolylbenzo[*g*]isoquinoline-5,10-dione (**25b**).

Figure 138 UPLC spectrum of 1-*o*-tolylbenzo[*g*]isoquinoline-5,10-dione (**25c**).

Figure 139 UPLC spectrum of 1-(*p*-(trifluoromethyl)phenyl)benzo[*g*]isoquinoline-5,10-dione (**25d**).

Figure 140 UPLC spectrum of 1-(*p*-ethoxyphenyl)benzo[*g*]isoquinoline-5,10-dione (**25e**).

Figure 141 UPLC spectrum of 1-(*o*-ethoxyphenyl)benzo[*g*]isoquinoline-5,10-dione (**25f**).

Figure 142 UPLC spectrum of (*E*)-1-styrylbenzo[*g*]isoquinoline-5,10-dione (**25g**).

Figure 143 UPLC spectrum of 1-(*p*-nitrophenyl)benzo[*g*]isoquinoline-5,10-dione (**25h**).

Figure 144 UPLC spectrum of 1-(*p*-hydroxyphenyl)benzo[*g*]isoquinoline-5,10-dione (**25i**).

Figure 145 UPLC spectrum of 1-methoxybenzo[*g*]isoquinoline-5,10-dione (**26**).

Figure 146 UPLC spectrum of 3-(*o*-tolyl)benzo[*g*]isoquinoline-5,10-dione (**27a**).

Figure 147 UPLC spectrum of 3-(*p*-ethoxyphenyl)benzo[*g*]isoquinoline-5,10-dione (**27b**).

Figure 148 UPLC spectrum of (*E*)-3-styrylbenzo[*g*]isoquinoline-5,10-dione (**27c**).

Figure 149 UPLC spectrum of 1-(*p*-tolylamino)benzo[*g*]isoquinoline-5,10-dione (28a).

Figure 150 UPLC spectrum of 1-((*p*-methoxyphenyl)amino)benzo[*g*]isoquinoline-5,10-dione (**28b**).

Figure 151 UPLC spectrum of 1-((*p*-(trifluoromethyl)phenyl)amino)benzo[*g*]isoquinoline-5,10-dione (**28c**).

Figure 152 UPLC spectrum of 1-((*p*-chlorophenyl)amino)benzo[*g*]isoquinoline-5,10-dione (**28d**).

Figure 153 UPLC spectrum of 1-((*p*-nitrophenyl)amino)benzo[*g*]isoquinoline-5,10-dione (**28e**).

Figure 154 UPLC spectrum of 3,3'-(*p*-tolylazanediyl)bis(benzo[*g*]isoquinoline-5,10-dione) (**30a**).

Figure 155 UPLC spectrum of 3,3'-(o-tolylazanediyl)bis(benzo[g]isoquinoline-5,10-dione) (30b).